
Improved Bottleneck Features Using Pretrained Deep Neural Networks

Dong Yu and Michael L. Seltzer

Speech Research Group, Microsoft Research, USA
{dongyu, mseltzer}@microsoft.com

Abstract
Bottleneck features have been shown to be effective in

improving the accuracy of automatic speech recognition
(ASR) systems. Conventionally, bottleneck features are
extracted from a multi-layer perceptron (MLP) trained to
predict context-independent monophone states. The MLP
typically has three hidden layers and is trained using the
backpropagation algorithm. In this paper, we propose two
improvements to the training of bottleneck features motivated
by recent advances in the use of deep neural networks (DNNs)
for speech recognition. First, we show how the use of
unsupervised pretraining of a DNN enhances the network’s
discriminative power and improves the bottleneck features it
generates. Second, we show that a neural network trained to
predict context-dependent senone targets produces better
bottleneck features than one trained to predict monophone
states. Bottleneck features trained using the proposed methods
produced a 16% relative reduction in sentence error rate over
conventional bottleneck features on a large vocabulary
business search task.

Index Terms: bottleneck features, pretraining, deep neural
network, deep belief network,

1. Introduction
Bottleneck features generated by a multi-layer perceptron

(MLP) can be considered a non-linear feature transformation
and dimensionality reduction technique [1][2]. They can
extract information useful for phoneme classification from
multiple frames of the acoustic features and have been
effective in improving the accuracy of speech recognition
systems. Conventionally, bottleneck features are generated by
a multi-layer perceptron (MLP) trained using the
backpropagation (BP) algorithm. Typically, the MLP has three
hidden layers and is trained to predict monophone state labels.

Historically, the practical use of MLPs was limited to
architectures with only a few hidden layers. Deep neural
networks (DNN) with many hidden layers were very difficult
to train and were typically outperformed by shallower
networks. However, a recent breakthrough in the training of
DNNs has led to renewed interest in their use. This
breakthrough occurred when unsupervised generative
pretraining of the DNN parameters was proposed [3]. The
basic idea of pretraining is to convert a DNN into a set of
restricted Boltzmann machines (RBM). Each RBM is then
trained greedily in a layer-by-layer manner. After pretraining,
all layers are then jointly fine-tuned using the conventional BP
algorithm. The role of the pretraining step is to initialize the
DNN weights to a better starting point than random
initialization and provide a form of regularization [4][5]. After
pretraining, backpropagation typically converges to a better
local optimum compared to systems with random
initialization. In addition, pretraining enables deeper neural
networks to be effectively used.

This method of training DNNs has proven to be effective
on many tasks, including speech recognition. For example, the
DNN-HMM which exploits the discriminative learning ability
of pretrained DNNs and the sequential modeling ability of
hidden Markov models (HMMs) outperformed the
conventional Gaussian mixture model (GMM)-HMM for both
phoneme recognition [6][7] and large vocabulary speech
recognition [8] tasks. In the large vocabulary task, the DNN
was trained to predict context-dependent senone posterior
probabilities which then replaced the Gaussian computations
in the HMM.

In this paper, we investigate whether pretrained DNNs can
be used to generate bottleneck features that improve the
accuracy of speech recognition systems compared to those
trained using a conventional MLP. In addition, we study
whether training the DNN using context-dependent target
labels produces better bottleneck features given the success of
this approach for DNN-HMMs. The effectiveness of these
proposed improvements to bottleneck feature training was
evaluated on a large vocabulary business search task. Our
experiments show that bottleneck features generated by a
pretrained DNN trained using senone labels produce a 16%
relative reduction in sentence error rate compared to
bottleneck features obtained using conventional MLP training
and monophone state labels.

2. Bottleneck Features
Bottleneck features are generated from a multi-layer

perceptron in which one of the internal layers has a small
number of hidden units, relative to the size of the other layers.
This small layer creates a constriction in the network that
forces the information pertinent to classification into a low
dimensional representation. Bottleneck features are most
commonly used in an autoencoder which the neural network is
trained to predict the input features themselves [3]. Because
the activations at the bottleneck layer are a low-dimensional
nonlinear function of the input features, an autoencoder can be
viewed as a method of nonlinear dimensionality reduction.
Bottleneck features for speech recognition are created from an
MLP trained to predict phonemes or phoneme states. The
inputs to the hidden units of the bottleneck layer are used as
features for an HMM-based speech recognizer. These
bottleneck features represent a nonlinear transformation and
dimensionality reduction of the input features.

When generating neural-network-based features, the input
is typically generated using variants of TRAPS features, in
which long temporal windows of critical band energies are
processed [9][10]. Other features, including multi-resolution
variants of RASTA have also been used [11]. In most systems,
the best performance is obtained by combining the bottleneck
features derived from these inputs with traditional features,
e.g., MFCC or PLP. It is believed that by using alternative
input features to the neural network, the bottleneck features
capture information that is complementary to conventional
features derived from the short-time spectra of the input.

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

237

3. Pretrained Deep Neural Networks
Pre-trained DNNs can be seen as improved MLPs. In fact,

when performing classification, pretrained DNNs and MLPs
are identical. The improvement arises from the training
strategy employed by the pretrained DNNs. The trick is to
learn the parameters of each layer greedily by treating each
pair of layers of the DNN as an RBM before doing a joint
optimization of all the layers. This learning strategy enables
deeper neural networks to be trained by moving the weights to
good initial values.

3.1. Restricted Boltzmann Machines
An RBM can be represented as a bipartite graph in which

the stochastic units in the visible layer only connect to the
stochastic units in the hidden layer. The units in the visible and
hidden layers are represented by distributions from the
exponential family. Bernoulli or Gaussian distributions are
typically used in the visible layer while Bernoulli distributions
are typically used in the hidden layer. Gaussian-Bernoulli
RBMs are typically used to convert real-valued stochastic
variables to binary stochastic variables which can then be
further processed using the Bernoulli-Bernoulli RBMs.

Given the model parameters θ , the joint distribution p(�, �; θ) over the visible units � and hidden units � in the
RBMs can be defined as

p(�, �; θ) = ����−E(�, �; θ)	
 , (1)

where E(�, �; θ) is an energy function and
 = ∑ ∑ ����−E(�, �; θ)	� is the partition function. The
marginal probability that the model assigns to a visible vector � is

p(�; θ) = ∑ ����−E(�, �; θ)	�
 . (2)

For Bernoulli-Bernoulli and Gaussian-Bernoulli RBMs,
the energy functions are

E(�, �; θ) = − � � ���
�

��� ��ℎ�
�

��� − � ����
�

��� − � ��ℎ�
�

��� , (3)

and

E(�, �; θ) = − � � ���
�

��� ��ℎ�
�

���
 + 12 �(�� − ��)��

��� − � ��ℎ�
�

��� , (4)

respectively, where ��� represents the symmetric interaction
term between visible unit �� and hidden unit ℎ�, �� and �� are
the bias terms, and � and � are the numbers of visible and
hidden units.

Although the joint and marginal probabilities are
expensive to estimate due to the partition function, the
conditional probabilities can be efficiently calculated as

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ��!, (5)

�(�� = 1|�; θ) = � "� ���
�

��� ℎ� + ��#. (6)

for the Bernoulli-Bernoulli RBM and

��ℎ� = 1|�; θ	 = � �� ���
�

��� �� + ��!, (7)

�(��|�; θ) = $ "��; � ���
�

��� ℎ� + ��, 1#. (8)

for the Gaussian-Bernoulli RBM, where �(�) =1 �1 + ���(�)	⁄ is the sigmoid function.
The parameters in RBMs can be optimized to maximize

log likelihood log �(�; θ) and can be updated as ∆��� = 〈��ℎ�〉*-/- − 〈��ℎ�〉03*45, (9)
where 〈��ℎ�〉*-/- is the expectation that �� and ℎ� occur
together in the training set and 〈��ℎ�〉03*45 is that same
expectation under the distribution defined by the model.
Because 〈��ℎ�〉03*45 is extremely expensive to compute
exactly, the contrastive divergence (CD) approximation to the
gradient is used, where 〈��ℎ�〉03*45 is replaced by running the
Gibbs sampler initialized at the data for one full step [12].

3.2. Training Deep Neural Networks
The last layer in the pretrained DNNs transforms a number

of Bernoulli distributed units into a multinomial distribution
using the softmax operation

p(6 = 7|�; θ) = ����∑ 8�9ℎ����� + �9	
(�) , (10)

where 6 = 7 denotes the input been classified into the 7 th
class, and 8�9 is the weight between hidden unit ℎ� at the last
layer and class label 7. The training labels for the bottleneck
features are typically monophone or monophone states, though
we will show that using finer labels such as senones can
improve performance.

To learn the pretrained DNNs, we first train a Gaussian-
Bernoulli RBM generatively in which the visible layer is the
continuous input vector constructed from 11 frames of MFCC
features in this study. Bernoulli-Bernoulli RBMs are used for
the remaining layers. When pretraining the next layer, :�ℎ�|�; θ	 = ��ℎ� = 1|�; θ	 from the previous layer is used
as the visible input vector based on the mean-field theory. This
process continues until the last layer at which time BP is used
to fine-tune all the parameters jointly by maximizing the
frame-level cross-entropy between the true and the predicted
probability distributions over class labels.

4. Experiments
The goal of this work is to investigate the effectiveness of

three proposed sources of improvement for bottleneck
features: pretraining the neural network, exploiting deeper
networks, and using context-dependent target labels. We are
also interested in knowing how bottleneck features perform
compared to the context-dependent DNN-HMMs developed
recently [8] For these purposes, we conducted a series of
experiments using the Windows Live Search for Mobile
(WLS4M) corpus collected from real users of a smartphone
application for business search [13][14].

4.1. Corpus Description
The WLS4M corpus consists of spoken queries for local

businesses in the United States collected from real users of a
deployed smartphone voice search application. The audio is
sampled at 8 kHz and encoded by GSM. The data contains
almost all sources of variability seen in the real-world such as
noise, music, side-speech, accents, hesitation, repetition,
sloppy pronunciation, and interruption.

The training set for all the models consisted of 24 hours of
speech from 32,057 utterances. The decoding parameters were
tuned using a 6.5-hour development set (8777 utterances) and

238

the final evaluation was performed using a 9.5-hour test set
(12,758 utterances). To preserve the time-varying nature of a
deployed application, all queries in the training set were
collected before those in the development set, which were in
turn collected before those in the test set. The lexicon and
trigram language model (LM) used for decoding were the
same as used in our previous work [8]. The lexicon contains
65K words and was extracted from the CMU public lexicon.
The perplexity of the LM is 117.

We evaluated the performance on this task using sentence
error rate (SER) for three reasons. First, business search
queries are short with an average sentence length of 2.1 words
and users want all words correctly recognized to find the right
company. Second, there is significant inconsistency in spelling
that makes using sentence accuracy more convenient. Third,
all previous results on this task were reported using sentence
accuracy.

4.2. Baseline Systems
The baseline system in this task was a standard triphone

GMM-HMM, trained on 39-dimensional MFCC features
(static, delta, and delta-delta coefficients). Log energy was
used in place of C0 and the features were pre-processed with
cepstral mean normalization. These baseline systems are
optimized for the training set size and have 53K logical and
2K physical triphones with 761 tied states (senones), each of
which is a GMM with 24 mixture components. Acoustic
models were built using both maximum likelihood (ML) and
minimum phone error (MPE) criteria. In addition, we also
report the accuracy of a DNN-HMM system that used a 5-
hidden-layer pretrained DNN to predict the same 761 senones
used in the GMM-HMM systems. The performance of the
baseline systems are shown in Table 1.

4.3. Experiments on Bottleneck Features
In this study we derive the bottleneck features directly

from MFCC features. This is different from most other
bottleneck features that are generated from alternative
features, e.g., TRAPS-DCT features. We made this decision in
order to remove any gains obtained from using additional
information and isolate the effectiveness of the bottleneck
features extracted with different techniques. In all the results
reported here, we followed the DNN training recipe in [8].
More specifically, we used 11-frames of 39-dimensioanl
MFCC features as the input to the DNNs, 39 hidden units in
the bottleneck layer, and 2048 hidden units for non-bottleneck
hidden layers. We used a learning rate of 0.004 for all layers
during pretraining, and used a learning rate of 0.08 for the first
6 epochs and a learning rate of 0.002 for the remaining 6
epochs during fine-tuning. The DNN training was carried out

using stochastic mini-batch gradient descend with a minibatch
size of 256 samples.

The bottleneck features extracted from the DNNs are then
used as alone or concatenated with the original MFCC features
to train the GMM-HMMs. In both the bottleneck (BN) only
and BN+MFCC configurations, the features were decorrelated
using principle component analysis (PCA) and converted to 39
dimensions. Figure 1 illustrates the typical 5-hidden-layer
bottleneck feature extraction architecture used in this study. To
train the GMM-HMMs using the BN or BN+MFCC features,
single pass retraining was performed using the baseline GMM-
HMMs trained from MFCC features. Four iterations of EM
were then performed using the BN or BN+MFCC features.

Figure 2 shows the SER on the development set using
bottleneck features only with and without using pretraining.
The bottleneck features were trained using senone labels
generated by forced alignment using the ML-trained GMM-
HMMs.

We make two observations from this figure. First, the
bottleneck features learned with pretraining consistently
outperform those learned without pretraining. Second, the
bottleneck features in the 5-hidden-layer DNN perform better
than those in the 3- and 7-hidden-layer DNNs. This indicates
that while a sufficiently deep network is helpful for bottleneck
features, deeper networks do not always improve performance.
Note that this is in contrast to the DNN-HMMs where deeper
networks seem to consistently perform better than shallower
networks. We believe this is because when networks become
very deep, the middle bottleneck layer gets less information
from the supervision. Because bottleneck features extracted
from 5-hidden-layer DNN have the best performance, we keep
this configuration for the remainder of our experiments.

It was hypothesized that using monophone state labels was
sufficient for training bottleneck features [10]. In the CD-
DNN-HMM work, however, significant gains were obtained
using senone labels rather than monophone state labels. We
thus are interested in knowing whether senone labels also
produce better bottleneck features. Table 2 compares the
performance of the BN systems using labels generated from

Table 2. Performance comparison of bottleneck features
trained with different supervision labels.

Labels used for bottleneck
feature training

Dev
% SER

Test
% SER

None (pretraining only) 39.4 42.1
Monophone states 35.2 37.0
Converted monophone states 34.0 35.7
Senones 33.4 34.8

Figure 1: Typical 5-hidden layer bottleneck feature
extraction architecture used in this study.

Figure 2: Development set SER using BN features with and
without pretraining.

Table 1. Sentence Error Rate (SER) of Baseline Systems
Acoustic Model Dev % SER Test % SER
GMM-HMM ML 37.1 39.6
GMM-HMM MPE 34.5 36.2
DNN-HMM 28.2 30.4

239

different acoustic models. The first row in the table shows that
if supervised fine-tuning is omitted and the bottleneck features
are only pretrained using the generative criterion, a 39.4%
SER is obtained on the development set.

Using monophone state alignment from the monophone
GMM-HMM reduces the SER to 35.2%. This highlights the
importance of supervised training for bottleneck features.
Using monophone state labels converted from the alignment
performed by the triphone acoustic model further reduces the
SER by 1.2% on the development set. Finally, if the senone
labels are used directly we got additional improvement of
0.6% and 0.9% on the development and test sets, respectively.
There was no additional gain obtained using labels generated
from the MPE-HMM or the DBN-HMM so those results are
not reported here.

The total effect of the training strategies proposed in this
paper is shown in Table 3. The table shows the performance
obtained using a conventional MLP with three hidden layers
and monophone state labels as well as that obtained using the
same neural network with pretraining and senone labels.
Adding pretraining and senone labels provides approximately
14% relative improvement in SER on the development and test
sets. The relative improvement grows to 16% if a deeper
network with five hidden layers is used.

Finally, we evaluated the performance of bottleneck
features when combined with the original MFCC features. As
shown in Table 4, the combination of bottleneck and MFCC
features is 0.8% better than bottleneck features alone on the
development set. Surprisingly, no improvement is seen on the
test set. Comparing Tables 1 and 3, we can see that an ML
HMM system that uses BN+MFCC features outperforms a
discriminatively trained MPE system that uses MFCC features
alone. If we train the BN+MFCC system using MPE , relative
reductions in SER of 12% and 13% are observed on the
development and test sets compared to the baseline MFCC
MPE system. These results are not quite as good as those
obtained using the DNN-HMM since the training of BN
features is disconnected from the manner in which such
features are processed during decoding. However, this
performance gap can be reduced further by applying multi-
pass decoding strategies and speaker adaptation techniques.

5. Conclusions
In this paper, we have studied the use of deep neural

networks for bottleneck feature extraction. In order to obtain
good performance with deep networks, unsupervised
pretraining is applied, in which the DNN into converted into a
series of Restricted Boltzmann Machines and greedily trained
layer by layer. Using pretraining to initialize the parameters
prior to back propagation has two benefits: first, performance
is improved for all neural network topologies. Second, deep
architectures with many layers that perform poorly with
random initialization now can achieve good performance.

We have also examined what impact the choice of target
labels used to train the neural network has on performance.
Conventionally, neural networks used to generate probabilistic

or bottleneck features use monophone or monophone state
labels. We have shown that improvements can be obtained by
using context-dependent labels generated by the senones of the
recognizer. The combination of DNN pretraining and the
senone target labels resulted in a 16% improvement in
performance compared to the conventional method for training
bottleneck features.

6. Acknowledgements
The authors would like to thank Li Deng, Frank Seide, and

Nikko Strom for valuable discussions.

7. References
[1] V. Fontaine, C. Ris, and J.-M. Boite, “Nonlinear

discriminant analysis for improved speech recognition,”
in Proc. Eurospeech, 1997.

[2] F. Grezl, M. Karafiat, S. Kontar, and J. Cernocky,
“Probabilistic and bottle-neck features for LVCSR of
meetings,” in Proc. ICASSP 2007, pp. 757–760.

[3] G. Hinton and R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, no. 5786, pp. 504 – 507, 2006.

[4] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why
does unsupervised pretraining help deep learning?” in
Proc. of AISTATS 2010, vol. 9, May 2010, pp. 201–208.

[5] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and
fine-tuning in context-dependent DBN-HMMs for real-
world speech recognition,” in Proc. NIPS Workshop on
Deep Learning and Unsupervised Feat. Learning, 2010.

[6] A. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic
modeling using deep belief networks,” IEEE Trans. on
Audio, Speech, and Lang. Proc.- Special Issue on Deep
Learning for Speech and Lang. Proc., 2011, (in press).

[7] A. Mohamed, D. Yu, and L. Deng, "Investigation of Full-
Sequence Training of Deep Belief Networks for Speech
Recognition", in Proc. Interspeech 2010, pp. 1692-1695.

[8] G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-
Dependent Pretrained Deep Neural Networks for Large
Vocabulary Speech Recognition", IEEE Trans. Audio,
Speech, and Lang. Proc. - Special Issue on Deep
Learning for Speech and Lang. Proc., 2011, (in press).

[9] H. Hermansky and S. Sharma, “TRAPS – classifiers of
temporal patterns,” Proc. ICSLP, Sydney Australia, 1998.

[10] F. Grezl and P. Fousek, “Optimizing bottle-neck features
for LVCSR,” in Proc. ICASSP. 2008, pp. 4729–4732.

[11] C. Plahl, R. Schluter, and H. Ney, “Hierarchical bottle
neck features for LVCSR,” in Proc. Interspeech 2010.

[12] G. E. Hinton, “Training products of experts by
minimizing contrastive divergence,” Neural
Computation, vol. 14, pp. 1771–1800, 2002.

[13] D. Yu, Y. C. Ju, Y. Y. Wang, G. Zweig, and A. Acero,
“Automated directory assistance system - from theory to
practice,” in Proc. Interspeech, 2007, pp. 2709–2711.

[14] A. Acero, N. Bernstein, R. Chambers, Y. Ju, X. Li, J.
Odell, P. Nguyen, O. Scholtz, and G. Zweig, “Live search
for mobile: Web services by voice on the cellphone,” in
Proc. ICASSP 2008, pp. 5256–5259.

Table 4. Summarization of sentence accuracy obtained
using pretrained DNN based bottleneck features.

Features HMM Training Dev
% SER

Test
% SER

BN ML 33.4 34.8
BN + MFCC ML 32.6 34.8
BN + MFCC MPE 30.4 32.2

Table 3. Comparison of BN performance with traditional
MLP training and pretrained DNN’s with senone labels.

Bottleneck Feature Training
Dev

% SER
Test

% SER
Hidden

Layers
Pre-

Train
Target
Labels

3 No Monophone State 39.9 41.6
3 Yes Senone 34.3 36.0
5 Yes Senone 33.4 34.8

240

