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Abstract. We provide bounds for moments of sums of sequences of
independent random variables. Concentrating on uniformly bounded non-
negative random variables, we are able to improve upon previous results
due to Johnson et al. [10] and Latała [12]. Our basic results provide bounds
involving Stirling numbers of the second kind and Bell numbers. By deriv-
ing novel effective bounds on Bell numbers and the related Bell function, we
are able to translate our moment bounds to explicit ones, which are tighter
than previous bounds. The study was motivated by a problem in operation
research, in which it was required to estimate the Lp-moments of sums of
uniformly bounded non-negative random variables (representing the pro-
cessing times of jobs that were assigned to some machine) in terms of the
expectation of their sum.
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1. INTRODUCTION

Numerous results in probability theory relate to sums of random variables.
The law of large numbers and the central limit theorem are such instances. In this
paper we deal, more specifically, with bounds for moments of sums of independent
random variables. A classical result in this direction, due to Khintchine [11], is the
following:

Let X1, X2, . . . , Xn be i.i.d. symmetric random variables assuming only the
values 1 and −1. Then for every p > 0 there exist positive constants C1, C2, de-
pending only on p, such that, for every choice of a1, a2, . . . , an ∈ R,

C1

( n∑
k=1

a2k
)1/2 ¬ ∥∥ n∑

k=1

akXk

∥∥
p
¬ C2

( n∑
k=1

a2k
)1/2

,

where ∥X∥p = [E(|X|p)]1/p is the Lp-norm of X .
For more on results of this type we refer, for example, to [6].
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186 D. Berend and T. Tassa

Hereinafter we consider (possibly infinite) sequences of independent non-
negative random variables Xi, 1 ¬ i ¬ t, and aim at estimating the p-moments,
E(Xp), p  1, of their sum, X =

∑t
i=1Xi. The work of Latała [12] provides the

last word in this subject. One of the corollaries of his work is the following one:

THEOREM A ([12], Theorem 1 and Lemma 8). Let Xi, 1 ¬ i ¬ t < ∞, be
independent non-negative random variables, X =

∑t
i=1Xi, and p  1. Then, for

every c > 0,

(1.1) ∥X∥p ¬ 2e ·max

{
(1 + c)p

cp
E1,

(
1 +

1

c

)
p−1/p Ep

}
,

where

(1.2) Ek =
( t∑
i=1

E(Xk
i )
)1/k

, k = 1, p.

In his Corollary 3, Latała [12] suggests to take c = (ln p)/p in (1.1). This
yields the following uniform bound:

(1.3) ∥X∥p ¬ 2e ·
(
1 +

p

ln p

)
·max{E1, Ep}, p > 1.

In fact, taking c = p1/p − 1, the coefficients of both E1 and Ep in (1.1) coincide and
equal (p1/p − 1)−1. Since the latter expression is bounded from above by p/ ln p,
we may improve (1.3) and arrive at the following:

THEOREM A′. Under the assumptions of Theorem A,

(1.4) ∥X∥p ¬ 2e · p

ln p
·max{E1, Ep}, p > 1.

Finally, by finding the value of c that minimizes the upper bound in (1.1), we
arrive at the following explicit version of Latała’s theorem (the proof of which is
postponed to the Appendix).

THEOREM A′′. Under the assumptions of Theorem A,

(1.5) ∥X∥p ¬


2e ·

(
p

p− 1

)p−1
· E1, E1 

(p− 1)p−1

p(p−1)2/p
Ep,

2e · Ep/(p−1)p

p1/pE1/(p−1)p − E1/(p−1)1

, otherwise.

An estimate similar to that of Theorem A′, but with a better constant, was
established already in [10]. It was shown there (Theorem 2.5) that

(1.6) ∥X∥p ¬ K · p

ln p
·max{E1, Ep}, K = 2, p > 1.
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In addition, it was shown that estimate (1.6) cannot hold with K < e−1 (see Propo-
sition 2.9 in [10]). We note that Theorem A′′ may offer better estimates than (1.6),
even with K < e−1. For example, if

E1 
(p− 1)p−1

p(p−1)2/p
Ep,

then the upper bound in Theorem A′′ is less than 2e2E1, while the upper bound in
(1.6) is at least

(
2p/(ln p)

)
E1. In other cases, however, (1.6) may be sharper than

Theorem A′′.
In this paper we deal with the same setup, but restrict our attention to the case

of uniformly bounded random variables, where 0 ¬ Xi ¬ 1 for all 1 ¬ i ¬ t. In
this case, Ep ¬ E1/p1 , whence the existing bounds yield bounds depending only
on E1. We derive here improved bounds in that case that depend only on E1. Our
bounds offer sharper constants and are almost tight as p→ 1+, where the previous
explicit bounds, (1.3) and (1.6), explode. Our results apply also to possibly infinite
sequences.

Some of our bounds involve Stirling numbers of the second kind and Bell
numbers. A key ingredient in our estimates are new and effective bounds on Bell
numbers. While previous bounds on Bell numbers were only asymptotic, we pro-
vide here an effective bound on Bell numbers that applies to all natural numbers.
That result is an interesting result on its own right and may have applications for
other problems of discrete mathematics.

Section 2 includes our main results. In Subsection 2.1 we provide a short dis-
cussion of Stirling and Bell numbers, and a statement of our bounds on Bell num-
bers and the related Bell function. In Subsection 2.2 we state our main results con-
cerning bounds for sums of random variables. The proofs of our results are given
in Section 3. In Section 4 we discuss our results and compare them with the best
previously known ones (namely, with (1.6), due to Johnson et al. [10]). Finally, the
Appendix includes proofs of some of our statements (Subsections 5.1, 5.2 and 5.3)
and a description of the operation research problem that motivated this study
(Subsection 5.4).

2. MAIN RESULTS

2.1. Effective bounds on Bell numbers. The Stirling numbers of the second
kind and Bell numbers are related to counting the number of partitions of sets. The
first counts, for integers n  k  1, the number of partitions of a set of size n into
k non-empty sets. This number is denoted by S(n, k) (or sometimes by

{
n
k

}
). The

second counts the number of all partitions of a set of size n, and is denoted by Bn.
(For more information we refer to Riordan [16].)

Let A(n, k) denote the number of colorings of n elements using exactly k
colors (namely, each color must be used at least once in the coloring). A(n, k) is
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given by
(2.1)

A(n, k) =
∑{(

n

r

)
: r = (r1, . . . , rk) ∈ Nk, |r| = n and ri  1, 1 ¬ i ¬ k

}
,

where |r| =
∑k

i=1 ri and
(
n
r

)
= n!/(r1! . . . rk!). With this notation, the Stirling

number of the second kind may be expressed as

(2.2) S(n, k) =
A(n, k)

k!
.

The Bell number Bn may be written in terms of the Stirling numbers:

(2.3) Bn =
n∑

k=1

S(n, k).

In [2], de Bruijn derives the following asymptotic estimate for the Bell number Bn:

lnBn

n
= lnn− ln lnn− 1 +

ln lnn

lnn
+

1

lnn
+

1

2

(
ln lnn

lnn

)2

+O

[
ln lnn

(lnn)2

]
.

In particular, we conclude that for every ε > 0 there exists n0 = n0(ε) such that,
for all n > n0,

(2.4)
(

n

e lnn

)n

< Bn <

(
n

e1−ε lnn

)n

.

The problem with estimate (2.4) is that it is ineffective in the sense that the value
of n0 = n0(ε) is implicit in the asymptotic analysis in [2]. We prove here an upper
bound that is less tight than (2.4), but applies for all n.

THEOREM 2.1. The Bell numbers satisfy

(2.5) Bn <

(
0.792n

ln(n+ 1)

)n

, n ∈ N.

By Dobinski’s formula (see [5] and [15]),

(2.6) Bn =
1

e

∞∑
k=1

kn

k!
.

This suggests a natural extension of the Bell numbers for any real index p,

(2.7) Bp =
1

e

∞∑
k=1

kp

k!
.

We refer to Bp as the Bell function. Note that, for p  0, we have Bp = E(Y p),
where Y ∼ P (1) is a Poisson random variable with mean E(Y ) = 1. For the sake
of proving Theorem 2.1, we establish effective asymptotic bounds for the Bell func-
tion:
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Improved bounds on Bell numbers and on moments 189

THEOREM 2.2. The Bell function Bp, given by (2.7), satisfies for all ε > 0

(2.8) Bp <

(
e−0.6+εp

ln(p+ 1)

)p

, p > p0(ε),

where

(2.9) p0(ε) = max{e4, d−1(ε)}

and d(·) is given by

(2.10) d(p) = ln ln(p+ 1)− ln ln p+
1 + e−1

ln p
.

2.2. Bounding moments of sums of random variables. Throughout this paper
we let Xi, 1 ¬ i ¬ t ¬ ∞, be a (possibly infinite) sequence of independent random
variables for which P (0 ¬ Xi ¬ 1) = 1, X =

∑t
i=1Xi, and µ = E(X).

Our first result is an estimate for moments of integral order.

THEOREM 2.3. Letting S(p, k) denote the Stirling number of the second kind,
the following estimate holds:

(2.11) E(Xp) ¬
min(t,p)∑
k=1

S(p, k) · E(X)k · e−(k−1)k/2t, p ∈ N.

The above estimate implies that E(Xp) ¬
∑p

k=1 S(p, k) · E(X)k for all t.
Hence, using (2.3) we infer the following bound:

COROLLARY 2.1. Letting Bp denote the p-th Bell number,

(2.12) E(Xp) ¬ Bp ·max{E(X), E(X)p}, p ∈ N.

(In Section 5.3 we give an alternative proof of Corollary 2.1 that relies on the
results of de la Peña et al. [14].)

Relying on Corollary 2.1 and an interpolation argument, we arrive at the fol-
lowing explicit bound for all real p  1:

THEOREM 2.4. For all p  1,

(2.13) ∥X∥p ¬ 0.792 · ν(p) · p

ln(p+ 1)
·max{E(X)1/p, E(X)},

where

(2.14) ν(p) =

(
1 +

1

⌊p⌋

)({p}·(1−{p}))/p

and ⌊p⌋ and {p} denote the integer and fractional parts of p, respectively.
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We note that for all p  1

ν(p) ¬
(
1 +

1

⌊p⌋

)1/(4p)

¬ 21/4,

so that inequality (2.13) may be simplified into the weaker form:

(2.15) ∥X∥p ¬ 0.942 · p

ln(p+ 1)
·max{E(X)1/p, E(X)}, p  1.

Finally, using the asymptotic upper bounds for the Bell numbers provided by
(2.4) and by Theorem 2.2, we may obtain better estimates for large moment orders:

THEOREM 2.5. For all p  1 and ε > 0, let ν(p) be as given in (2.14) and
p0(ε) be as given in (2.9) and (2.10). Then, for all ε > 0 and p > p0(ε),

(2.16) ∥X∥p ¬ e−0.6+ε · ν(p) · p

ln(p+ 1)
·max{E(X)1/p, E(X)}.

In addition, for every ε > 0 there exists p̂0(ε) > 1 such that, for all p > p̂0(ε),

(2.17) ∥X∥p ¬ e−1+ε · ν(p) · p

ln(p+ 1)
·max{E(X)1/p, E(X)}.

Note that the constant e−1+ε in (2.17) cannot be replaced by any constant
smaller than e−1, as implied by the lower bound from (2.4) on Bell numbers, and
by the previously mentioned result of Johnson et al. ([10], Proposition 2.9).

3. PROOFS OF THE MAIN RESULTS

3.1. Proofs of Theorems 2.1 and 2.2.

LEMMA 3.1. Let x0 = x0(p) be defined for all p > 0 by

(3.1) x0 lnx0 = p.

Then

(3.2) x0 <
αp

ln p
, p > ee+1,

where α = 1 + 1/e.

P r o o f. As the function u(x) = x lnx is increasing for all x  1, it suffices
to show that

u

(
αp

ln p

)
=

αp

ln p
· ln

(
αp

ln p

)
> p, p > ee+1.
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Improved bounds on Bell numbers and on moments 191

This is easily seen to be equivalent to

(α− 1)p+
αp lnα

ln p
− αp ln ln p

ln p
> 0, p > ee+1,

or

(3.3) v(p) := (α− 1) ln p+ α lnα− α ln ln p > 0, p > ee+1.

First, we observe that

(3.4) v(ee+1) = v(eα/(α−1)) = (α− 1)
α

α− 1
+ α lnα− α ln

α

α− 1
= 0.

As

(3.5) v′(p) =
α− 1

p
− α

p ln p
> 0, p > eα/(α−1) = ee+1,

inequality (3.3) follows from (3.4) and (3.5). �

P r o o f o f T h e o r e m 2.2. Employing (a version of) Stirling’s formula (cf.
[17]), we infer by (2.7) that

Bp ¬
1

e

∞∑
n=1

np

√
2πn(n/e)n

<
∞∑
n=1

ennp

nn
.

Define

h(x) = hp(x) = ln
exxp

xx
= x+ p lnx− x lnx, x  1.

As h′(x) = p/x− lnx, the function h increases on [1, x0] and decreases on [x0,∞),
where x0 = x0(p) > 1 is determined by (3.1). Hence,

h(x) ¬ h(x0) = x0 + p lnx0 − x0 lnx0 = x0 + p lnx0 − p , x  1.

Invoking the bound (3.2) on x0, we infer that

h(x) <
αp

ln p
+ p ln p− p ln ln p+ p(lnα− 1), x  1,

for all p > ee+1. Using the definition of d(p) in (2.10), we conclude that

h(x) < p ·
(
d(p) + ln p− ln ln(p+ 1) + lnα− 1

)
.

It is easy to check that d(p) is decreasing for p > 1 and maps the interval (1,∞)
onto the interval (0,∞). Hence, for every ε > 0 there exists a single p0=p0(ε)>1
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such that d(p0) = ε and d(p) < ε for all p > p0. We conclude that, for every ε > 0
and p > max{ee+1, d−1(ε)},

(3.6) h(x) < p ·
(
ln p− ln ln(p+ 1) + ε+ lnα− 1

)
.

For larger x we can do much better by observing that

(3.7) h(x) = x− (x− p) lnx < x− x

2
lnx < −x, x > 2p, p > e4.

Combining (3.6) and (3.7), we conclude that for p > max{e4, d−1(ε)}:

Bp <
∞∑
n=1

eh(n) =
⌊2p⌋∑
n=1

eh(n) +
∞∑

n=⌊2p⌋+1

eh(n)(3.8)

< ⌊2p⌋ exp
(
p · (ln p− ln ln(p+ 1) + ε+ lnα− 1)

)
+

∞∑
n=⌊2p⌋+1

e−n.

The first term on the right-hand side of (3.8) may be bounded as follows for all
p > e4:

(3.9) ⌊2p⌋ · exp
(
p · (ln p− ln ln(p+ 1) + ε+ lnα− 1)

)
= ⌊2p⌋ ·

(
eε+lnα−1p

ln(p+ 1)

)p

<

(
e−0.6007+εp

ln(p+ 1)

)p

.

The second term on the right-hand side of (3.8) may be bounded by evaluating the
sum of the geometric series,

(3.10)
∞∑

n=⌊2p⌋+1

e−n =
e−(⌊2p⌋+1)

1− e−1
< e−⌊2p⌋.

Using (3.9) and (3.10) in (3.8) we arrive at

(3.11) Bp <

(
e−0.6007+εp

ln(p+ 1)

)p

+ e−⌊2p⌋, p > p0(ε).

Finally, as it is easy to verify that

(3.12)
(
e−0.6007+εp

ln(p+ 1)

)p

+ e−⌊2p⌋ ¬
(
e−0.6+εp

ln(p+ 1)

)p

, p > e4,

the required estimate (2.8) follows from (3.11) and (3.12). �
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P r o o f o f T h e o r e m 2.1. Using ε = d(e4) ≈ 0.346 in Theorem 2.2, we
obtain

(3.13) Bp <

(
0.776p

ln(p+ 1)

)p

, p > e4.

Since it may be verified that

(3.14) Bp <

(
0.792p

ln(p+ 1)

)p

, p = 1, 2, . . . , 54 = ⌊e4⌋,

the theorem follows from (3.13) and (3.14). �

3.2. Proof of Theorem 2.3. The main tool in proving Theorem 2.3 is the fol-
lowing general-purpose proposition:

PROPOSITION 3.1. For every convex function f,

(3.15) E
(
f(X)

)
¬ E

(
f(Y )

)
,

where Y is a binomial random variable with distribution Y ∼ B (t, µ/t) in case
t <∞, and a Poisson random variable with distribution Y ∼ P (µ) otherwise.

A simplified version of this proposition, for the case where X is a sum of a
finite sequence of Bernoulli random variables, appears in [9], Theorem 3. For the
sake of completeness, we include a proof of this proposition in the Appendix. We
now proceed to prove our first estimate that is stated in Theorem 2.3.

Let us put µ = E(X). Consider first the case of infinite sequences, t =∞. In
that case, according to Proposition 3.1, E(Xp) ¬ E(Y p), where Y ∼ P (µ) is a
Poisson random variable. Defining mp(µ) = E(Y p), it may be shown that

mp+1(µ) = µ ·
(
mp(µ) +

dmp(µ)

dµ

)
(see [13]). This recursive relation implies, as shown in [13], that

E(Y p) =
p∑

k=1

S(p, k) · µk.

Hence

(3.16) E(Xp) ¬
p∑

k=1

S(p, k) · µk,

in accord with inequality (2.11) for t =∞.
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As for finite sequences, t <∞, the bounds offered by Proposition 3.1 involve
moments of the binomial distribution. The moment generating function of a bino-
mial random variable Y ∼ B(t, q) is
(3.17)

MY (z) = E(zY ) =
t∑

ℓ=0

P (Y = ℓ)zℓ =
t∑

ℓ=0

(
t

ℓ

)
qℓ(1− q)t−ℓzℓ = (qz + 1− q)t.

This function enables the computation of the factorial moments of Y through

M
(k)
Y (1) = E

( k−1∏
i=0

(Y − i)
)
.

Since

Y p =
p∑

k=1

S(p, k)
k−1∏
i=0

(Y − i)

(see [7], p. 72), we have

(3.18) E(Y p) =
p∑

k=1

S(p, k) ·M (k)
Y (1).

As (3.17) implies

(3.19) M
(k)
Y (1) = qk ·

k−1∏
i=0

(t− i)

(note that when k  t+ 1, we get M (k)
Y (1) = 0), we infer by (3.18) and (3.19) that

(3.20) E(Y p) =
min(t,p)∑
k=1

S(p, k) · qk ·
k−1∏
i=0

(t− i).

Using (3.20) in Proposition 3.1, where Y ∼ B(t, µ/t), we conclude that, when
t <∞ and p ∈ N,

E(Xp) ¬
min(t,p)∑
k=1

S(p, k) · µk ·
k−1∏
i=0

(
1− i

t

)
.

Finally, as
k−1∏
i=0

(
1− i

t

)
¬

k−1∏
i=0

e−i/t = e−(k−1)k/2t,

we infer that

E(Xp) ¬
min(t,p)∑
k=1

S(p, k) · µk · e−(k−1)k/2t.

This concludes the proof. �
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Estimate (2.11) of Theorem 2.3 may be relaxed as follows:

(3.21) E(Xp) ¬
min(t,p)∑
k=1

S(p, k) · E(X)k, p ∈ N.

We proceed to describe a straightforward proof of (3.21) that does not depend
on Proposition 3.1 and is much shorter than the proof given above.

P r o o f o f (3.21). As X =
∑t

i=1Xi, we conclude that

Xp =
∑

{r:|r|=p}

(
p

r

)
Xr,

where r = (r1, . . . , rt) ∈ Nt is a multi-index of non-negative values, and

X = (X1, . . . , Xt), Xr =
t∏

i=1

Xri
i .

By the independence of the Xi’s and their being bounded between zero and one
we get

(3.22) E(Xp) =
∑

{r:|r|=p}

(
p

r

) ∏
1¬i¬t

E(Xri
i ) ¬

∑
{r:|r|=p}

(
p

r

) ∏
1¬i¬t
ri>0

E(Xi).

The sum on the right-hand side of (3.22) may be split into partial sums, Σ = Σ1 +
Σ2 + . . . + Σmin(t,p), where Σk denotes the sum of terms in which the product
consists of k multiplicands. Thus, Σ1 is the partial sum consisting of all terms
of the form E(Xi), 1 ¬ i ¬ t, the partial sum Σ2 includes all terms of the form
E(Xi)E(Xj), 1 ¬ i < j ¬ t, and so forth. With this in mind, we may rewrite
(3.22) as

(3.23) E(Xp) ¬
min(t,p)∑
k=1

A(p, k) ·
( ∑
1¬i1<i2<...<ik¬t

k∏
j=1

E(Xij )
)
.

Next, we observe that for all k, 1 ¬ k ¬ min(t, p),

(3.24) E(X)k =
( t∑
i=1

E(Xi)
)k  k! ·

( ∑
1¬i1<i2<...<ik¬t

k∏
j=1

E(Xij )
)
.

Hence, (3.21) follows from (3.23), (3.24) and (2.2). �
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3.3. Proofs of Theorems 2.4 and 2.5. The proofs of Theorems 2.4 and 2.5 rely
upon an interpolation argument, given by the next lemma.

LEMMA 3.2. Let p  1 be real and let ⌊p⌋ ∈ N and γ = p − ⌊p⌋ ∈ [0, 1)
denote its integer and fractional parts, respectively. Then for any random variable
X we have

∥X∥p ¬ ∥X∥θ⌊p⌋ · ∥X∥
1−θ
⌊p⌋+1, where θ =

⌊p⌋(1− γ)

p
∈ (0, 1].

P r o o f. Using Hölder’s inequality,

E(X · Y ) ¬ ∥X∥s · ∥Y ∥s/(s−1), s ∈ (1,∞),

we may bound the p-th moment of a random variable X in the following manner:

∥X∥pp=E(Xp)=E(Xθp ·X(1−θ)p) ¬ ∥Xθp∥s · ∥X(1−θ)p∥s/(s−1) , s ∈ (1,∞).

(For the sake of simplicity, and without restricting generality, we assume herein
that X is non-negative.) Since

∥Xα∥σ = E(Xασ)1/σ = ∥X∥αασ, σ  1, α  1/σ,

we conclude that

(3.25) ∥X∥pp ¬ ∥X∥
θp
θps · ∥X∥

(1−θ)p
(1−θ)ps/(s−1), s ∈ (1,∞).

Now set s = ⌊p⌋/(θp) = 1/(1− γ). Since θps = ⌊p⌋, while

(3.26)
(1− θ)ps

s− 1
=

(
1−

(
⌊p⌋(1− γ)

)
/p

)
· p/(1− γ)

(1− γ)−1 − 1
= ⌊p⌋+ 1,

the desired inequality follows from (3.25) and (3.26). �

P r o o f o f T h e o r e m 2.4. In view of Corollary 2.1 and Theorem 2.1, we
conclude that

(3.27) ∥X∥p ¬
cp

ln(p+ 1)
·max{E(X)1/p, E(X)}, p ∈ N,

where we put c = 0.792. Fixing p ∈ N and γ ∈ [0, 1), we proceed to estimate
∥X∥p+γ . By Lemma 3.2,

(3.28) ∥X∥p+γ ¬ ∥X∥θp · ∥X∥1−θp+1, θ =
p · (1− γ)

p+ γ
.
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Employing (3.27), we obtain

(3.29) ∥X∥p+γ ¬ c ·
(

p

ln(p+ 1)

)θ

·
(

p+ 1

ln(p+ 2)

)1−θ
· E(X)

in case E(X)  1, and

(3.30) ∥X∥p+γ ¬ c ·
(

p

ln(p+ 1)

)θ

·
(

p+ 1

ln(p+ 2)

)1−θ
· E(X)θ/p+(1−θ)/(p+1)

if E(X) < 1. Since
θ

p
+

1− θ

p+ 1
=

1

p+ γ
,

we may combine (3.29) and (3.30) as follows:
(3.31)

∥X∥p+γ ¬ c ·
(

p

ln(p+ 1)

)θ

·
(

p+ 1

ln(p+ 2)

)1−θ
·max{E(X)1/(p+γ), E(X)}.

It is easy to check that

(3.32) θ = (1− γ)− η and 1− θ = γ + η,

where

(3.33) η =
γ(1− γ)

p+ γ
.

Hence,

(3.34) pθ(p+ 1)1−θ = p1−γ(p+ 1)γ ·
(
1 +

1

p

)η

.

As, by Jensen’s inequality,

(3.35) p1−γ(p+ 1)γ ¬ (1− γ) · p+ γ · (p+ 1) = p+ γ,

we infer by (3.31), (3.34) and (3.35) that

(3.36) ∥X∥p+γ ¬ c · (p+ γ) · (1 + 1/p)η(
ln(p+ 1)

)θ(
ln(p+ 2)

)1−θ ·max{E(X)1/(p+γ), E(X)}.

We claim, and prove later, that

(3.37)
1(

ln(p+ 1)
)θ(

ln(p+ 2)
)1−θ ¬ 1

ln(p+ γ + 1)
.
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Therefore, by (3.36), (3.37) and (3.33),

∥X∥p+γ ¬ c

(
1 +

1

p

)(γ(1−γ))/(p+γ) p+ γ

ln(p+ γ + 1)
·max{E(X)1/(p+γ), E(X)}

in accord with (2.13).
Hence, all that remains is to prove (3.37). To that end, we use the definition

(3.28) of θ, in order to express γ in terms of θ, and rewrite (3.37) as follows:
(3.38)

ln

(
p+ 1 +

p(1− θ)

p+ θ

)
¬

(
ln(p+ 1)

)θ(
ln(p+ 2)

)1−θ
, p ∈ N, 0 < θ ¬ 1.

By extracting the logarithm of both sides of (3.38), our new goal is proving that

f

(
p+ 1 +

p(1− θ)

p+ θ

)
¬ θf(p+ 1) + (1− θ)f(p+ 2), p ∈ N, 0 < θ ¬ 1,

where f(x) = ln lnx. Writing

g(θ) = f

(
p+ 1 +

p(1− θ)

p+ θ

)
,

we aim at showing that

g(θ) ¬ (1− θ)g(0) + θg(1), 0 ¬ θ ¬ 1, p ∈ N.

To this end, it suffices to show that g is convex in [0, 1], namely, that g′′(θ)  0 for
θ ∈ [0, 1]. As the latter claim may be proved by standard techniques, we omit the
further details. The proof is thus complete. �

P r o o f o f T h e o r e m 2.5. The proof of this theorem goes along the same
lines of the proof of Theorem 2.4. We omit further details. �

4. DISCUSSION

Here we compare our bounds to the previously known ones. According to
Johnson et al. [10] (estimate (1.6)),

(4.1) ∥X∥p ¬
2p

ln p
·max{E1, Ep}, p  1,

where Ek =
(∑t

i=1E(Xk
i )
)1/k. According to our Theorem 2.4, on the other hand,

for all p  1 we have
(4.2)

∥X∥p ¬ 0.792 ·
(
1 +

1

⌊p⌋

)({p}·(1−{p}))/p
· p

ln(p+ 1)
·max{E(X)1/p, E(X)}.
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First, we note that (4.2) relies only on E1 and does not involve Ep, as does (4.1).
However, estimate (4.2) applies only to the case of uniformly bounded variables,
P (0 ¬ Xi ¬ 1) = 1, while (4.1) is not restricted to that case. It should be noted
that, in the case where the variables Xi are not uniformly bounded by 1 (or some
other arbitrary fixed constant), it is impossible to bound E(Xp) in terms of E1
alone. As an example, let Xi ∼ a ·B

(
1, 1/(at)

)
, 1 ¬ i ¬ t, for some a > 0. Then

E1 = 1 but E(Xp)1/p  Ep = a(p−1)/p. As a may be arbitrarily large, E(Xp)1/p

could not possibly be bounded in terms of E1 only in this case.
Estimate (4.2) is sharper than (4.1) in the sense that the bound in the latter

tends to infinity when p→ 1+, while that of (4.2) approaches

0.792

ln 2
E(X) ≈ 1.14E(X),

a small constant multiplicative factor above the limit of the left-hand side, E(X) =
limp→1+ ∥X∥p. When E1  1, estimate (4.2) is better than estimate (4.1) by a
factor of at most

q(p) =
0.792

2
·
(
1 +

1

⌊p⌋

)({p}·(1−{p}))/p
· ln p

ln(p+ 1)
¬ 0.792

2
· 21/4 · 1 ≈ 0.471.

For example,

q(2) =
0.792

2
·
(
1 +

1

2

)0

· ln 2
ln 3
≈ 0.25.

However, when E1 ≪ 1, estimate (4.1) may become better than (4.2), as exempli-
fied below.

EXAMPLE 4.1. Let p = 2, E1 < 1. Assume that all of the random variables
are i.i.d. and that (t2/2) ·Xi ∼ B

(
1, 12

)
. Hence, E1 = 1/t and E2 =

√
2/t3. The

upper bound in (4.1) is

4

ln 2
·max(E1, E2) = Θ(1/t).

However, the upper bound in (4.2) is of order of magnitude Θ(1/
√
t). Hence, in

this example (4.1) is sharper than (4.2).

Finally, we recall that Theorem 2.5 offers a further improvement of the esti-
mate in Theorem 2.4 by a multiplicative factor of e−0.6+ε/0.792 for all ε > 0 and
p > p0(ε) for p0(ε) which is explicitly defined through (2.9) and (2.10), or by a
multiplicative factor of e−1+ε/0.792 for all ε > 0 and sufficiently large p.

Acknowledgment. The authors would like to express their gratitude to Michael
Lin for his helpful comments on the paper.

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



200 D. Berend and T. Tassa

5. APPENDIX

5.1. Proof of Theorem A′′. Let us put

f(c) =
(1 + c)p

cp
E1, g(c) =

(
1 +

1

c

)
p−1/p Ep.

One checks easily that f is decreasing on the interval
(
0, 1/(p− 1)

)
and increasing

on
(
1/(p− 1),∞

)
.

If E1 > p1−1/pEp, then f(c) > g(c) throughout the positive axis. Hence, the
value of c that minimizes the right-hand side of (1.1) is that which minimizes f(c),
namely c = 1/(p− 1). This falls under the first case in (1.5) and gives the required
result.

Next, if E1 ¬ p1−1/pEp, it may be easily verified that f and g intersect exactly
once on the positive axis, at the point c0 = (p1−1/pEp/E1)1/(p−1) − 1. There are
two subcases to consider here: If f is non-increasing at c0, which happens for

E1 
(p− 1)p−1

p(p−1)2/p
Ep,

then the value of c that minimizes the right-hand side of (1.1) is still the minimum
point of f , which again falls under the first case in (1.5). If, on the other hand, f
increases at c0, namely

E1 <
(p− 1)p−1

p(p−1)2/p
Ep,

then the point that minimizes the right-hand side of (1.1) is the intersection point
of f and g. Plugging the common value of f and g in the right-hand side of (1.1),
we obtain the second case in (1.5). �

5.2. Proof of Proposition 3.1. We begin by stating and proving several lem-
mas. Hereinafter, f(·) is a convex function.

LEMMA 5.1. Let X be a random variable with P (a ¬ X ¬ b) = 1 for some
b > a  0, and µ = E(X). Let X̃ be a random variable, assuming only the values
a and b, having the same expected value, i.e., E(X̃) = µ. Then

(5.1) E
(
f(X)

)
¬ E

(
f(X̃)

)
= f(a) · b− µ

b− a
+ f(b) · µ− a

b− a
.

P r o o f. Let Y ∼ U(0, 1) be independent of X . Define X̃ by

X̃ =

{
a, Y ¬ (b−X)/(b− a),
b, otherwise.
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Then

(5.2) E(X̃|X) = a · b−X

b− a
+ b · X − a

b− a
= X,

whence
E(X̃) = E

(
E(X̃|X)

)
= E(X) = µ.

Thus, X̃ indeed has the required distribution. Consequently, by Jensen’s inequality
and (5.2),

(5.3) E
(
f(X̃)

)
= E

(
E
(
f(X̃)|X

))
 E

(
f
(
E(X̃|X)

))
= E

(
f(X)

)
.

Next, we find that

P (X̃ = a) =
b∫
a

P (X̃ = a|X = r) · P (X = r)dr =
b∫
a

b− r

b− a
· P (X = r)dr

=
b− µ

b− a
.

Hence E
(
f(X̃)

)
equals the value on the right-hand side of (5.1). This, combined

with (5.3), completes the proof. �

LEMMA 5.2. Let Xi, 1 ¬ i ¬ t <∞, be independent random variables sat-
isfying P (0 ¬ Xi ¬ ai) = 1. For 1 ¬ i ¬ t, let X̃i be a random variable as-
suming only the values 0 and ai and having the same expectation as Xi, namely
X̃i/ai ∼ B(1, µi/ai), where µi = E(Xi). Then

(5.4) E
(
f
( t∑
i=1

Xi

))
¬ E

(
f
( t∑
i=1

X̃i

))
.

P r o o f. We compute the expected value on the left-hand side of (5.4) by first
fixing the values of X2, . . . , Xt, taking the average with respect to X1, and then
averaging with respect to X2, . . . , Xt:

(5.5) E
(
f
( t∑
i=1

Xi

))
= E

(
E
(
f
( t∑
i=1

Xi

)
|X2, . . . , Xt

))
.

For every fixed value of X2, . . . , Xt, the internal expected value on the right-hand
side of (5.5) may be bounded using Lemma 5.1,

(5.6) E
(
f
( t∑
i=1

Xi

)
|X2, . . . , Xt

)
¬ E

(
f
(
X̃1 +

t∑
i=2

Xi

)
|X2, . . . , Xt

)
.
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Using (5.6) in (5.5) we conclude that

E
(
f
( t∑
i=1

Xi

))
¬ E

(
f
(
X̃1 +

t∑
i=2

Xi

))
.

By the same token, we may replace each of the other random variables Xi, 2¬ i¬ t,
with the corresponding X̃i without decreasing the expected value, thus proving the
assertion (5.4). �

LEMMA 5.3. Let Xi, i = 1, 2, 3, be independent random variables, with Xi ∼
B(1, pi), i = 1, 2, p1 > p2, and X3 be an arbitrary non-negative variable. Let
X ′1 ∼ B(1, p1 − ε) and X ′2 ∼ B(1, p2 + ε), where 0 ¬ ε ¬ p1 − p2, and assume
that X ′1, X

′
2, X3 are also independent. Then

E
(
f(X1 +X2 +X3)

)
¬ E

(
f(X ′1 +X ′2 +X3)

)
.

P r o o f. First, we prove the inequality for the case where X3 is constant, say
X3 = a. On the one hand, we have

E
(
f(X1 +X2 + a)

)
= p1p2f(2 + a) + (p1 + p2 − 2p1p2)f(1 + a) + (1− p1)(1− p2)f(a).

Setting b = (p1 − ε)(p2 + ε)− p1p2  0, we find that

E
(
f(X ′1 +X ′2 + a)

)
= (p1p2 + b)f(2 + a) + (p1 + p2 − 2p1p2 − 2b)f(1 + a)

+
(
(1− p1)(1− p2) + b

)
f(a)

= E
(
f(X1 +X2 + a)

)
+ b

(
f(2 + a)− 2f(1 + a) + f(a)

)
.

Since the last term on the right-hand side is non-negative due to the convexity of f ,
this proves the inequality for constant X3. The proof for general X3 now follows:

E
(
f(X1 +X2 +X3)

)
= E

(
E
(
f(X1 +X2 +X3)|X3

))
¬ E

(
E
(
f(X ′1 +X ′2 +X3)|X3

))
= E

(
f(X ′1 +X ′2 +X3)

)
. �

P r o o f o f P r o p o s i t i o n 3.1. Let us assume first that the sequence is fi-
nite. By Lemma 5.2, we may assume that all Xi’s are Bernoulli distributed, say
Xi ∼ B(1, pi), 1 ¬ i ¬ t. If not all pi’s are equal, we can find two of them, say p1
and p2, such that

p1 >
µ

t
=

∑t

i=1
pi

t
> p2.
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Employing Lemma 5.3, we can change p1 and p2, while keeping their sum constant
and making one of them equal to µ/t, without reducing the p-th moment of the
sum. Repeating this procedure over and over again until all pi’s coincide, we see
that E

(
f(X)

)
¬ E

(
f(Y )

)
, where Y ∼ B(t, µ/t).

For infinite sequences, we use the preceding part of the proof to conclude that
for all finite values of t′

E
(
f
( t′∑
i=1

Xi

))
¬ E

(
f(Yt′)

)
,

where Yt′ ∼ B(t′, µ/t′). Passing to the limit as t′ → t =∞, we obtain the required
result. �

5.3. An alternative proof of Corollary 2.1. The second part of Corollary 3.1
in [14] states that, if X1, . . . , Xn are non-negative random variables with

E(Xs
k|X1, . . . , Xk−1) ¬ ask

and
E(Xt

k|X1, . . . , Xk−1) ¬ bk

for all 1 ¬ k ¬ n, then

(5.7) E
( n∑
k=1

Xk

)t ¬ E
(
θt(1)

)
·max

( n∑
k=1

bk,
( n∑
k=1

ask
)t/s)

for all t  2 and 0 < s ¬ 1, where θ(1) is a Poisson random variable with param-
eter one. When X1, . . . , Xn are independent and bounded between zero and one,
we may set ask = E(Xs

k) and bk = E(Xk). Taking s = 1, we infer from (5.7) that

(5.8) E
( n∑
k=1

Xk

)t ¬ E
(
θt(1)

)
·max

( n∑
k=1

E(Xk),
( n∑
k=1

E(Xk)
)t)

.

Finally, since, by Dobinski’s formula (2.6), E
(
θt(1)

)
is the Bell number Bt, in-

equality (5.8) coincides with inequality (2.12) in Corollary 2.1. �

5.4. An application to stochastic scheduling. In the classical multiprocessor
scheduling problem, one is given a set J = {J1, . . . , Jn} of n jobs, with known
processing times τ(Jj) = τj ∈ R+, and a set M = {M1, . . . ,Mm} of m ma-
chines. The goal is to find an assignment A : J→M of the jobs to the machines,
such that the resulting loads on each machine minimize a given cost function,

T f (A) = f(L1, . . . , Lm),

where Li =
∑
{j: A(Jj)=Mi} τj , 1 ¬ i ¬ m. Typical choices for the cost function

f are the maximum norm (in which case the problem is known as the makespan
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problem) or, more generally, the ℓp-norms, 1 ¬ p ¬ ∞. The case p = 2 was stud-
ied in [3] and [4] and was motivated by storage allocation problems; the general
case, 1 < p <∞, was studied in [1].

In stochastic scheduling, the processing times τj are random variables with
known probability distribution functions. The random variables τj , 1 ¬ j ¬ n,
are non-negative. They are also typically independent and uniformly bounded. The
goal is to find an assignment that minimizes the expected cost,

T f (A) = E[f(L1, . . . , Lm)].

As such problems are strongly NP-hard, even in the deterministic setting, the goal
is to obtain a reasonable approximation algorithm, or to compare the performance
of a given scheduling algorithm to that of an optimal scheduling.

We proceed to briefly sketch an application of our results for estimating the
performance of a simple scheduling algorithm, called List Scheduling, as carried
out in [18]. Assume that the target function is the ℓp-norm of the vector of loads,
that is

T f (A) = E
(( m∑

i=1

Lp
i

)1/p)
(p > 1).

Then, by Jensen’s inequality,

T f (A) ¬
( m∑
i=1

E(Lp
i )
)1/p

.

Since Li is a sum of independent non-negative uniformly bounded random vari-
ables (where the uniform bound may be scaled to equal one), estimate (2.15), which
is the simpler version of Theorem 2.4, implies that

E(Lp
i ) ¬

(
0.942p

ln(p+ 1)

)p

·max{E(Li), E(Li)
p}.

Hence,

(5.9) T f (A) ¬ 0.942p

ln(p+ 1)
·
( m∑
i=1

max{E(Li), E(Li)
p}
)1/p

.

The List Scheduling algorithm is an online algorithm that always schedules the
next job to the machine that currently has the smallest (expected) load. As implied
by the analysis of Graham in [8],

(5.10) E(Li) ¬ 2µ, 1 ¬ i ¬ m,

where

µ := max

{∑n

j=1
E(τj)

m
, max
1¬j¬n

E(τj)

}

Probability and Mathematical Statistics 30/2010, z. 2
© for this edition by CNS



Improved bounds on Bell numbers and on moments 205

is a quantity that depends only on the known expected processing times of the jobs
and is independent of the assignment of jobs to the machines. Combining (5.10)
with (5.9) we arrive at the following bound on the performance of the stochastic
List Scheduling algorithm:

T f (A) ¬ 0.942p

ln(p+ 1)
·
(
m ·max{2µ, (2µ)p}

)1/p
.
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