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We give a new bound ω < 2.37369 for the exponent of complexity of matrix
multiplication, giving a small improvement on the previous bound obtained by
Coppersmith and Winograd. The proof involves an extension of the method used by
these authors. We have attempted to make the exposition self-contained.

1. Introduction

In 1968 Strassen [16] described a method of multiplying two 2 × 2 matrices using
only seven multiplications. By applying it recursively it was shown that two n × n
matrices could be multiplied using O(nρ) operations in all, where ρ = log2 7 ≈ 2.81.
This discovery led to a period of activity devoted to the improvement of this bound.
One can define an exponent of complexity ω, which is, in effect, the smallest number
such that two n × n matrices can be multiplied using O(nω+ε) operations using an
method of the type described by Strassen (a precise definition is given in § 2). Then
Strassen’s result says that ω � log2 7, so it is natural to wish to determine the true
value of ω. In the decade or so after 1978, several successive reductions in the upper
bound for ω were achieved [2,3,6,8–10,12,14,17], leading to the bound ω < 2.375477
obtained by Coppersmith and Winograd [7]. It is an open question whether ω = 2.

We present a small improvement of the Coppersmith–Winograd bound, namely,
ω < 2.3736897, which was first obtained in Stothers [15]. The proof uses an exten-
sion of the ideas of [7] and relies heavily on a combinatorial construction from [7],
which depends on probabilistic arguments and a theorem of Salem and Spencer on
sets of integers containing no three terms in arithmetical progression.

We have tried to organize the proof so that it is reasonably concise but also
self-contained, to make it more accessible, in the belief that at least parts of the
argument may be of wider interest outside the algebraic complexity community.
To this end we derive the results we need from algebraic complexity theory in § 2,
which also contains general background material. In § 3 we present the essence of the
combinatorial construction as a lemma, which we subsequently apply several times.
We first apply it in § 4 to recover the Coppersmith–Winograd bound. Although our
presentation is rather different, the proof is essentially the same as that of [7], except
for the proof of lemma 4.1, for which we give a somewhat simpler argument. Using
§ 4 as preparation and motivation, we obtain our new bound in § 5. The argument
is similar but more complicated and technical.
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Much more material on this subject and information on the history can be found
in Bürgisser et al . [5] and a survey by Pan [11].

2. Background

We fix a field F and consider a trilinear form φ defined on U × V × W , where U ,
V and W are finite-dimensional vector spaces over F. Note that such a φ gives, in
a natural way, a bilinear mapping from U × V → W ∗, where W ∗ is the dual of W ,
and so we have a natural one-to-one correspondence between such trilinear forms
and bilinear mappings U × V → W ∗.

We are interested in the case U = V = W = Mn, where Mn = Mn(F) is the
space of n × n matrices with entries in F. Using the trace, we can identify M∗

n with
Mn and then matrix multiplication (A, B) → AB is a bilinear mapping from Mn ×
Mn → Mn and the corresponding trilinear form is Mn given by Mn(A, B, C) =
tr(ABC). Occasionally, we consider non-square matrix multiplications, and refer to
the multiplication of an m × n matrix with an n × p matrix as an (m, n, p) matrix
product.

The rank R(φ) of a trilinear form φ is defined as the smallest value of r ∈ N such
that there exist ρq ∈ U∗, σq ∈ V ∗ and θq ∈ W ∗ for q = 1, . . . , r such that

φ(u, v, w) =
r∑

q=1

ρq(u)σq(v)θq(w)

for all u ∈ U , v ∈ V and w ∈ W . We write r(n) for R(Mn), the rank of multiplica-
tion of n × n matrices. Then r(n) is the smallest r such that there exist ρqij , σqij ,
θqij in F for q = 1, . . . , r and i, j = 1, . . . , n such that

r∑
q=1

ρqijσqkl, θqst =

{
1 if j = k, l = s, t = i,

0 otherwise
(2.1)

for i, j, k, l, s, t = 1, . . . , n.
Given trilinear forms φ on U × V × W and ψ on U ′ × V ′ × W ′, we can define the

tensor product φ⊗ψ on (U ⊗U ′)× (V ⊗V ′)× (W ⊗W ′), and it is elementary that
R(φ ⊗ ψ) � R(φ)R(ψ). Applied to Mm and Mn, this gives r(mn) � r(m)r(n) for
m, n ∈ N. From this, and the elementary fact that r(n) is a non-decreasing function
of n, we deduce that log r(n)/ log n converges to a limit ω as n → ∞, and that

r(n) � nω for all n. (2.2)

We now relate ω to the number of arithmetical operations (addition or multipli-
cation of two elements of F) needed to multiply two matrices in Mn. To do this,
consider two matrices A, B ∈ Mkm, and write A in block form (Aij), i, j = 1, . . . , m
where Aij ∈ Mk, and B similarly. Then, using (2.1), we get

Cts =
r(m)∑
q=1

θqst

( m∑
i,j=1

ρqijAij

)( m∑
k,l=1

σqklBkl

)

for the block form of the product C = AB. From this we see that, if two k × k
matrices can be multiplied with P (k) operations, then mk × mk matrices can be
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multiplied with P (mk) operations, where P (mk) � r(m)P (k) + K(m)k2 so, by
induction, P (mj) � K ′(m)r(m)j , where K(m), etc., denote constants depending
only on m. Hence, P (n) � K ′′(m)nα where α = log r(m)/ log m.

It follows that, for any ε > 0, there exist C such that, for any n ∈ N, two
n×n matrices can be multiplied in Cnω+ε operations. This motivates the quest for
bounds for ω that started with Strassen’s proof [16] that r(2) � 7, which implies
that ω � log2 7 and that n × n matrices can be multiplied in O(nlog2 7) operations.
It is trivial that ω � 2 and it is still an open problem whether ω = 2.

Several successive improvements to Strassen’s upper bound have been found.
While Strassen’s bound is based on a bound for r(2), it has proved difficult to get
good estimates for r(n) for other small values of n, and the subsequent improve-
ments have been based instead on the development of methods for getting good
asymptotic bounds for r(n) for large n. We now describe the results that we require
from this theory.

First, some notation. If φ is a trilinear form and N ∈ N, then ⊕Nφ denotes the
direct sum of N copies of φ, and φN denotes the tensor product of N copies of φ.

We start with a technical lemma.

Lemma 2.1. For any n, k ∈ N, we have r(nk) � R(⊕r(n)Mk).

Proof. Write r = r(n) and R = R(⊕rMk). The idea is that we can reduce the
multiplication of two matrices in Mnk to r multiplications of pairs of matrices in
Mk, and this we can do with R multiplications (in F).

To make this precise, from the definition of R, we can find linear functionals
φiq, ψiq, θiq on Mk for i = 1, . . . , r and q = 1, . . . , R such that if Ai, Bi, Ci ∈ Mk,
then

r∑
i=1

tr(AiBiCi) =
R∑

q=1

( ∑
i

φiq(Ai)
)( ∑

i

ψiq(Bi)
)( ∑

i

θiq(Ci)
)

(2.3)

Now let ρqjk, etc., be as given by (2.1) and let A, B, C ∈ Mnk. Partition A as
(Ajl)n

j,l=1, where Ajl ∈ Mk, and define

φq(A) =
∑

ρijkφiq(Ajk),

and similarly for B and C. By applying (2.3) to Ai =
∑

αijkAjk, etc., we see that

tr(ABC) =
R∑

q=1

φq(A)ψq(B)θq(C)

and the result follows.

A crucial tool is the notion of border rank, introduced in [3], which we now
define. This is a modified rank, using trilinear forms with values in the ring F [λ]
of polynomials over F in an indeterminate λ, which is generally smaller than the
rank defined above and is better for obtaining asymptotic bounds.

Let U , V and W be vector spaces over F and let φ : U ×V ×W → F be a trilinear
form. If q, r ∈ N, we write φ �q r if there is a trilinear mapping ψ : U×V ×W → F[λ]
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and, for i = 1, . . . , r, linear mappings ui, vi and wi from U , V and W , respectively,
to F[λ] such that

λq−1φ(x, y, z) + λqψ(x, y, z) =
r∑

i=1

ui(x)vi(y)wi(z). (2.4)

Then we define the border rank R̄(φ) as the smallest r such that, for some q ∈ N,
we have φ �q r.

Trivially, we have R̄(φ) � R(φ), and the inequality is often strict. In the opposite
direction, if φ �q r, then, by expanding ui, vi and wi in powers of λ, one can express
the coefficient of λq−1 in ui(x)vi(y)wi(z) as a sum of 1

2q(q + 1) products, and so
R(φ) � 1

2rq(q + 1) � rq2. This bound is most effective when applied to a large
tensor power, as we now show.

Lemma 2.2. If φ �q r, then R(φN ) � N2q2rN for any N ∈ N.

Proof. By taking the Nth tensor power of (2.4), we obtain a similar equation to
(2.4) for λN(q−1)φN , with r replaced by rN on the right. Hence, φN �N(q−1)+1 rN ,
and from the previous paragraph, R(φN ) � N2q2rN .

One can think of the border rank as an estimate of the ease of computation of
φN . To apply this to matrix multiplication, we next define a complementary notion
of value of φ, which measures how useful φN is for computing matrix products.

If φ is a trilinear form, then, for ρ ∈ [2, 3] and N ∈ N, we define Vφ,N (ρ) =
sup(knρ)1/3N , where the supremum is over all choices of k, n ∈ N such that ⊕kMn

is isomorphic to a restriction of (φ ⊗ πφ ⊗ π2φ)N , where π denotes the action of a
cyclic permutation of (x, y, z). Then it is straightforward that Vφ,Nr(ρ) � Vφ,N (ρ)
for r ∈ N and also that Vφ,N (ρ)N is increasing with N . It then follows that Vφ,N (ρ)
converges to a limit Vφ(ρ) as N → ∞, and that Vφ(ρ) � Vφ,N (ρ) for all N . The
function Vφ is the value of φ. This definition of value is a modification of that given
in [7] which is more suitable for our approach; one can show that, in fact, it is
equivalent to the definition in [7].

One should think of ρ as a candidate value for ω (this is the reason for the range
[2, 3]). The basic result we shall use is as follows.

Proposition 2.3. For any trilinear form φ we have Vφ(ω) � R̄(φ).

Proof. Write r = R̄(φ) and V = Vφ(ω). Then φ �q r for some q ∈ N. Let ε > 0.
Then for any sufficiently large N we can find k, n ∈ N so that knω � V 3N(1−ε) and
⊕kMn is isomorphic to a restriction of (φ⊗πφ⊗π2φ)N , so that, by lemma 2.2, we
have R(⊕kMn) � 9q2N2r3N .

Now there is C > 0 such that r(m) � Cmω+ε for all m ∈ N. Then we can find
m ∈ N so that r(m) � k and Cmω+ε � 1

2k. Then, by (2.2) and lemma 2.1, we have

(mn)ω � r(mn) � R(⊕kMn) � 9q2N2r3N .

Then
V 3N(1−ε) � knω � 2C(mn)ω+ε � 2C(9q2N2r3N )1+ε/ω.

Taking (3N)th roots, and letting N → ∞, we get V 1−ε � r1+ε/ω for all ε > 0, so
V � r as required.
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Proposition 2.3 is a special case of Schönhage’s asymptotic sum inequality [14]
which allows direct sums of matrix products of different shapes and sizes.

To apply proposition 2.3 we use a trilinear form χ from [7], defined as follows. Fix
a positive integer q > 1, and label vectors x ∈ F

q+2 by x = (x[0], x
[1]
1 , . . . , x

[1]
q , x[2]).

For x, y, z ∈ F
q+2 we define

φ011(x, y, z) = x[0]
q∑

i=1

y
[1]
i z

[1]
i ,

φ101(x, y, z) = y[0]
q∑

i=1

x
[1]
i z

[1]
i ,

φ110(x, y, z) = z[0]
q∑

i=1

y
[1]
i x

[1]
i ,

φ200(x, y, z) = x[2]y[0]z[0],

φ020(x, y, z) = y[2]x[0]z[0],

φ002(x, y, z) = z[2]y[0]x[0].

Then
χ = φ011 + φ101 + φ110 + φ200 + φ020 + φ002 (2.5)

is a trilinear form on F
q+2.

We have

λ3χ(x, y, z) = (1 − qλ)σ(x)σ(y)σ(z) − τ(x)τ(y)τ(z)

+ λ

q∑
i=1

ψi(x)ψi(y)ψi(z) + λ4µ(x, y, z),

where σ(x) = x[0] + λ3x[2], τ(x) = x[0] + λ2 ∑q
i=1 x

[1]
i , ψi(x) = x[0] + λx

[1]
i and µ is

a trilinear mapping with values in F[λ]. It follows that R̄(χ) � q + 2.
Then, if we have a lower bound for Vχ(ρ), we can use proposition 2.3 to obtain

an upper bound for ω. More precisely, if we can show that Vχ(ρ) � f(ρ) for some
strictly increasing continuous function f on [2, 3], then we deduce that ω � ρ0,
where ρ0 is the unique solution of f(ρ0) = q + 2.

In the rest of the paper we obtain lower bounds for Vχ. The idea is to take a
large tensor power of χ and then, by setting certain blocks of variables to zero,
to obtain a restriction that is a direct sum of matrix products. This is really a
matter of combinatorics, and the required combinatorial lemma is treated in the
next section, followed by the value bounds and consequent bounds of ω in the last
two sections.

We note that, in the opposite direction, finding lower bounds for the rank r(n)
seems to be difficult (see [4]).

3. Combinatorial lemma

In this section we prove a lemma which is essentially a distillation of the combina-
torial argument introduced and used repeatedly by Coppersmith and Winograd [7].
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If M > 1 is an integer, then, as usual, we denote the rings of integers modulo M
by ZM . P denotes probability. We start with an elementary observation.

Lemma 3.1. Suppose A is an m×r matrix with entries in ZM such that the mapping
u → Au maps Z

r
M onto Z

m
M . Let w be a random vector in Z

r
M with P(w = v) = M−r

for each v ∈ Z
r
M . Then P(Aw = u) = M−m for every u ∈ Z

m
M .

In other words, the components of Aw are independent random variables, each
having a uniform distribution on ZM .

Proof. Given u ∈ Z
m
M , we can find v ∈ Z

r
M with AV = u and then P(Aw = u) =

P(A(w − v) = 0) = P(Aw = 0), since the random vectors w and w − v have the
same distribution. So P(Aw = u) is independent of u and the result follows.

We will need the Salem–Spencer theorem [13], which we now state. A set B of
integers is called a Salem–Spencer set if, whenever a, b, c ∈ B with a + b = 2c, we
must have a = b = c. Then the Salem–Spencer result is as follows.

Proposition 3.2. Given ε > 0, there is a positive constant C such that if M ∈ N,
one can find a Salem–Spencer set B ⊆ {1, 2, . . . , M} with |B| � CM1−ε.

A proof can be found in [1].
We now require some notation. For an integer d � 2, let Hd be the set {0, 1, . . . , d}

and let Ωd be the set of triples (a, b, c) ∈ H
3
d such that a + b + c = d. For n ∈ N, we

can form the n-fold Cartesian products H
n
d and Ωn

d . Then Ωn
d can be regarded as

the set of triples (I, J, K) ∈ (Hn
d )3 such that Ij +Jj +Kj = d for each j = 1, 2, . . . , n.

For i = 1, 2, 3, we define Pi : Ωn
d → H

n
d by P1(I, J, K) = I, P2(I, J, K) = J and

P3(I, J, K) = K. Now we can state the main result of this section.

Lemma 3.3. Given an integer d � 2 and ε > 0, we can find C > 0 such that the
following holds. Suppose that we have n, R ∈ N and sets S0 ⊆ S ⊆ Ωn

d and, for
i = 1, 2, 3, Fi ⊆ H

n
d satisfying Pi(S) = Fi and |P−1

i (I)∩S| � R for all I ∈ Fi. Then
there are subsets Gi of Fi for i = 1, 2, 3 such that, if we write T = (G1×G2×G3)∩S,
then T ⊆ S0, Pi maps T one-to-one onto Gi and |T | � CR−1−ε|S0|.

Proof. Let K be the product of all prime numbers less than or equal to d. We can
find an integer M with 4R < M � 4R + K such that M is prime to K (and,
hence, to any number in {2, . . . , d}). Then we can find a Salem–Spencer set B in
{1, 2, . . . , 2R} with |B| � C1R

1−ε. We think of B as a subset of ZM and note that,
as 2R < 1

2M , if a, b, c ∈ B with a + b = 2c (mod M), then a = b = c.
Now we consider independent random variables w0, w∗, w1, w2, . . . , wn taking

values in ZM , each with uniform distribution. Then, for I ∈ H
n
d , we define ZM -

valued random variables wi(I) for i = 1, 2, 3 as follows ( 1
2 being well-defined in ZM

as M is odd):

w1(I) = w0 +
n∑

j=1

wjIj ,

w2(I) = w∗ +
n∑

j=1

wjIj ,
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w3(I) =
1
2

(
w0 + w∗ +

n∑
j=1

(d − Ij)wj

)
.

Note that if (I, J, K) ∈ Ωn
d , then w1(I) + w2(J) = 2w3(K). Note that, from

lemma 3.3, if I, J, J ′ ∈ H
n and J 	= J ′, then w1(I), w2(J) and w2(J ′) are mutually

independent, each being uniformly distributed on ZM .
Then, for i = 1, 2, 3, we define

Hi = {I ∈ Fi : wi(I) ∈ B}, Ri = {I ∈ Hi : |P−1
i (I)∩S| > 1}, H0

i = Hi\Ri.

Then, for fixed ψ = (I, J, K) ∈ S, we have that ψ ∈ H1 × H2 × H3 if and only if
w1(I), w2(J) and w3(K) are all in B, which, in view of the Salem–Spencer property,
is equivalent to the existence of b ∈ B such that w1(I) = w2(J) = b (and then
automatically w3(K) = b). For each b ∈ B, the probability that w1(I) = w2(J) = b
is M−2. Hence,

P(ψ ∈ H1 × H2 × H3) = |B|M−2.

Similarly, for ψ ∈ S, the statement that ψ ∈ H1 × H2 × H3 and I ∈ R1 is
equivalent to the existence of b ∈ B and J ′ and K ′ in H

n
d such that w1(I) =

w2(J) = w2(J ′) = b, J ′ 	= J and (I, J ′, K ′) ∈ S. Now, for ψ ∈ S, and for
each of the � R − 1 choices of J ′, K ′ such that J ′ 	= J and (I, J ′, K ′) ∈ S, we
have P(w1(I) = w2(J) = w2(J ′) = b) = M−3. The same applies for i = 2, 3, and we
obtain for each i that

P(ψ ∈ H1 × H2 × H3 and Pi(ψ) ∈ Ri) � |B|RM−3 � 1
4 |B|M−2.

Hence,

P(ψ ∈ H0
1 × H0

2 × H0
3 ) � |B|M−2 − 3 × 1

4 |B|M−2 = 1
4 |B|M−2.

Now, if we define T = S0 ∩ (H0
i × H0

2 × H0
3 ), then the expectation E|T | �

1
4 |B|M−2|S0|. So there is a choice of w0, w∗, w1, . . . , wn such that

|T | � 1
4 |B|M−2|S0| � 1

4CR1−ε(8R)−2|S0| = C ′R−1−ε|S0|.

Finally, set Gi = H0
i ∩ P−1

i (T ), and the stated properties hold.

We make a few remarks on our application of this lemma, which we will use
several times in §§ 4 and 5. d always takes one of the values 2, 4 or 8. And we will
always have |P−1

i ∩ S| = R for I ∈ Fi, which implies |Fi| = |S|/R for each i, and
also R � |F1|. Then the inequality in the conclusion of the lemma gives

|T | � C|F1|1−ε|S0|/|S|, (3.1)

which will be more convenient to use. In the simpler applications we in fact have
S0 = S, but in others, the estimation of |S0|/|S| will be a significant part of the
argument.

The choices of S and S0 needed for our applications fall into two types, which
we now discuss further.
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3.1. Type 1

Let W
(n)
d denote the set of ∆ = (∆µ)µ∈Ωd

in which the ∆µ are non-negative
integers such that

∑
µ∈Ωd

∆µ = n. For i = 1, 2, 3, we define Qi∆ = (u0, . . . , ud),
where uk =

∑
∆µ, the sum being over those µ ∈ Ωd such that µi = k. For example,

in the case d = 2, we have

Q2∆ = (∆101 + ∆002 + ∆200, ∆011 + ∆110, ∆020).

We denote by S(∆) the set of elements of Ωn
d having ∆µ occurrences of µ for each

µ ∈ Ωd.
Now fix Γ ∈ W

(n)
d and define

S0 = S(Γ ), Fi = Pi(S0), S =
3⋂

i=1

P−1
i (Fi) =

⋃
∆∈ΛΓ

S(β),

where ΛΓ is the set of all ∆ ∈ W
(n)
d such that Qi∆ = QiΓ for i = 1, 2, 3. We

assume the symmetry of Γ , that it is invariant under permutations, so that, for
example, Γ103 = Γ310, etc. This implies that F1 = F2 = F3, and that Q1Γ = Q2Γ =
Q3Γ . We let (A0, A1, . . . , Ad) = Q1Γ . Note that ΛΓ may contain non-symmetric β.

Now we have

|S0| =
n!∏

µ∈Ωd
Γµ!

and |S| =
∑

∆∈ΛΓ

n!∏
µ∈Ωd

∆µ!
.

The number of terms in this sum is less than or equal to nm(d), where m(d) = |Ωd|,
and hence

|S|/|S0| =
∑

∆∈ΛΓ

∏
µ∈Ωd

(∆µ!/Γµ!) � nm(d) max
∆∈ΛΓ

∏
µ∈Ωd

(∆µ!/Γµ!). (3.2)

Note also that F1 is the set of elements of H
n
d having Ak occurrences of k for each

k = 0, 1, . . . , d. So

|F1| =
n!

A0!A1! · · ·Ad!
. (3.3)

For our applications we will be interested in asymptotic behaviour as n → ∞. To
this end, we define Wd as the set of D = (Dµ)µ∈Ωd

such that

Dµ � 0 and
∑

µ∈Ωd

Dµ = 1.

We regard Wd as a subset of R
m(d), where m(d) = |Ωd|, and define Qi : R

m(d) →
R

d+1 in the same way as above.
Now fix E ∈ Wd and suppose that Γ (n) ∈ W

(n)
d with n−1Γ

(n)
µ → Eµ for each

µ ∈ Ωd. We assume Γ (n) (and, hence, E) symmetric. Corresponding to each Γ (n),
we define S

(n)
0 and S(n) as above. We then have that n−1A

(n)
k → Ak, where QiE =

(A0, . . . , Ad). Then, from (3.1), using (3.2) and (3.3), we deduce

lim inf |T (n)|1/n �
d∏

k=0

A
−Ak

k inf
D∈ΛE

∏
µ∈Ωd

(DDµ
µ /EEµ

µ ) (3.4)
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as n → ∞, where ΛE = {D ∈ Wd : QiD = QiE} as before. Note that, as E
is assumed to be symmetric, the convex set ΛE is invariant under permutations
of {1, 2, 3}, and as the logarithm of the product on the right-hand side of (3.4)
is convex as a function of D, the infimum is attained at a symmetric D, so it is
sufficient to restrict the infimum to symmetric D in ΛE .

In the type 1 applications d will be 2, 4 or 8. We will find that when d = 2, we
always have S = S0, and when d = 4 we do not have S = S0 but E is the only
symmetric element of ΛE , so the right-hand side of (3.4) is 1. Only in the case d = 8
is the symmetric part of ΛE non-trivial.

3.2. Type 2

In this case we start by fixing µ ∈ Ω2d, and define Ωµ = {ν ∈ Ωd : µ − ν ∈ Ωd},
so that, for example, if d = 2 and µ = (1, 1, 2), then

Ωµ = {(1, 0, 1), (0, 1, 1), (0, 0, 2), (1, 1, 0)}.

Similarly to case 1, we define W
(n)
µ to be the set of Γ = (Γν)ν∈Ωµ

with the Γν

being non-negative integers with
∑

ν∈Ωµ
Γν = n. Then given Γ ∈ W

(n)
µ , we define

S0 to be the set of elements of Ωn
µ containing Γν occurrences of ν for each ν ∈ Ωµ.

And we define Fi = Pi(S0) and S = Ωn
µ ∩ (

⋂3
i=1 P−1

i (Fi)). Also note that if we
write QiΓ = (Ai0, . . . , Aid), then we have

|Fi| =
n!

Ai0! · · ·Aid!
.

Then, as in type 1, we can define Wµ and consider a sequence Γ (n) ∈ W
(n)
µ with

Γ (n)/n → E ∈ Wµ and then we obtain(
|S(n)|
|S(n)

0 |

)1/n

→ sup
D∈Λµ,E

∏
ν∈Ωµ

EEν
ν

DDν
ν

, (3.5)

where Λµ,E is the set of D ∈ Wµ such that QiD = QiE for i = 1, 2, 3.
We also consider a symmetry property for type 2. We say that Γ ∈ W

(n)
µ or Wµ is

symmetric if Γµ−ν = Γν for all ν ∈ Ων , and if Γ is unchanged by any permutation
that preserves µ. Then, if we assume that Γ (n) and E are symmetric, then, as with
type 1, in (3.5) we can restrict the supremum to symmetric D.

Type 2 differs from type 1 in the lack of symmetry under permutations of (1, 2, 3).
In particular, the sets F1, F2 and F3 will in general have different sizes. In order to
apply lemma 3.3 effectively, we need to symmetrize. We let π be a cyclic permutation
π(µ) = (µ3, µ1, µ2) and then we define Ω̃µ = Ωµ × Ωπ(µ) × Ωπ2(µ). Now set

S0 = S0 × π(S0) × π2(S0),

Fi = Fi × π(Fi) × π2(Fi),

S = Ω̃n
µ ∩

( 3⋂
i=1

P−1
i (Fi)

)
= S × π(S) × π2(S).

We see that the sets S0, π(S0) and π2(S0) all have the same size, and likewise for
S, π(S) and π2(S), and so |S|/|S0| = (|S|/|S0|)3. We also have |Fi| = |F1| |F2| |F3|
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for each i. Then, in the n → ∞ limit, if we write QiE = (Ai0, . . . , Aid), we have

lim inf |T (n)|1/n �
3∏

i=1

d∏
j=0

A
−Aij

ij inf
D∈Λ∗

µ,E

∏
ν∈Ωµ

(DDν
ν /EEν

ν ), (3.6)

where Λ∗
µ,E is the set of symmetric elements of Λµ,E .

We note that, in most of our applications, Λ∗
µ,E will be trivial, i.e. equal to {E},

and then the right-hand side of (3.6) reduces to

3∏
i=1

d∏
j=0

A
−Aij

ij .

In the applications we typically have a maximization problem to make the best
choice of E, and in the type 2 case the following elementary result will simplify the
calculations.

Lemma 3.4. Suppose that k ∈ N and αi > 0 for i = 1, . . . , k. Then the maximum
value of f(x) =

∏k
i=1(αi/xi)xi for x ∈ R

k subject to xi � 0 and
∑k

i=1 xk = 1 is
A =

∑k
i=1 αi, attained for xi = αi/A.

We also make the related observation that, more generally, if we have

f(x) =
k∏

i=1

αxi
i

l∏
j=1

φj(x)−φj(x),

where the φj are affine and real-valued on R
k. Furthermore, if Z is a convex subset

of R
k on which xi � 0 and φj(x) � 0, then log f(x) is concave on Z, and so if y ∈ Z

is a critical point of log f , then the maximum of f over Z will be attained at y.
A final note on lemma 3.3 is that a similar combinatorial result is theorem 15.39

of [5]. The proof of this theorem uses a similar probabilistic argument to that given
here, but avoids the use of the Salem–Spencer theorem. However, the combinatorial
conclusion is somewhat weaker. In [5], the application to the complexity problem
makes use of the concept of degeneration, which is an elaboration of the idea of
border rank, and this enables the weaker combinatorial result to suffice.

4. The Coppersmith–Winograd bounds

Recall the trilinear form χ given by (2.5). The subscripts of the six terms in (2.5)
are just the six elements of Ω2, in the notation of § 3. Then, given N ∈ N, the tensor
power χ3N can be written as the sum of 63N terms, each being a tensor product
like φ110 ⊗ φ020 ⊗ φ011 · · ·, the sequence of subscripts corresponding to an element
of Ω3N

2 .
We now follow the discussion of type 1 in § 3, with d = 2 and n = 3N . We fix a

symmetric Γ ∈ W 3N
2 , noting that such a Γ corresponds to a choice of non-negative

integers α and β with α + β = N and Γ200 = Γ020 = Γ002 = α, Γ011 = Γ101 =
Γ110 = β. We define S0, Qi, Fi and S as in § 3. We find that

Q1∆ = (∆011 + ∆002 + ∆020, ∆101 + ∆110, ∆200),
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etc., and it is clear that ∆ is determined if we know each Qi∆, so S = S0. We also
have A0 = 2α + β, A1 = 2β and A2 = α.

Now we apply lemma 3.3. Let G1, G2, G3 and T be as given by this lemma, and
set to zero all x-variables except those labelled by members of G1, and similarly
for y and z variables. The resulting trilinear form is a direct sum of |T | copies of
Mqβ . Thus, Vχ(ρ)3N � |T |qβρ. Now fix b ∈ (0, 1) and let N → ∞ with β/N → b
and, using (3.4), we obtain

Vχ(ρ)3 � 27qbρ

(1 − b)1−b(2b)2b(2 − b)2−b
.

We choose b to maximize the expression on the right and obtain

Vχ(ρ) � 3
8{z1/2(z + 32)3/2 − z2 + 80z + 128}1/3, (4.1)

where z = qρ. Combining this with the bound R̄(χ) � q + 2, we obtain an upper
bound for ω. The choice q = 6 gives the best bound, ω � log6 z, where z is the
unique real root of the cubic equation

729z3 − 64044z2 + 4458672z − 261404224 = 0.

Numerically, we find z = 72.0435014 giving ω < 2.38719 as in [7, § 7].
Coppersmith and Winograd improve this bound by considering the tensor square

χ ⊗ χ. By taking the tensor product of (2.5) with itself, we can express χ ⊗ χ as a
sum of 36 terms like φ011 ⊗ φ011, etc. The improvement is attained by combining
some of these terms to make a larger matrix product. We write

φ022 = φ011 ⊗ φ011 + φ002 ⊗ φ020 + φ020 ⊗ φ002,

and similarly for φ202 and φ220. Likewise, we write

φ013 = φ011 ⊗ φ002 + φ002 ⊗ φ011,

φ004 = φ002 ⊗ φ002,

φ112 = φ101 ⊗ φ011 + φ011 ⊗ φ101 + φ002 ⊗ φ110 + φ110 ⊗ φ002,

and similarly for φ103, etc., obtained by permuting x, y and z. Then we have

χ ⊗ χ = φ004 + φ013 + φ022 + φ112 + · · · , (4.2)

where the dots denote the terms obtained from these four by permutation of the
subscripts. There are 15 terms in all, one for each of the 15 elements of Ω4.

Using a natural notation, we can write

φ022(x, y, z) = x[00]
( q∑

i=1

q∑
j=1

y
[11]
ij z

[11]
ij + y[20]z[02] + y[02]z[20]

)
,

which is a (1, 1, q2 +2) matrix product. Similarly φ013 is a (1, 1, 2q) matrix product
and φ004 is a (1, 1, 1) matrix product. However, φ112 is not a matrix product; in
order to apply a similar argument to the proof of (4.1) we need a lower bound for
the value of φ112, which we obtain now. We write V112 for Vφ112 .
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Lemma 4.1. V112(ρ)3 � 4qρ(qρ + 2).

Proof. We follow the notation and analysis of type 2 in § 3, with d = 2, n = 2N
and µ = 112. We write

φ112 = φ011 ⊗ φ101 + φ101 ⊗ φ011 + φ002 ⊗ φ110 + φ110 ⊗ φ002.

The four terms in this sum can be labelled by the first of the two subscripts, namely,
011, 101, 002 and 110 in the above order. These are exactly the four elements of
Ω112. Then φ2N

112 is the sum of 42N terms, which can be labelled by the elements of
Ω2N

112.
Now a symmetric element of W 2N

112 corresponds to a choice of non-negative integers
α and β with α+β = N , and Γ002 = Γ110 = α, Γ101 = Γ011 = β. We then note that
Q1(Γ ) = Q2(Γ ) = (N, N, 0) and Q3(Γ ) = (α, 2β, α). Since α and β are determined
by Q3, we see that Λ∗

µ,Γ is trivial. We fix such a choice of α and β and define S0,
Fi and S as in type 2.

Now consider φ2N
112 ⊗ φ2N

211 ⊗ φ2N
121. This can be expressed as a sum of 46N terms,

each labelled by an element of Ω̃112. We define S0, Fi and S as in type 2. Each term
labelled by an element of S0 will be an (m, m, m) matrix product with m = q2α+4β .

Now apply lemma 3.3, obtaining Gi and T , and set to zero all x-blocks indexed
by sequences not in G1, and similarly for y- and z-blocks. We obtain a direct sum
of |T | matrix products of size (m, m, m). This implies

Vφ112(ρ)6N � q(2α+4β)ρ|T |,

and this holds for any choice of positive integers α and β with α + β = N .
Next, fix a with 0 < a < 1, and let N, α → ∞ with α/N → a. Using (3.6), we

obtain
Vφ112(ρ)3 � q(2−a)ρ22+a

aa(1 − a)1−a
.

Choosing a to maximize the right-hand side using lemma 3.4 gives Vφ112(ρ)3 �
4qρ(qρ + 2).

Using (4.2), χ6N = (χ ⊗ χ)3N can be written as the sum of 153N trilinear forms,
each being a tensor product of 3N terms from the set {φ004, φ013, φ022, φ112, . . . },
each such form being labelled by an element of Ω3N

4 . Again we follow the discussion
of type 1, taking d = 4 and n = 3N . We fix a symmetric Γ ∈ W 3N

4 ; such a Γ
corresponds to a choice of non-negative integers α, β, γ and δ with α+2β+γ+δ = N
such that Γ004 = α, Γ013 = β, Γ022 = γ and Γ112 = δ.

We then find that QΓ = (2α+2β +γ, 2β +2δ, 2γ + δ, 2β, α). The linear mapping
defined by this expression is clearly injective, so the only symmetric member of ΛΓ

is Γ itself.
Now fix ρ ∈ [2, 3] and ε > 0, and apply lemma 3.3, obtaining G1, G2 and G3

as before. Again we set all x-variables to zero except those labelled by members of
G1, and similarly for y and z variables. The resulting trilinear form is a direct sum
of |T | copies of Ml ⊗ (φ112 ⊗ φ121 ⊗ φ211)δ, where l = (2q)2β(q2 + 2)γ . Now, from
the bound for V112, we have that (φ112 ⊗ φ121 ⊗ φ211)δ has a restriction that is the
direct sum of k copies of Mn, where

knρ � C1{4qρ(qρ + 2)}(1−ε)δ,

where C1 > 0 is independent of N .
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Then χ6N has a restriction isomorphic to the direct sum of k|T | copies of Mln,
and so

Vχ(ρ)6N � k|T |(ln)ρ � C1|T |(2q)2βρ(q2 + 2)γρ{4qρ(qρ + 2)}(1−ε)δ.

Now fix positive a, b, c and d with 3(a+2b+ c+d) = 1 and let N, α, β, γ, δ → ∞
with α/N → 3a, β/N → 3b, γ/N → 3c and δ/N → 3d. Then let ε → 0. Using (3.4),
we obtain

Vχ(ρ)2 � (2q)2bρ(q2 + 2)cρ{4qρ(qρ + 2)}d

(2a + 2b + c)2a+2b+c(2b + 2d)2b+2d(2c + d)2c+d(2b)2baa
. (4.3)

Combined with the bound Vχ(ω) � R̄(χ) � q + 2, this gives a bound for ω, which,
in [7, § 8], is found numerically to be ω < 2.375477 for the optimal choice of a, b, c
and d and q = 6.

5. Improved bound

We start with our expression for χ2 as a sum of 15 terms and take the tensor square,
expressing χ4 as a sum of 225 tensor products. Then, as before, we collect these
into groups according to the sums of the x, y and z indices. For example,

φ125 = φ004 ⊗ φ121 + φ013 ⊗ φ112 + φ022 ⊗ φ103 + φ103 ⊗ φ022

+ φ112 ⊗ φ013 + φ121 ⊗ φ004,

where χ4 is the sum of 45 such trilinear forms, which can be divided into 10 classes
under permutation of the indices, represented by φ008, φ017, φ026, φ035, φ044, φ116,
φ125, φ134, φ224 and φ233.

The first five of these forms, with an x-index of zero, are all of the form x[0000]

times a scalar product of y and z vectors. For example,

φ026 = φ022 ⊗ φ004 + φ013 ⊗ φ013 + φ004 ⊗ φ022,

and the y and z variables occurring in these three tensor products are disjoint, so
we have scalar product of size q2 +2+(2q)2 +q2 +2 = 6q2 +4, i.e. a (1, 1, n) matrix
product with n = 6q2 +4. We get the same for the other four forms, with n = 1 for
φ008, 4q for φ017, 4q(q2 + 3) for φ035 and q4 + 12q2 + 6 for φ044.

The other five forms are not matrix products and we need value bounds, as for
φ112. In order to state these, we introduce some notation. We define quantities
E, H and L (depending on q and ρ) as follows: E = (2q)ρ, H = (q2 + 2)ρ and
L = 4qρ(qρ + 2). Then we have the following.

Lemma 5.1. If ρ ∈ [2, 3] and q is an integer with q > 1, then

(i) V116(ρ)3 � 4(E2 + 2L),

(ii) V125(ρ)3 � 4(L + EH)(2H + L)/H,

(iii) V134(ρ)3 � 4(E + L)(2 + 2E + H),

(iv) V224(ρ)3 � (2H + L)2(2 + 2E + H)/H,

(v) V233(ρ)3 � 4(E + L)2(2H + L)/L.



364 A. M. Davie and A. J. Stothers

Proof. We first note some inequalities involving E, H and L which we shall need:

16 � E < H < L < 4H. (5.1)

The first two are immediate since q � 2 and ρ � 2, and we also have (q2+2)/q2 � 3
2 ,

so, using ρ � 3, we deduce H � ( 3
2 )3q2ρ < L. Furthermore,

(q2 + 2)ρ � q2ρ + 2ρq2(ρ−1) > q2ρ + 2qρ,

so L < 4H.
Now we prove the individual bounds.

(i) We write

φ116 = φ013 ⊗ φ103 + φ103 ⊗ φ013 + φ004 ⊗ φ112 + φ112 ⊗ φ004.

This is the same as for φ112, except that the third indices have all increased by 2.
Again we follow type 2, with d = 2, n = 2N and µ = 116. As for φ112, a symmetric
element of W 2N

116 corresponds to a choice of α, β � 0 with α + β = N and Γ004 = α,
etc. As before, we can express φ2N

116 ⊗ φ2N
611 ⊗ φ2N

161 as a sum of 46N terms, each
labelled by an element of Ω̃116. The combinatorics of these sequences is exactly the
same as for 112, and we can use the same Gi and T as in lemma 4.1.

Then each member of T indexes a trilinear form isomorphic to Ml ⊗ (φ112 ⊗
φ121 ⊗ φ211)α, where l = (2q)2β . We then proceed as in the last part of the proof of
(4.3), and obtain V116(ρ)6N � k|T |(lm)ρ, where kmρ � CL(1−ε)α. Using the bound
for |T | from the proof of lemma 4.1, and letting N, α → ∞ with α/N → a, we then
get

V116(ρ)3 � 2(2L)aE2(1−a)

aa(1 − a)1−a

for 0 < a < 1 and, by optimizing a using lemma 3.4, we deduce V116(ρ)3 � 4(2L +
E2).

(ii) Again, we write φ125 as a sum of six tensor products, and φ2N
125 ⊗ φ2N

512 ⊗ φ2N
251 as

a sum of 66N terms, each labelled by an element of Ω̃2N
125. A symmetric element Γ of

W
(2N)
125 corresponds to a choice of α, β, γ � 0 with sum N such that Γ004 = Γ121 = α,

Γ013 = Γ112 = β and Γ022 = Γ103 = γ. Then

Q1Γ = (N, N, 0, 0, 0),
Q2Γ = (α + γ, 2β, α + γ, 0, 0),
Q3Γ = (0, α, β + γ, β + γ, α).

Again, Q2 and Q3 together determine α, β and γ so Λ∗
125,Γ is trivial.

As before, we obtain Gi and T , and after ‘setting to zero’ we have a direct sum
of |T | copies of

Ml ⊗ (φ112 ⊗ φ121 ⊗ φ211)α+β ,

where l = (2q)β+γ(q2 + 2)γ . Taking limits with α/N → a and β/N → b, and using
(3.6), we find that, for a, b � 0 with a + b � 1, we have

V 3
125 � 4H−1

{
La(EH)1−a

aa(1 − a)1−a

}{
Lb(2H)1−b

bb(1 − b)1−b

}
.
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Using lemma 3.4, the two terms in curly brackets can be maximized separately,
when a = L/(L + EH) and b = L/(L + 2H). We need to check that these values
satisfy a + b � 1; this is equivalent to L2 � 2EH2, which follows from the first
and last inequalities in (5.1). Using these a and b we obtain the required bound for
V125(ρ).

(iii) We proceed in the same way as before. A symmetric Γ ∈ W
(2N)
134 corresponds

to α, β, γ, δ � 0 with sum N such that Γ004 = α, Γ013 = β, Γ022 = γ and Γ031 = δ.
We then have

Q1Γ = (N, N, 0, 0, 0),
Q2Γ = (α + δ, β + γ, β + γ, α + δ, 0),
Q3Γ = (α, β + δ, 2γ, β + δ, α),

and Λ∗
134,Γ is again trivial.

This time we get a direct sum of |T | copies of

Ml ⊗ (φ112 ⊗ φ121 ⊗ φ211)β+γ ,

where l = (2q)α+β+2δ(q2+2)γ . We find, by taking the limit with α/N → a, β/N → b
and γ/N → c that if a, b, c � 0 with a + b + c � 1, then

V134(ρ)3 � 23−cE2−a−b−2cHcLb+c

(b + c)b+c(1 − b − c)1−b−caacc(1 − a − c)1−a−c
.

If we put σ = b + c, we can write this as

V134(ρ)3 � 8
{

E1−σLσ

σσ(1 − σ)1−σ

}{
E1−a−c(H/2)c

aacc(1 − a − c)1−a−c

}
.

Using lemma 3.4 as before, we can then maximize the expressions in curly brackets
by taking σ = L/(E + L), a = 2/(2 + 2E + H) and c = H/(2 + 2E + H) and
obtain the required bound, but we need to check that the conditions on a, b and c
are satisfied, and for that we require σ � c and σ + a � 1. These are respectively
equivalent to EH � 2L(1+E) and 2L � EH +2E2, the first of which follows from
H < L and the second from E � 16 and L < 4H in (5.1).

(iv) This time a symmetric Γ ∈ W
(2N)
224 corresponds to α, β, γ, δ � 0 such that

α + 2β + γ + δ = N and Γ004 = α, Γ013 = β, Γ022 = γ and Γ112 = δ. We then have

Q1Γ = Q2Γ = (α + β + γ, 2β + 2δ, α + β + γ, 0, 0)

and Q3Γ = (α, 2β, 2γ + 2δ, 2β, α); again Λ∗
224,Γ is trivial.

Then we get a direct sum of |T | copies of Ml ⊗ (φ112 ⊗ φ121 ⊗ φ211)2β+2δ, where
l = (2q)2β(q2 + 2)α+2γ . We find, by taking the limit with α/N → a, β/N → b and
γ/N → c, that if a, b, c � 0 with a + 2b + c � 1 then

V224(ρ)3 � 23a+4b+2cE2bHa+2cL2(1−a−b−c)

{(a + b + c)a+b+c(1 − a − b − c)1−a−b−c}2aa(2b)2b(1 − a − 2b)1−a−2b
.

If we put σ = a + b + c and b′ = 2b we can write this as

V224(ρ)3 �
{

L1−σ(2H)σ

σσ(1 − σ)1−σ

}2{ (2/H)a(2E/H)b′

aab′b′(1 − a − b′)1−a−b′

}
.
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By lemma 3.4 again we can maximize the expressions in curly brackets by taking
σ = 2H/(2H + L), a = 2/(2 + 2E + H) and b = E/(2 + 2E + H) and obtain the
required bound, but we need to check that the conditions on a, b and c are satisfied.
For this, we require a+ b � σ � 1− b. This is equivalent to (2+E)L � 2H(E +H)
together with 2EH � L(2 + E + H), which both follow from (5.1).

(v) This time a symmetric Γ ∈ W
(2N)
233 corresponds to α, β, γ, δ � 0 such that

2α + β + γ + δ = N and Γ013 = α, Γ022 = β, Γ103 = γ and Γ112 = δ. We then have

Q1Γ = (2α + β, 2γ + 2δ, 2α + β, 0, 0),
Q2Γ = Q3Γ = (α + γ, α + β + δ, α + β + δ, α + γ, 0).

In this case it is not true that Λ∗
233,Γ is trivial since QiΓ are determined if we know

2α + β and α + γ. This has to be taken into account in the estimation of |T |.
Suppose σ, µ � 0 with σ + 2µ � 2. These conditions ensure that we can find

a, b, c � 0 such that 2a + b + c � 1 and σ = 2a + b and µ = a + c. We suppose that
a, b and c are chosen to minimize a2abbcc(1 − 2a − b − c)1−2a−b−c subject to these
constraints. This will ensure that the infimum in (3.6) is 1. Then we obtain a direct
sum of |T | copies of

Ml ⊗ (φ112 ⊗ φ121 ⊗ φ211)β+2δ,

where l = (2q)2α+2γ(q2 + 2)2α+β . Then we find, by taking the limit with α/N → a,
β/N → b and γ/N → c, that

V233(ρ)3 � 22+2a+bE2a+2cH2a+bL2−4a−b−2c

(2a + b)2a+b(1 − 2a − b)1−2a−b{(a + c)a+c(1 − a − c)1−a−c}2 .

Conveniently, the right-hand side can be expressed in terms of σ and µ, and we
have

V233(ρ)3 � 4L2
{

(2H/L)σ

σσ(1 − σ)1−σ

}{
(E/L)µ

µµ(1 − µ)1−µ

}2

.

We can then maximize the expressions in curly brackets by taking σ = 2H/(2H+L)
and µ = E/(E + L) and obtain the required bound, but we need to check that this
choice of σ and µ satisfies σ +2µ � 2. This is equivalent to EH � L(H +L), which
follows from E < L in (5.1).

Table 1 lists the 10 classes of trilinear form, indexed by i = 1, . . . , 10, and the
cubes, denoted by vi, of the lower bounds we have obtained for their values.

The table also shows the number ni such that there are 3ni forms in the ith class.
For i = 1, . . . , 5, we also write ui for the actual matrix size, so that u2 = 4q, etc.,
and then vi = uρ

i .
Using our expression for χ4 as a sum of 45 forms, we can write χ12N = (χ4)3N as

a sum of 453N trilinear forms, each being a tensor product of 3N terms from the set
{φ008, φ017, . . . } of 45 forms, each such tensor product being labelled by an element
of Ω8,3N . Again, we follow the type 1 analysis, now with d = 8 and n = 3N . Let Z
denote the set of a = (a1, . . . , a10) ∈ R

10 such that each ai � 0 and
∑10

i=1 niai = 1
and let ZN be the set of α ∈ N

10 such that αi � 0 and
∑10

i=1 niαi = N . There
is then a one-to-one correspondence between symmetric elements Γ of W 3N

8 and
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Table 1. 10 classes of trilinear form

i Representative ni vi

1 φ008 1 1
2 φ017 2 (4q)ρ

3 φ026 2 (6q2 + 4)ρ

4 φ035 2 {4q(q2 + 3)}ρ

5 φ044 1 (q4 + 12q2 + 6)ρ

6 φ116 1 4(E2 + 2L)
7 φ125 2 4(L + EH)(2H + L)/H

8 φ134 2 4(E + L)(2 + 2E + H)
9 φ224 1 (2H + L)2(2 + 2E + H)/H

10 φ233 1 4(E + L)2(2H + L)/L

α ∈ ZN given by α1 = Γ008, α2 = Γ017, etc. Furthermore (for symmetric Γ ), we
have Q1Γ = (A0, . . . , A8), where

A0 = 2α1 + 2α2 + 2α3 + 2α4 + α5,

A1 = 2α2 + 2α6 + 2α7 + 2α8,

A2 = 2α3 + 2α7 + 2α9 + α10,

A3 = 2α4 + 2α8 + 2α10,

A4 = 2α5 + 2α8 + α9,

A5 = 2α4 + 2α7,

A6 = 2α3 + α6,

A7 = 2α2,

A8 = α1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

We can write (5.2) in matrix form as A = Qα, where Q is the 9 × 10 matrix of
coefficients of (5.2). A difference from the earlier case is that the linear mapping
defined by Q has non-trivial kernel, as is clear from the dimensions. In fact, if we
define Y = {x ∈ R

10 : Qx = 0}, then Y is a two-dimensional subspace spanned by
σ = (0, 0, 1, 0,−2,−2, 0, 2, 0,−2) and τ = (0, 0, 0, 1,−2, 0,−1, 1, 2,−2).

As before, we fix ρ ∈ [2, 3] and ε > 0, choose α ∈ ZN (and corresponding
symmetric Γ ), and apply lemma 3.3, obtaining Gi and T . Now from the definition
of V116, there is a constant C independent of N such that (φ116 ⊗ φ161 ⊗ φ611)α6 has
a restriction which is a direct sum of k6 copies of Mm6 , where k6m

ρ
6 � Cv

(1−ε)α6
6 ,

and similarly with 6 replaced by 7, 8, 9, and 10. We conclude that χ12N has a
restriction isomorphic to the direct sum of |T |

∏10
j=6 kj copies of Ml, where

l =
5∏

j=1

u
njαj

j

10∏
j=6

m
njαj

j .

Then

Vχ(ρ)12N � |T |lρ
10∏

j=6

kj � C5|T |
10∏

i=1

v
niαi(1−ε)
i .
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Table 2. Values of ai and bi

i ai bi

1 0.0000001098 0.0000001098
2 0.0000189244 0.0000189244
3 0.0007891925 0.0007968493
4 0.0105046192 0.0106613542
5 0.0371434106 0.0368146264
6 0.0010677681 0.0010524545
7 0.0219568746 0.0218001397
8 0.1409798025 0.1411518518
9 0.2177976006 0.2181110728
10 0.3954922843 0.3951634971

We now proceed to the limit as N → ∞. The application of (3.4) now requires a
minimization, which is handled by the next lemma. We define

N = {a ∈ Z : a1a5a10 = a2
3a8 and a2a5a10 = a3a4a9}.

Then we have the following.

Lemma 5.2. Suppose b ∈ N and a ∈ Z with a − b ∈ Y . Then

10∏
i=1

bnibi
i �

10∏
i=1

aniai
i .

Proof. Recall the basis σ, τ for Y . Define f : R
2 → R

10 by f(s, t) = b+ sσ + tτ and
define h : Z → R by

h(a) =
10∑

i=1

niai log ai.

Then H(t) = h(f(t)) is a convex function on the convex set f−1(W ), and a simple
calculation, using b ∈ N , shows that the gradient of h vanishes at (0, 0). Hence, h
attains its infimum over f−1(Z) at (0, 0) and the result follows.

Now suppose that a and b are as in lemma 5.2 and suppose N−1α → a. Then,
applying (3.4) and using lemma 5.2, we conclude the following.

Theorem 5.3. Let b ∈ N and a ∈ Z with a − b ∈ Y . Then

Vχ(ω)4 �
10∏

i=1

{v
ai/3
i aai

i b−bi
i }ni

8∏
j=0

A
−Aj

j , (5.3)

where A = 1
3Qa.

The bound obtained by applying this theorem with q = 6 and the values of a
and b in table 2 is ω < 2.373689703.

These values of a and b were obtained by maximizing the right-hand side of
(5.3) subject to b ∈ N and a ∈ Z with a − b ∈ Y . This is, in effect, an optimiza-
tion problem in nine variables, as N is a seven-dimensional manifold that can be
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parametrized by a suitable choice of seven of the variables bi and then, for a given
b, the set of allowed a is a convex subset of two-dimensional affine subspace.

Note added 25 February 2012

Since this paper was submitted, we have learned of independent work by Virginia
Williams, who has achieved an improved bound ω < 2.3727 using essentially the
same method as in this paper, but using the eighth tensor power of χ rather than
the fourth. Her calculations also indicate that, using the fourth power, taking q = 5
gives a better bound than we obtained above with q = 6.
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