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IMPROVED BOUNDS FOR SMALL-SAMPLE ESTIMATION∗

SERGE GRATTON† AND DAVID TITLEY-PELOQUIN‡

Abstract. We derive improved error bounds for small-sample statistical estimation of the matrix
Frobenius norm. The bounds rigorously establish that small-sample estimators provide reliable order-
of-magnitude estimates of norms and condition numbers, for matrices of arbitrary rank, even when
very few random samples are used.
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1. Introduction. The Frobenius norm of a matrix B ∈ R
m×n is in principle

straightforward to compute. In many applications, however, one is interested in the
Frobenius norm of a matrix whose entries are either too expensive to compute explic-
itly or not available at all. For example, B might be the inverse of a known matrix A
of large dimensions, and explicitly computing a factorization of A that would reveal
A−1 might be too expensive. Another example is condition number estimation, in
which the matrix B is the (unknown) matrix representation of the Fréchet derivative
of a given matrix function; see, e.g., [14, 15, 16, 3, 11, 2, 7, 8], to cite only a few
examples. For a more thorough discussion of other applications, we refer to [1] and
the references therein.

In this paper we investigate some properties of two randomized estimators of the
Frobenius norm of a matrix B ∈ R

m×n. The estimators only require B through the
action of a matrix-vector product: u ← Bv. We are interested in “small-sample”
estimation as defined by Gudmundsson, Kenney, and Laub [12, 13]. Specifically, we
wish to prove that, with high probability, a realization of the estimator is close in
magnitude to ‖B‖F even when very few random samples are used. In other words,

(1.1) Prob

{‖B‖F
τ
≤ estimatork(B) ≤ τ‖B‖F

}

≥ 1− δ(k, τ),

where δ(k, τ) → 0 as the number of samples k and/or the tolerance τ > 1 increases,
and δ(k, τ) is close to 0 even for small k and for τ not too large. We present error
bounds that do not deteriorate as the rank of B increases, thereby settling a conjecture
from [12]. Our results also lead to an improvement of probabilistic relative error
bounds from [1] and [19].

2. The Gaussian and GKL estimators. First we recall the Gaussian estima-
tor, as well as the small-sample statistical estimator of Gudmundsson, Kenney, and
Laub [12, 13], which we abbreviate as the GKL estimator.
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Definition 2.1. Let Z be an n×k matrix with k ≤ n whose entries are mutually

independent standard normal random variables, and let Q be the n×k “thin” Q factor

in the QR decomposition of Z. The Gaussian estimator of ‖B‖F is defined as

(2.1) ψk(B) =
1√
k
‖BZ‖F ,

while the GKL estimator is defined as

(2.2) ηk(B) =

√
n√
k
‖BQ‖F .

The GKL estimator has been widely used for norm and condition number esti-
mation. It is shown in [12] that if B has rank r,

(2.3) Prob

{‖B‖F
τ
≤ ηk(B) ≤ τ‖B‖F

}

≥ 1− r
(

1− I(kτ2

n ) + I( k
nτ2 )

)

,

where I(α) = 1 if α ≥ 1 and

I(α) =
∫ α

0
t(k−2)/2(1− t)(n−k−2)/2 dt

∫ 1

0
t(k−2)/2(1− t)(n−k−2)/2 dt

is a regularized Beta function if 0 < α < 1. When the rank of B is close to 1, the
right-hand side of (2.3) increases fast toward 1 as k and/or τ increase. On the other
hand, when r is large, the bound becomes very pessimistic. Furthermore, because r is
not generally known a priori, for prediction purposes the best one can do is use (2.3)
with r = min{m,n}, leading to a very pessimistic bound. It is conjectured in [12]
that the bound (2.3) holds without the factor r. It is this conjecture which motivated
the present study.

Next we turn to the Gaussian estimator in (2.1). It is straightforward to verify
that ψ2

k(B) is a linear combination of independent chi-squared variables with k degrees
of freedom, denoted χ2

i (k) below:

(2.4) ψ2
k(B) =

1

k

r
∑

i=1

σ2
i χ

2
i (k),

where σ1 ≥ · · · ≥ σr > 0 are the nonzero singular values of B. From this we have

E{ψ2
k(B)} = ‖B‖2F , Var{ψ2

k(B)} = 2

k

r
∑

i=1

σ4
i ≤

2

k
‖B‖4F .

Recall that for small-sample estimation, we are restricted to k ≪ n and we are
interested in order-of-magnitude estimation. The following proposition establishes
that in this setting the two estimators ηk(B) and ψk(B) are essentially equivalent.

Proposition 2.2. For any matrix B ∈ R
m×n and any τ > 0, the estimators

ψk(B) and ηk(B) defined in (2.1) and (2.2) satisfy

Prob

{

1−
√
k + τ√
n
≤ ψk(B)

ηk(B)
≤ 1 +

√
k + τ√
n

}

≥ 1− 2 exp

(

−τ
2

2

)

.



 
 
 

 
 
 
 
 
 

 

 
 
 

 
 

 
 
 
 

 

 
 

 

 

 
 
 
 

 

 
 
 
 
 

Proof. Because Z = QR with QTQ = Ik,

ψk(B) =

√
n√
k

‖BQR‖F√
n

≤
√
n√
k

‖BQ‖F ‖R‖2√
n

= ηk(B)
‖R‖2√
n

= ηk(B)
‖Z‖2√
n
.

On the other hand,

ηk(B) =

√
n√
k
‖BQRR−1‖F ≤

√
n√
k
‖BZ‖F ‖R−1‖2 = ψk(B)

√
n

σmin(Z)
,

where σmin(·) denotes the smallest singular value. It follows that

σmin(Z)√
n

≤ ψk(B)

ηk(B)
≤ ‖Z‖2√

n
.

To complete the proof we use a result of Gordon [9, 10] popularized by Davidson and
Szarek [6]: for any τ > 0,

√
n−
√
k − τ ≤ σmin(Z) ≤ ‖Z‖2 ≤

√
n+
√
k + τ

holds with probability at least 1− 2 exp(−τ2/2).
Proposition 2.2 is not very surprising: the fact that Gaussian and random or-

thonormal matrices behave the same way is well known and dates at least as far back
as [17].

In the following section we present new bounds of the form (1.1) for ψk(B). By
Proposition 2.2, these bounds also essentially apply for ηk(B) when k ≪ n. Our
bounds are stated in terms of the stable rank of B,

(2.5) ρ(B) =
‖B‖2F
‖B‖22

.

The concept of stable rank dates at least as far back as [4, 5]; see, for example, [20, 21]
for many examples of its use in linear algebra. In contrast to (2.3), our bounds
are useful even when the matrix B has a large rank: they do not deteriorate with
increasing r but improve with increasing ρ.

3. Improved convergence bounds.

3.1. Chernoff bounds. The Gaussian estimator ψk(B) is one of several ran-
domized estimators surveyed in [1] and [19]. In our notation, [1, Theorem 5.2] shows
that for ǫ < 0.1,

(3.1) Prob
{

∣

∣ψ2
k(B)− ‖B‖2F

∣

∣ ≤ ǫ‖B‖2F
}

≥ 1− 2 exp

(

− k

20
ǫ2
)

.

Thus, for any ǫ ∈ (0, 0.1) and δ ∈ (0, 1), at least k = 20ǫ−2 ln(2/δ) samples are
required to ensure that

Prob
{

∣

∣ψ2
k(B)− ‖B‖2F

∣

∣ ≤ ǫ‖B‖2F
}

≥ 1− δ.

In [19, Theorem 3], this result is improved to

(3.2) k = 8ρ−1ǫ−2 ln(2/δ).

The value of k in (3.2) can be very large when ǫ is small because of the ǫ−2 factor.
Recall, however, that in the setting of small-sample estimation one does not require
‖B‖F with a great deal of accuracy and one is limited to using a small value of k.
The following theorem applies in this setting.



 
 

 
 

 
 

 

 

 

 
 
 

 

 
 
 

 
 
 

 

 
 

 
 
 

 
 

Theorem 3.1. Let B ∈ R
m×n be a matrix of rank r and stable rank ρ whose

Frobenius norm is to be estimated, and let ψk(B) be defined by (2.1). For any τ > 1
and k ≤ n,

Prob{ψk(B) ≥ τ‖B‖F } ≤ exp

(

−kρ
2

(

τ − 1
)2
)

,(3.3)

Prob

{

ψk(B) ≤ ‖B‖F
τ

}

≤ exp

(

−kρ
4

(τ2 − 1)2

τ4

)

,(3.4)

and

Prob

{‖B‖F
τ

< ψk(B) < τ‖B‖F
}

≥ 1− exp

(

−kρ
2

(

τ − 1
)2
)

− exp

(

−kρ
4

(τ2 − 1)2

τ4

)

.

(3.5)

Proof. We use the same idea as in [1] and [19]. Namely, we use the fact that

Prob

{‖B‖F
τ

< ψk(B) < τ‖B‖F
}

= 1− Prob{ψk(B) ≥ τ‖B‖F } − Prob{ψk(B) ≤ ‖B‖F /τ}
(3.6)

and bound each probability in the right-hand side separately by using a Chernoff
approach. For any t > 0, by Markov’s inequality we have

Prob{ψk(B) ≥ τ‖B‖F } = Prob
{

exp(tkψ2
k(B)) ≥ exp(tkτ2‖B‖2F )

}

≤ E
{

exp(tkψ2
k(B))

}

exp(tkτ2‖B‖2F )
.

(3.7)

In the above, the numerator is the moment generating function (MGF) of the random
variable kψ2

k(B). Recall from (2.4) that this is a linear combination of independent
chi-squared variables with k degrees of freedom. It is known (see, e.g., [18, section 3.2])
that its MGF is defined for |t| < 1

2σ2
1

and satisfies

E
{

exp(tkψ2
k(B))

}

=
r
∏

i=1

(1− 2σ2
i t)

−k/2

= exp

(

−k
2

r
∑

i=1

ln(1− 2σ2
i t)

)

= exp





k

2

r
∑

i=1

∞
∑

j=1

(2σ2
i t)

j

j



 ,

where σ1 ≥ · · · ≥ σr > 0 are the nonzero singular values of B. Pick t = µ
2σ2

1

for some

µ ∈ (0, 1). Then from (3.7),

Prob{ψk(B) ≥ τ‖B‖F } ≤ exp





k

2

r
∑

i=1

∞
∑

j=1

µjσ2j
i

jσ2j
1



 exp

(−µkρτ2
2

)

= exp



−kρ
2
µ(τ2 − 1) +

k

2

r
∑

i=1

∞
∑

j=2

µjσ2j
i

jσ2j
1



 .



 
 
 

 
 

 
 

 
 
 
 
 

 
 

 
 

 
 

 
 
 
 

 
 
 
 

 

 

In the above,

r
∑

i=1

∞
∑

j=2

µjσ2j
i

jσ2j
1

≤
r

∑

i=1

∞
∑

j=2

µjσ2j
i

σ2j
1

=
r

∑

i=1

µ2σ4
i /σ

4
1

1− µσ2
i /σ

2
1

≤ µ2ρ

1− µ,

which gives

Prob{ψk(B) ≥ τ‖B‖F } ≤ exp

(

−kρ
2

(

µ(τ2 − 1)− µ2

1− µ

))

.

It is straightforward to verify that over all µ ∈ (0, 1), the smallest bound is achieved
when µ = 1− τ−1, leading to (3.3).

Similarly, for any t ∈
(

0, 1/(2σ2
1)
)

we have

Prob{ψk(B) ≤ ‖B‖F /τ} = Prob
{

exp(−tkψ2
k(B)) ≥ exp(−tk‖B‖2F /τ2)

}

≤ E
{

exp(−tkψ2
k(B))

}

exp(tk‖B‖2F /τ2)

= exp





k

2

r
∑

i=1

∞
∑

j=1

(−1)j(2σ2
i t)

j

j
+
tk‖B‖2F
τ2



 .

Picking t = µ
2σ2

1

for some µ ∈ (0, 1), we obtain

Prob{ψk(B) ≤ ‖B‖F /τ} ≤ exp



−kρ
2
µ(1− τ−2) +

k

2

r
∑

i=1

∞
∑

j=2

(−1)jµjσ2j
i

jσ2j
1



 .

In the above,
∣

∣

∣

∣

∣

∣

r
∑

i=1

∞
∑

j=2

(−1)jµjσ2j
i

jσ2j
1

∣

∣

∣

∣

∣

∣

≤
r

∑

i=1

µ2σ4
i

2σ4
1

≤ µ2ρ

2
,

leading to

Prob{ψk(B) ≤ ‖B‖F /τ} ≤ exp

(

−kρ
2

(

µ(1− τ−2)− µ2

2

))

.

It is straightforward to verify that µ = 1 − τ−2 gives the optimal bound (3.4). Sub-
stituting (3.3) and (3.4) into (3.6) completes the proof.

We can use Theorem 3.1 to determine the number of samples k required to esti-
mate ‖B‖F to within a given factor τ with probability at least 1− δ.

Corollary 3.2. In the notation of Theorem 3.1, for any τ ≥ 2 and δ ∈ (0, 1),
at least

k = 4ρ−1 τ4

(τ2 − 1)2
ln

(

2

δ

)

samples are required to ensure that

Prob

{‖B‖F
τ

< ψk(B) < τ‖B‖F
}

≥ 1− δ.
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Proof. If τ ≥ 2, then (τ − 1)2 ≥ (τ2−1)2

2τ4 . Thus from (3.5)

Prob

{‖B‖F
τ

< ψk(B) < τ‖B‖F
}

≥ 1− 2 exp

(

−kρ
4

(τ2 − 1)2

τ4

)

.

The result follows by setting the above equal to 1− δ and solving for k.

Theorem 3.1 can also be used to improve the constant factor in known relative
error bounds.

Corollary 3.3. In the notation of Theorem 3.1, for any ǫ ∈ (0, 12 ),

Prob
{

∣

∣ψk(B)− ‖B‖F
∣

∣ ≤ ǫ‖B‖F
}

≥ 1− 2 exp

(

−kρ
2
ǫ2
)

.

Therefore, for any ǫ ∈ (0, 12 ) and δ ∈ (0, 1), at least

(3.8) k = 2ρ−1ǫ−2 ln

(

2

δ

)

samples are required to ensure that

Prob
{

∣

∣ψk(B)− ‖B‖F
∣

∣ ≤ ǫ‖B‖F
}

≥ 1− δ.

Proof. Note that
∣

∣ψk(B)− ‖B‖F
∣

∣ ≤ ǫ‖B‖F ⇐⇒ (1− ǫ)‖B‖F ≤ ψk(B) ≤ (1 + ǫ)‖B‖F .
Taking τ = 1 + ǫ in (3.3) and τ = 1/(1− ǫ) in (3.4) we obtain

Prob
{

∣

∣ψk(B)− ‖B‖F
∣

∣ ≤ ǫ‖B‖F
}

≥ 1− exp

(

−kρ
2
ǫ2
)

− exp

(

−kρ
2
ǫ2
(2− ǫ)2

2

)

≥ 1− 2 exp

(

−kρ
2
ǫ2
)

.

The result follows by setting the above equal to 1− δ and solving for k.

As with (3.2), the bound (3.8) on the number of samples inevitably depends
on ǫ−2. However, the factor 8 in (3.2) is reduced to a factor 2. In other words, four
times fewer samples than predicted by (3.2) are in fact required.

3.2. A combined bound. We now return to the result given in Theorem 3.1.
For fixed k and τ , the bound (3.5) increases very fast toward 1 as the stable rank ρ
increases. For example, suppose that B ∈ R

m×n with n = r = 1000 and ‖B‖F =
10‖B‖2. Even with small values of k = τ = 2, the bound states that

Prob

{‖B‖F
2

< ψ2(B) < 2‖B‖F
}

≥ 1− 10−12.

This is much closer to 1 than the lower bound (2.3), even if, as conjectured in [12], (2.3)
holds without the factor r. (In this example, the lower bound (2.3) is negative, while
ignoring the factor r in (2.3) gives 0.7610 to four digits.)

On the other hand, when ρ is close to 1, the two exponential terms (3.3) and (3.4)
exhibit different behavior. The bound (3.3) on the probability of overestimation
remains quite small, even for small values of k and τ . For example, in the extreme
case ‖B‖F = ‖B‖2, with k = τ = 3, we have



 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 

 

 

 

 
 

 

 
 
 

exp

(

−kρ
2

(

τ − 1
)2
)

= exp(−6) ≤ 0.0025.

Clearly this term further decreases with increasing k and τ .
The bound (3.4) on the probability of underestimation may be quite large for small

k when ρ is small. Once again in the extreme case ‖B‖F = ‖B‖2, with k = τ = 3, we
have

exp

(

−k
2

‖B‖2F
‖B‖22

(τ2 − 1)2

2τ4

)

= exp

(

−16

27

)

≈ 0.5529.

Furthermore, although this term is a decreasing function of k and of τ , it does not
tend to 0 with increasing τ . Consequently, if ρ is close to 1, the bound (3.5) may be
quite pessimistic when k is not very large and τ is very large, i.e., if we are interested
in a very rough estimate of ‖B‖F using very few samples. The following theorem
extends Theorem 3.1 by providing a bound that is useful when ρ is close to 1 and/or
τ is very large.

Theorem 3.4. In the notation of Theorem 3.1,

Prob

{‖B‖F
τ

< ψk(B) < τ‖B‖F
}

≥ 1− exp

(

−kρ
2
(τ − 1)2

)

− ω(B, k, τ),
(3.9)

where

ω(B, k, τ) = min

{

exp

(

−kρ
4

(τ2 − 1)2

τ4

)

, P
(

kρ

τ2

)}

and

(3.10) P (α) =

∫ α/2

0
t(k−2)/2 exp(−t) dt

∫∞

0
t(k−2)/2 exp(−t) dt

is a regularized gamma function.

Proof. We only modify the bound (3.4) on underestimation from Theorem 3.1.
Recall from (2.4) that

kψ2
k(B) =

r
∑

i=1

σ2
i χ

2
i (k),

where the random variables χ2
i (k) are mutually independent. Therefore,

Prob

{

ψk(B) ≤ ‖B‖F
τ

}

= Prob

{

r
∑

i=1

σ2
i χ

2
i (k) ≤

k‖B‖2F
τ2

}

≤ Prob

{

r
⋂

i=1

(

σ2
i χ

2
i (k) ≤

k‖B‖2F
τ2

)

}

=

r
∏

i=1

Prob

{

χ2
i (k) ≤

k‖B‖2F
τ2σ2

i

}

=

r
∏

i=1

P
(

k‖B‖2F
τ2σ2

i

)

≤ P
(

kρ

τ2

)

.(3.11)



 
 

 
 

 

 
 
 

 
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

 
 
 

The rest of the proof is as in Theorem 3.1. Since we have two upper bounds (3.4)
and (3.11) for the probability of underestimation, the mininimum of the two is also a
valid bound.

In contrast to (3.4), the bound (3.11) decreases toward 0 as τ increases, and is an
increasing function of ρ. Thus, (3.4) is more suitable when ρ is large, while (3.11) is
preferable when ρ is close to 1 or τ is very large.

4. Numerical experiments. We give some numerical experiments to illustrate
the behavior of our bounds as a function of k, τ , and ρ.

First we test whether our bound in Theorem 3.4 is descriptive by comparing it to
empirical probabilities. For each value of k and τ tested, we compute 105 realizations
of ψk(B) and count the number of times that

(4.1)
‖B‖F
τ
≤ ψk(B) ≤ τ‖B‖F

holds, divided by 105. Without loss of generality we test matrices B that are square,
diagonal, and of size n = 100. The diagonal elements σi of B are chosen to obtain
different values of the stable rank ρ, as follows:

(a) ρ = 1 : σ1 = 1 and σi = 0 for i > 1.
(b) ρ ≈ 1.2 : σ1 = 10π/

√
126 and σi = 1/(i− 1) for i > 1.

(c) ρ ≈ 4 : σi = max
{

10−10,
(√

3/2
)i−1 }

(d) ρ = 25 : σ1 = 1 and σi =
√

24/(n− 1) for i > 1.

Results are given in Table 4.1, rounded to four digits. We write 1, as opposed to
1.0000, when the empirical probability is exactly 1, i.e., when all 105 realizations of
ψk(B) satisfy (4.1). We observe that if ρ is close to 1, the lower bound (3.9) can be
pessimistic when k < 3 and/or τ < 3. However, when k ≥ 3 and τ ≥ 3, the bound
gives a good indication of the actual probability. In case (a) the empirical probability
is sometimes slightly lower than the lower bound. This is merely the effect of sampling
error.

5. Conclusion. The purpose of the present paper is to derive a bound of the
form (1.1) for small-sample estimation. Our main result is the combined bound in
Theorem 3.4. We derived this bound for the Gaussian estimator ψk(B), but by
Proposition 2.2 it also essentially holds for the GKL estimator ηk(B) when k ≪ n,
which is typically how the estimators are used in practice.

Unlike the original small-sample bounds from [12], but similarly to those in [1, 19],
our bounds hold independently of the rank of B. Instead, they depend on ρ, the stable
rank of B. Uniform bounds that hold for all B are readily obtained by replacing ρ by
its lower bound 1 (or its upper bound min{m,n} in (3.11)).

Even when ρ is very close to 1, our bounds behave similarly to the bounds for
the case rank(B) = 1 in (2.3), on which the small-sample estimation theory is based.
Similarly to [19, Theorem 3], our bounds increase very quickly toward 1 as the stable
rank of B increases. If ‖B‖F is significantly larger than ‖B‖2, say, ‖B‖F ≥ 5‖B‖2,
then the probability of obtaining a good order-of-magnitude estimate is overwhelm-
ingly close to 1. Thus, small-sample estimation works generally for matrices B not
only of rank 1 but of any rank.



 

 
 
 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

Table 4.1
Empirical probability of (4.1) (top) and bound in (3.9) (bottom).

(a) Case ρ = 1

❍
❍

❍
❍

τ

k
1 2 3 4 5

2
0.5717 0.7608 0.8551 0.9071 0.9393
0.0105 0.4109 0.6383 0.7745 0.8579

3
0.7357 0.8948 0.9546 0.9784 0.9894
0.6035 0.8765 0.9512 0.9783 0.9899

5
0.8410 0.9600 0.9893 0.9970 0.9988
0.8411 0.9608 0.9893 0.9970 0.9991

10
0.9209 0.9900 0.9986 0.9998 0.9999
0.9203 0.9900 0.9986 0.9998 1.0000

(b) Case ρ ≈ 1.2

❍
❍

❍
❍

τ

k
1 2 3 4 5

2
0.72360 0.8849 0.9455 0.9729 0.9869
0.03609 0.4406 0.6607 0.7875 0.8631

3
0.9214 0.9877 0.9976 0.9995 0.9999
0.6249 0.8664 0.9389 0.9697 0.9845

5
0.9955 1 1 1 1
0.8259 0.9528 0.9859 0.9956 0.9986

10
1 1 1 1 1

0.9125 0.988 0.9982 0.9997 1.0000

(c) Case ρ ≈ 4

❍
❍

❍
❍

τ

k
1 2 3 4 5

2
0.9878 0.9995 1 1 1
0.2949 0.6570 0.8125 0.8943 0.9399

3
0.9998 1 1 1 1
0.5459 0.7941 0.9066 0.9576 0.9808

5
1 1 1 1 1

0.6892 0.8521 0.9370 0.9749 0.9900

10
1 1 1 1 1

0.8415 0.9608 0.9893 0.9970 0.9991

(d) Case ρ = 25

❍
❍

❍
❍

τ

k
1 2 3 4 5

2
1 1 1 1 1

0.9703 0.9991 1.0000 1.0000 1.0000

3
1 1 1 1 1

0.9928 0.9999 1.0000 1.0000 1.0000

5
1 1 1 1 1

0.9968 1.0000 1.0000 1.0000 1.0000

10
1 1 1 1 1

0.9978 1.0000 1.0000 1.0000 1.0000
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