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Abstract 
Bottleneck features have been shown to be effective in 

improving the accuracy of automatic speech recognition 
(ASR) systems. Conventionally, bottleneck features are 
extracted from a multi-layer perceptron (MLP) trained to 
predict context-independent monophone states. The MLP 
typically has three hidden layers and is trained using the 
backpropagation algorithm. In this paper, we propose two 
improvements to the training of bottleneck features motivated 
by recent advances in the use of deep neural networks (DNNs) 
for speech recognition.  First, we show how the use of 
unsupervised pretraining of a DNN enhances the network’s 
discriminative power and improves the bottleneck features it 
generates. Second, we show that a neural network trained to 
predict context-dependent senone targets produces better 
bottleneck features than one trained to predict monophone 
states. Bottleneck features trained using the proposed methods 
produced a 16% relative reduction in sentence error rate over 
conventional bottleneck features on a large vocabulary 
business search task. 

Index Terms: bottleneck features, pretraining, deep neural 
network, deep belief network,  

1. Introduction 
Bottleneck features generated by a multi-layer perceptron 

(MLP) can be considered a non-linear feature transformation 
and dimensionality reduction technique [1][2]. They can 
extract information useful for phoneme classification from 
multiple frames of the acoustic features and have been 
effective in improving the accuracy of speech recognition 
systems. Conventionally, bottleneck features are generated by 
a multi-layer perceptron (MLP) trained using the 
backpropagation (BP) algorithm. Typically, the MLP has three 
hidden layers and is trained to predict monophone state labels.  

Historically, the practical use of MLPs was limited to 
architectures with only a few hidden layers. Deep neural 
networks (DNN) with many hidden layers were very difficult 
to train and were typically outperformed by shallower 
networks.  However, a recent breakthrough in the training of 
DNNs has led to renewed interest in their use. This 
breakthrough occurred when unsupervised generative 
pretraining of the DNN parameters was proposed [3]. The 
basic idea of pretraining is to convert a DNN into a set of 
restricted Boltzmann machines (RBM). Each RBM is then 
trained greedily in a layer-by-layer manner. After pretraining, 
all layers are then jointly fine-tuned using the conventional BP 
algorithm. The role of the pretraining step is to initialize the 
DNN weights to a better starting point than random 
initialization and provide a form of regularization [4][5]. After 
pretraining, backpropagation typically converges to a better 
local optimum compared to systems with random 
initialization. In addition, pretraining enables deeper neural 
networks to be effectively used. 

 
 

This method of training DNNs has proven to be effective 
on many tasks, including speech recognition. For example, the 
DNN-HMM which exploits the discriminative learning ability 
of pretrained DNNs and the sequential modeling ability of 
hidden Markov models (HMMs) outperformed the 
conventional Gaussian mixture model (GMM)-HMM for both 
phoneme recognition [6][7] and large vocabulary speech 
recognition [8] tasks. In the large vocabulary task, the DNN 
was trained to predict context-dependent senone posterior 
probabilities which then replaced the Gaussian computations 
in the HMM.  

In this paper, we investigate whether pretrained DNNs can 
be used to generate bottleneck features that improve the 
accuracy of speech recognition systems compared to those 
trained using a conventional MLP. In addition, we study 
whether training the DNN using context-dependent target 
labels produces better bottleneck features given the success of 
this approach for DNN-HMMs. The effectiveness of these 
proposed improvements to bottleneck feature training was 
evaluated on a large vocabulary business search task. Our 
experiments show that bottleneck features generated by a 
pretrained DNN trained using senone labels produce a 16% 
relative reduction in sentence error rate compared to 
bottleneck features obtained using conventional MLP training 
and monophone state labels.  

2. Bottleneck Features 
Bottleneck features are generated from a multi-layer 

perceptron in which one of the internal layers has a small 
number of hidden units, relative to the size of the other layers. 
This small layer creates a constriction in the network that 
forces the information pertinent to classification into a low 
dimensional representation. Bottleneck features are most 
commonly used in an autoencoder which the neural network is 
trained to predict the input features themselves [3]. Because 
the activations at the bottleneck layer are a low-dimensional 
nonlinear function of the input features, an autoencoder can be 
viewed as a method of nonlinear dimensionality reduction. 
Bottleneck features for speech recognition are created from an 
MLP trained to predict phonemes or phoneme states.  The 
inputs to the hidden units of the bottleneck layer are used as 
features for an HMM-based speech recognizer. These 
bottleneck features represent a nonlinear transformation and 
dimensionality reduction of the input features.  

When generating neural-network-based features, the input 
is typically generated using variants of TRAPS features, in 
which long temporal windows of critical band energies are 
processed [9][10]. Other features, including multi-resolution 
variants of RASTA have also been used [11]. In most systems, 
the best performance is obtained by combining the bottleneck 
features derived from these inputs with traditional features, 
e.g., MFCC or PLP. It is believed that by using alternative 
input features to the neural network, the bottleneck features 
capture information that is complementary to conventional 
features derived from the short-time spectra of the input.  
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3. Pretrained Deep Neural Networks 
Pre-trained DNNs can be seen as improved MLPs. In fact, 

when performing classification, pretrained DNNs and MLPs 
are identical. The improvement arises from the training 
strategy employed by the pretrained DNNs. The trick is to 
learn the parameters of each layer greedily by treating each 
pair of layers of the DNN as an RBM before doing a joint 
optimization of all the layers. This learning strategy enables 
deeper neural networks to be trained by moving the weights to 
good initial values.  

3.1. Restricted Boltzmann Machines 
An RBM can be represented as a bipartite graph in which 

the stochastic units in the visible layer only connect to the 
stochastic units in the hidden layer. The units in the visible and 
hidden layers are represented by distributions from the 
exponential family. Bernoulli or Gaussian distributions are 
typically used in the visible layer while Bernoulli distributions 
are typically used in the hidden layer. Gaussian-Bernoulli 
RBMs are typically used to convert real-valued stochastic 
variables to binary stochastic variables which can then be 
further processed using the Bernoulli-Bernoulli RBMs. 

Given the model parameters θ , the joint distribution p(�, �; θ)  over the visible units � and hidden units �  in the 
RBMs can be defined as 

p(�, �; θ) = ����−E(�, �; θ)	
 , (1) 

where E(�, �; θ)  is an energy function and 
 = ∑ ∑ ����−E(�, �; θ)	�  is the partition function. The 
marginal probability that the model assigns to a visible vector � is 

p(�; θ) = ∑ ����−E(�, �; θ)	� 
 . (2) 

For Bernoulli-Bernoulli and Gaussian-Bernoulli RBMs, 
the energy functions are  
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�

��� ��ℎ�
�

��� − � ����
�
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respectively, where ���  represents the symmetric interaction 
term between visible unit �� and hidden unit ℎ�, �� and ��  are 
the bias terms, and �  and �  are the numbers of visible and 
hidden units.  

Although the joint and marginal probabilities are 
expensive to estimate due to the partition function, the 
conditional probabilities can be efficiently calculated as 

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ��!, (5) 

�(�� = 1|�; θ) = � "� ���
�

��� ℎ� + ��#. (6) 

for the Bernoulli-Bernoulli RBM and 

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ��!, (7) 

�(��|�; θ) = $ "��; � ���
�

��� ℎ� + ��, 1#. (8) 

for the Gaussian-Bernoulli RBM, where  �(�) =1 �1 + ���(�)	⁄  is the sigmoid function.  
The parameters in RBMs can be optimized to maximize 

log likelihood log �(�; θ) and can be updated as ∆��� = 〈��ℎ�〉*-/- − 〈��ℎ�〉03*45, (9) 
where 〈��ℎ�〉*-/-  is the expectation that ��  and ℎ�  occur 
together in the training set and 〈��ℎ�〉03*45  is that same 
expectation under the distribution defined by the model.  
Because 〈��ℎ�〉03*45  is extremely expensive to compute 
exactly, the contrastive divergence (CD) approximation to the 
gradient is used, where 〈��ℎ�〉03*45 is replaced by running the 
Gibbs sampler initialized at the data for one full step [12].  

3.2. Training Deep Neural Networks 
The last layer in the pretrained DNNs transforms a number 

of Bernoulli distributed units into a multinomial distribution 
using the softmax operation 

p(6 = 7|�; θ) = ����∑ 8�9ℎ����� + �9	
(�) , (10)

where  6 = 7  denotes the input been classified into the 7 th 
class, and 8�9 is the weight between hidden unit ℎ� at the last 
layer and class label 7. The training labels for the bottleneck 
features are typically monophone or monophone states, though 
we will show that using finer labels such as senones can 
improve performance. 

To learn the pretrained DNNs, we first train a Gaussian-
Bernoulli RBM generatively in which the visible layer is the 
continuous input vector constructed from 11 frames of MFCC 
features in this study. Bernoulli-Bernoulli RBMs are used for 
the remaining layers. When pretraining the next layer, :�ℎ�|�; θ	 = ��ℎ� = 1|�; θ	 from the previous layer is used 
as the visible input vector based on the mean-field theory. This 
process continues until the last layer at which time BP is used 
to fine-tune all the parameters jointly by maximizing the 
frame-level cross-entropy between the true and the predicted 
probability distributions over class labels.  

4. Experiments 
The goal of this work is to investigate the effectiveness of 

three proposed sources of improvement for bottleneck 
features:  pretraining the neural network, exploiting deeper 
networks, and using context-dependent target labels. We are 
also interested in knowing how bottleneck features perform 
compared to the context-dependent DNN-HMMs developed 
recently [8] For these purposes, we conducted a series of 
experiments using the Windows Live Search for Mobile 
(WLS4M) corpus collected from real users of a smartphone 
application for business search [13][14]. 

4.1. Corpus Description 
The WLS4M corpus consists of spoken queries for local 

businesses in the United States collected from real users of a 
deployed smartphone voice search application. The audio is 
sampled at 8 kHz and encoded by GSM. The data contains 
almost all sources of variability seen in the real-world such as 
noise, music, side-speech, accents, hesitation, repetition, 
sloppy pronunciation, and interruption.  

The training set for all the models consisted of 24 hours of 
speech from 32,057 utterances. The decoding parameters were 
tuned using a 6.5-hour development set (8777 utterances) and 
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the final evaluation was performed using a 9.5-hour test set 
(12,758 utterances). To preserve the time-varying nature of a 
deployed application, all queries in the training set were 
collected before those in the development set, which were in 
turn collected before those in the test set. The lexicon and 
trigram language model (LM) used for decoding were the 
same as used in our previous work [8]. The lexicon contains 
65K words and was extracted from the CMU public lexicon. 
The perplexity of the LM is 117. 

We evaluated the performance on this task using sentence 
error rate (SER) for three reasons. First, business search 
queries are short with an average sentence length of 2.1 words 
and users want all words correctly recognized to find the right 
company. Second, there is significant inconsistency in spelling 
that makes using sentence accuracy more convenient. Third, 
all previous results on this task were reported using sentence 
accuracy. 

4.2. Baseline Systems 
The baseline system in this task was a standard triphone 

GMM-HMM, trained on 39-dimensional MFCC features 
(static, delta, and delta-delta coefficients). Log energy was 
used in place of C0 and the features were pre-processed with 
cepstral mean normalization. These baseline systems are 
optimized for the training set size and have 53K logical and 
2K physical triphones with 761 tied states (senones), each of 
which is a GMM with 24 mixture components. Acoustic 
models were built using both maximum likelihood (ML) and 
minimum phone error (MPE) criteria. In addition, we also 
report the accuracy of a DNN-HMM system that used a 5-
hidden-layer pretrained DNN to predict the same 761 senones 
used in the GMM-HMM systems. The performance of the 
baseline systems are shown in Table 1.  

4.3. Experiments on Bottleneck Features 
In this study we derive the bottleneck features directly 

from MFCC features. This is different from most other 
bottleneck features that are generated from alternative 
features, e.g., TRAPS-DCT features. We made this decision in 
order to remove any gains obtained from using additional 
information and isolate the effectiveness of the bottleneck 
features extracted with different techniques. In all the results 
reported here, we followed the DNN training recipe in [8]. 
More specifically, we used 11-frames of 39-dimensioanl 
MFCC features as the input to the DNNs, 39 hidden units in 
the bottleneck layer, and 2048 hidden units for non-bottleneck 
hidden layers. We used a learning rate of 0.004 for all layers 
during pretraining, and used a learning rate of 0.08 for the first 
6 epochs and a learning rate of 0.002 for the remaining 6 
epochs during fine-tuning. The DNN training was carried out 

using stochastic mini-batch gradient descend with a minibatch 
size of 256 samples. 

The bottleneck features extracted from the DNNs are then 
used as alone or concatenated with the original MFCC features 
to train the GMM-HMMs. In both the bottleneck (BN) only 
and BN+MFCC configurations, the features were decorrelated 
using principle component analysis (PCA) and converted to 39 
dimensions. Figure 1 illustrates the typical 5-hidden-layer 
bottleneck feature extraction architecture used in this study. To 
train the GMM-HMMs using the BN or BN+MFCC features, 
single pass retraining was performed using the baseline GMM-
HMMs trained from MFCC features. Four iterations of EM 
were then performed using the BN or BN+MFCC features.   

Figure 2 shows the SER on the development set using 
bottleneck features only with and without using pretraining. 
The bottleneck features were trained using senone labels 
generated by forced alignment using the ML-trained GMM-
HMMs. 

We make two observations from this figure. First, the 
bottleneck features learned with pretraining consistently 
outperform those learned without pretraining. Second, the 
bottleneck features in the 5-hidden-layer DNN perform better 
than those in the 3- and 7-hidden-layer DNNs. This indicates 
that while a sufficiently deep network is helpful for bottleneck 
features, deeper networks do not always improve performance. 
Note that this is in contrast to the DNN-HMMs where deeper 
networks seem to consistently perform better than shallower 
networks. We believe this is because when networks become 
very deep, the middle bottleneck layer gets less information 
from the supervision. Because bottleneck features extracted 
from 5-hidden-layer DNN have the best performance, we keep 
this configuration for the remainder of our experiments.  

It was hypothesized that using monophone state labels was 
sufficient for training bottleneck features [10]. In the CD-
DNN-HMM work, however, significant gains were obtained 
using senone labels rather than monophone state labels. We 
thus are interested in knowing whether senone labels also 
produce better bottleneck features. Table 2 compares the 
performance of the BN systems using labels generated from 

Table 2. Performance comparison of bottleneck features 
trained with different supervision labels. 

Labels used for bottleneck  
feature training 

Dev  
% SER 

Test  
% SER 

None (pretraining only) 39.4 42.1 
Monophone states 35.2 37.0 
Converted monophone states  34.0 35.7 
Senones  33.4 34.8 

 
Figure 1: Typical 5-hidden layer bottleneck feature 
extraction architecture used in this study. 

Figure 2: Development set SER using BN features with and 
without pretraining.  

Table 1. Sentence Error Rate (SER) of Baseline Systems 
Acoustic Model Dev % SER Test % SER 
GMM-HMM ML 37.1 39.6 
GMM-HMM MPE 34.5 36.2 
DNN-HMM 28.2 30.4 
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different acoustic models. The first row in the table shows that 
if supervised fine-tuning is omitted and the bottleneck features 
are only pretrained using the generative criterion, a 39.4% 
SER is obtained on the development set. 

Using monophone state alignment from the monophone 
GMM-HMM reduces the SER to 35.2%. This highlights the 
importance of supervised training for bottleneck features. 
Using monophone state labels converted from the alignment 
performed by the triphone acoustic model further reduces the 
SER by 1.2% on the development set. Finally, if the senone 
labels are used directly we got additional improvement of 
0.6% and 0.9% on the development and test sets, respectively. 
There was no additional gain obtained using labels generated 
from the MPE-HMM or the DBN-HMM so those results are 
not reported here. 

The total effect of the training strategies proposed in this 
paper is shown in Table 3. The table shows the performance 
obtained using a conventional MLP with three hidden layers 
and monophone state labels as well as that obtained using the 
same neural network with pretraining and senone labels. 
Adding pretraining and senone labels provides approximately 
14% relative improvement in SER on the development and test 
sets. The relative improvement grows to 16% if a deeper 
network with five hidden layers is used.   

Finally, we evaluated the performance of bottleneck 
features when combined with the original MFCC features. As 
shown in Table 4, the combination of bottleneck and MFCC 
features is 0.8% better than bottleneck features alone on the 
development set. Surprisingly, no improvement is seen on the 
test set. Comparing Tables 1 and 3, we can see that an ML 
HMM system that uses BN+MFCC features outperforms a 
discriminatively trained MPE system that uses MFCC features 
alone. If we train the BN+MFCC system using MPE , relative 
reductions in SER of 12% and 13% are observed on the 
development and test sets compared to the baseline MFCC 
MPE system. These results are not quite as good as those 
obtained using the DNN-HMM since the training of BN 
features is disconnected from the manner in which such 
features are processed during decoding. However, this 
performance gap can be reduced further by applying multi-
pass decoding strategies and speaker adaptation techniques. 

5. Conclusions 
In this paper, we have studied the use of deep neural 

networks for bottleneck feature extraction. In order to obtain 
good performance with deep networks, unsupervised 
pretraining is applied, in which the DNN into converted into a 
series of Restricted Boltzmann Machines and greedily trained 
layer by layer. Using pretraining to initialize the parameters 
prior to back propagation has two benefits: first, performance 
is improved for all neural network topologies. Second, deep 
architectures with many layers that perform poorly with 
random initialization now can achieve good performance.  

We have also examined what impact the choice of target 
labels used to train the neural network has on performance. 
Conventionally, neural networks used to generate probabilistic 

or bottleneck features use monophone or monophone state 
labels. We have shown that improvements can be obtained by 
using context-dependent labels generated by the senones of the 
recognizer.  The combination of DNN pretraining and the 
senone target labels resulted in a 16% improvement in 
performance compared to the conventional method for training 
bottleneck features.  
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Table 4. Summarization of sentence accuracy obtained 
using pretrained DNN based bottleneck features. 

Features HMM Training  Dev  
% SER 

Test  
% SER 

BN ML 33.4 34.8 
BN + MFCC  ML 32.6 34.8 
BN + MFCC MPE 30.4 32.2 

Table 3. Comparison of BN performance with traditional 
MLP training and pretrained DNN’s with senone labels.  

Bottleneck Feature Training 
Dev  

% SER 
Test 

% SER 
# Hidden 

Layers 
Pre- 

Train 
Target  
Labels 

3 No Monophone State 39.9 41.6 
3 Yes Senone 34.3 36.0 
5 Yes Senone 33.4 34.8 

240


