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This paper is mainly on the algorithm of boosting, which is one of the most important recent 
developments in the classification methodology. Boosting works by sequentially applying a 
classification algorithm to reweighted versions of the training data, and then taking a weighted 
majority vote of the sequence of classifiers thus produced. 
This paper has main three parts. The first parts refer to how to improve boosting algorithm using a 
theorem which proved in the paper. And the second part mainly introduces several multiclass 
algorithms and the third part give corresponding experiments to compare them. 
Part I  Improve boosting algorithm. 
This paper gives a simply analysis of Adaboost algorithm, especially on how to achieve the upper 
bound of the training error. The concluding is listed below.(The detailed prove can see the paper) 
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The left of this above inequation is the training error, and the right is the production of the 
normalization factor of each bound. 

It is gives us a way to minimize the training error, which normally is a good criterion to judge a 

classification algorithm. That is to be greedily minimize the bound given in the theorem by 

minimizing Zt at each round of boosting. It applies this idea both in the choice of tα  and as a 

general criterion for the choice of weak hypothesis of . th

First see how it use this idea to choose tα  
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Z is minimized with the value of 21Z r≤ −  

The same theorem had been proved by Freund and Scapire(1997).  
The paper also give a general numerical method for exactly minimizing Z with respect to α (the 
detailed can see in paper) and get the following conclusion 

1. Normally there exists a unique choice of tα which minimizes tZ  
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Meanwhile it gives an analytic method for weak hypotheses that abstain. “abstain” means that the 
weak hypothesis don’t give any prediction by taking the value of 0, instead of –1 or +1. 
And in this case, it can be proved when  
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We have showed how to use that idea to choose tα , next we show how to apply that idea to guide 

in the design of weak learning algorithms which can be combined more powerfully with boosting. 
Here it only considers weak hypotheses which make their predictions based on a partitioning of 
the domain. X. To be more specific, each such weak hypothesis is associated with a partition of X 

into disjoint blocks X1, X2 …Xn  which cover all of X and for which  for ( ) ( )'h x h x=

', jx x X∈ . In other words, h’s prediction depends on only on which block jX  a given instance 

falls into. 
In this case, the paper concludes that  
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But sometime W  and W maybe very small or even zero, which will make c will be very 

large or infinite in magnitude. In practice, such large predictions may cause numerical problems.  
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We suggest using instead the “smoothed” values 
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we can see if we chose 
1

2N
ε �  , Z will not be greatly degraded. In the actual experiment, it 

uses ε  on the order of 1/m, where m is the number of training examples. 
 
 
 
 
 



Part II  Multiclass algorithm 
This paper also introduce several method how to apply boosting algorithm into multiclass problem. 
The detailed algorithm can be found in the paper 
1 Using Hamming Loss for multiclass problems 

 Using Mapping H X  : 2y→

 Hamming Loss ( ) ( ), ~
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E where  ∆ denotes symmetric difference. 

and its Domain-partitioning weak hypotheses is as the below 
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2 Using Output Coding for multiclass problems 

Using Mapping is the simplest and most obvious way. However, it maybe a more 

effective to use a more sophisticated mapping. It can define a one-to-one mapping . 

: yH X → 2
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λ  maps to the subsets of an unspecified label set  which need not to be the same as . 'Y Y

3 Using Ranking loss for multiclass problems 

It only care about the crucial pars  and0 1,l l 0 1,l Y l Y∉ ∈ . When f misorders a crucial pair 
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The ranking loss algorithm is to minimize the expected fraction of crucial pairs which are 
misordered. 

The upper bound of training error is ( )
1

T

t
t

rloss f Z
=

≤∏  

Part III  Experiment. 
The paper run two sets of experiment.  
Set1. Compares the algorithms on a set of learning benchmark problems from the UCI repository. 
Set2. Comparison on a large text categorization task. 
And for multiclass problems, it compared three of the boosting algorithms 
Discrete AdaBoost.MH 
Real AdaBoost.MH 
Discrete AdaBoost.MR 
 
 
 
 



Set1  
Experiment 1 
Comparison of  discrete Adaboost.MH and discrete Adaboost.MR on 11 multiclass benchmark 
problems from the UCI repository. Each point in each scatter plot show the error rate of the two 
competing algorithms on a single benchmark 
Conclusion 
Generally quite evenly matched with a possible slight advantage to AdaBoost.MH 
Set1  
Experiment 2 
Comparison of discrete and real AdaBoost.MH on 26 binary and multiclass benchmark problems 
from the UCI repository.  
Conclusion 
Real version(with confidences) is overall more effective at driving down the training error and 
also test error rate. But after 1000 rounds, these differences largely disappear. 
Set1  
Experiment 3 
Comparison of discrete and real Adaboost.MH on 16 binary problems from UCI repository 
Set1  
Experiment 4 
Comparison of discrete AdaBoost.MR, discrete AdaBoost.MH and real Adaboost.MH on 11 
multiclass problem from UCI repository 
Conclusion of the above two 
The potential for improvement of Adaboost with real-valued prediction seems to be greatest on 
larger problems 
Set 2 
Experiment 5 
Large text-categorization problem with Six class and 142,727 train and 66,973 test documents. 
Conclusion 
Real Adaboost.MH dramatically outperform the other two methods 
Discrete Adaboost.MH seems to consistently outperform discrete Adaboost.MR 
 

 
 
 
 
 


