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Abstract

This article is concerned with Monte-Carlo methods for the estimation of the trace of
an implicitly given matrix A whose information is only available through matrix-vector
products. Such a method approximates the trace by an average of N expressions of
the form wt(Aw), with random vectors w drawn from an appropriate distribution. We
prove, discuss and experiment with bounds on the number of realizations N required
in order to guarantee a probabilistic bound on the relative error of the trace estimation
upon employing Rademacher (Hutchinson), Gaussian and uniform unit vector (with
and without replacement) probability distributions.

In total, one necessary bound and six sufficient bounds are proved, improving upon
and extending similar estimates obtained in the seminal work of Avron and Toledo
(2011) in several dimensions. We first improve their bound on N for the Hutchinson
method, dropping a term that relates to rank(A) and making the bound comparable
with that for the Gaussian estimator.

We further prove new sufficient bounds for the Hutchinson, Gaussian and the unit
vector estimators, as well as a necessary bound for the Gaussian estimator, which depend
more specifically on properties of the matrix A. As such they may suggest for what
type of matrices one distribution or another provides a particularly effective or relatively
ineffective stochastic estimation method.

Keywords: randomized algorithms, trace estimation, Monte-Carlo methods, implicit linear
operators
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1 Introduction

The need to estimate the trace of an implicit square matrix is of fundamental importance [15]
and arises in many applications; see for instance [10, 5, 4, 9, 7, 18, 13, 11, 8, 3] and references
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therein. By “implicit” we mean that the matrix of interest is not available explicitly: only
probes in the form of matrix-vector products for any appropriate vector are available. The
standard approach for estimating the trace of such a matrix A is based on a Monte-Carlo
method, where one generates N random vector realizations wi from a suitable probability
distribution D and computes

trND (A) :=
1

N

N∑
i=1

wt
iAwi. (1)

For the popular case where A is symmetric positive semi-definite (SPSD), the original
method for estimating its trace, tr(A), is due to Hutchinson [10] and uses the Rademacher
distribution for D.

Until the work by Avron and Toledo [4], the main analysis and comparison of such meth-
ods was based on the variance of one sample. It is known that compared to other methods
the Hutchinson method has the smallest variance, and as such it has been extensively used
in many applications. In [4] so-called (ε, δ) bounds are derived in which, using Chernoff-like
analysis, a lower bound is obtained on the number of samples required to achieve a prob-
abilistically guaranteed relative error of the estimated trace. More specifically, for a given
pair (ε, δ) of small (say, < 1) positive values and an appropriate probability distribution D,
a lower bound on N is provided such that

Pr
(
|trND (A)− tr(A)| ≤ ε tr(A)

)
≥ 1− δ. (2)

These authors further suggest that minimum-variance estimators may not be practically
best, and conclude based on their analysis that the method with the best bound is the one
using the Gaussian distribution. Let us denote

c = c(ε, δ) := ε−2 ln(2/δ), (3a)

r = rank(A). (3b)

Then [4] showed that, provided A is real SPSD, (2) holds for the Hutchinson method if
N ≥ 6(c+ ε−2 ln r) and for the Gaussian distribution if N ≥ 20c.

In the present paper we continue to consider the same objective as in [4], and our first
task is to improve on these bounds. Specifically, in Theorems 1 and 3 we show that (2)
holds for the Hutchinson method if

N ≥ 6c(ε, δ), (4)

and for the Gaussian distribution if

N ≥ 8c(ε, δ). (5)

The bound (4) removes a previous factor involving the rank of the matrix A, conjectured
in [4] to be indeed redundant. Note that these two bounds are astoundingly simple and
general: they hold for any SPSD matrix, regardless of size or any other matrix property.
Thus, we cannot expect them to be tight in practice for many specific instances of A that
arise in applications.
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Although practically useful, the bounds on N given in (4) and (5) do not provide insight
into how different types of matrices are handled with each probability distribution. Our
next contribution is to provide different bounds for the Gaussian and Hutchinson trace
estimators which, though generally not computable for implicit matrices, do shed light on
this question.

Furthermore, for the Gaussian estimator we prove a practically useful necessary lower
bound on N , for a given pair (ε, δ).

A third probability distribution we consider was called the unit vector distribution in [4].
Here, the vectors wi in (1) are uniformly drawn from the columns of a scaled identity matrix,√
nI, and A need not be SPSD. We slightly generalize the bound in [4], obtained for the case

where the sampling is done with replacement. Our bound, although not as simply computed
as (4) or (5), can be useful in determining which types of matrices this distribution works
best on. We then give a tighter bound for the case where the sampling is done without
replacement, suggesting that when the difference between the bounds is significant (which
happens when N is large), a uniform random sampling of unit vectors without replacement
may be a more advisable distribution to estimate the trace with.

This paper is organized as follows. Section 2 gives two bounds for the Hutchinson method
as advertised above, namely the improved bound (4) and a more involved but potentially
more informative bound. Section 3 deals likewise with the Gaussian method and adds also
a necessary lower bound, while Section 4 is devoted to the unit vector sampling methods.

In Section 5 we give some numerical examples verifying that the trends predicted by the
theory are indeed realized. Conclusions and further thoughts are gathered in Section 6.

In what follows we use the notation trNH (A), trNG (A), trNU1
(A), and trNU2

(A) to refer,
respectively, to the trace estimators using Hutchinson, Gaussian, and uniform unit vector
with and without replacement, in lieu of the generic notation trND (A) in (1) and (2). We
also denote for any given random vector of size n, wi = (wi1, wi2, . . . , win)t. We restrict
attention to real-valued matrices, although extensions to complex-valued ones are possible,
and employ the 2-norm by default.

2 Hutchinson estimator bounds

In this section we consider the Hutchinson trace estimator, trNH (A), obtained by setting
D = H in (1), where the components of the random vectors wi are i.i.d Rademacher
random variables (i.e., Pr(wij = 1) = Pr(wij = −1) = 1

2).

2.1 Improving the bound in [4]

Theorem 1 Let A be an n× n SPSD matrix. Given a pair (ε, δ), the inequality (2) holds
with D = H if N satisfies (4).

Proof Since A is SPSD, it can be diagonalized by a unitary similarity transformation as
A = U tΛU . Consider N random vectors wi, i = 1, . . . , N , whose components are i.i.d and
drawn from the Rademacher distribution, and define zi = Uwi for each. We have
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Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
= Pr

(
1

N

N∑
i=1

wt
iAwi ≤ (1− ε)tr(A)

)

= Pr

(
1

N

N∑
i=1

ztiΛzi ≤ (1− ε)tr(A)

)

= Pr

 N∑
i=1

r∑
j=1

λjz
2
ij ≤ N(1− ε)tr(A)


= Pr

 r∑
j=1

λj
tr(A)

N∑
i=1

z2ij ≤ N(1− ε)


≤ exp{tN(1− ε)}E

exp{
r∑
j=1

λj
tr(A)

N∑
i=1

−tz2ij}

 ,

where the last inequality holds for any t > 0 by Markov’s inequality.
Next, using the convexity of the exp function and the linearity of expectation, we obtain

E

exp{
r∑
j=1

λj
tr(A)

N∑
i=1

−tz2ij}

 ≤
r∑
j=1

λj
tr(A)

E

(
exp{

N∑
i=1

−tz2ij}

)

=
r∑
j=1

λj
tr(A)

E

(
N∏
i=1

exp{−tz2ij}

)

=

r∑
j=1

λj
tr(A)

N∏
i=1

E
(
exp{−tz2ij}

)
,

where the last equality holds since, for a given j, zij ’s are independent with respect to i.

Now, we want to have that exp{tN(1−ε)}
∏N
i=1 E

(
exp{−tz2ij}

)
≤ δ/2. For this we make

use of the inequalities in the end of the proof of Lemma 5.1 of [2]. Following inequalities
(15)–(19) in [2] and letting t = ε/(2(1 + ε)), we get

exp{tN(1− ε)}
N∏
i=1

E
(
exp{−tz2ij}

)
< exp{−N

2
(
ε2

2
− ε3

3
)}.

Next, if N satisfies (4) then exp{−N
2 ( ε

2

2 −
ε3

3 )} < δ/2, and thus it follows that

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
< δ/2.

By a similar argument, making use of inequalities (11)–(14) in [2] with the same t as
above, we also obtain with the same bound for N so that Pr

(
trNH (A) ≥ (1 + ε)tr(A)

)
≤ δ/2.

So finally using the union bound yields the desired result. �

It can be seen that (4) is the same bound as the one in [4] with the important exception
that the factor r = rank(A) does not appear in the bound. Furthermore, the same bound
on N holds for any SPSD matrix.
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2.2 A matrix-dependent bound

Here we derive another bound for the Hutchinson trace estimator which may shed light as
to what type of matrices the Hutchinson method is best suited for.

Let us denote by ak,j the (k, j)th element of A and by aj its jth column, k, j = 1, . . . , n.

Theorem 2 Let A be an n× n symmetric positive semi-definite matrix, and define

KjH :=
‖aj‖2 − a2j,j

a2j,j
=
∑
k 6=j

a2k,j / a
2
j,j , KH := max

j
KjH . (6)

Given a pair of positive small values (ε, δ), the inequality (2) holds with D = H if

N > 2KHc(ε, δ). (7)

Proof Elementary linear algebra implies that since A is SPSD, aj,j ≥ 0 for each j. Fur-
thermore, if aj,j = 0 then the jth row and column of A identically vanish, so we may assume
below that aj,j > 0 for all j = 1, . . . , n. Note that

trNH (A)− tr(A) =
1

N

n∑
j=1

N∑
i=1

n∑
k=1
k 6=j

aj,kwijwik.

Hence

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
= Pr

 n∑
j=1

N∑
i=1

n∑
k=1
k 6=j

−aj,kwijwik ≥ Nε tr(A)



= Pr

 n∑
j=1

aj,j
tr(A)

N∑
i=1

n∑
k=1
k 6=j

−
aj,k
aj,j

wijwik ≥ Nε



≤ exp{−tNε}E

exp{
n∑
j=1

aj,j
tr(A)

N∑
i=1

n∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}

 ,

where the last inequality is again obtained for any t > 0 by using Markov’s inequality. Now,
again using the convexity of the exp function and the linearity of expectation, we obtain

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
≤ exp{−tNε}

n∑
j=1

aj,j
tr(A)

E

exp{
N∑
i=1

n∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}



= exp{−tNε}
n∑
j=1

aj,j
tr(A)

N∏
i=1

E

exp{
n∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}


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by independence of wijwik with respect to the index i.
Next, note that

E

exp{
n∑
k=1
k 6=j

aj,kt

aj,j
wik}

 = E

exp{
n∑
k=1
k 6=j

−
aj,kt

aj,j
wik}

 .

Furthermore, since Pr(wij = −1) = Pr(wij = 1) = 1
2 , and using the law of total expecta-

tion, we have

E

exp{
n∑
k=1
k 6=j

−
aj,kt

aj,j
wijwik}

 = E

exp{
n∑
k=1
k 6=j

aj,kt

aj,j
wik}

 =
n∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
,

so

Pr
(
trNH (A) ≤ (1− ε)tr(A)

)
≤ exp{−tNε}

n∑
j=1

aj,j
tr(A)

N∏
i=1

n∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
.

We want to have the right hand side expression bounded by δ/2.

Applying Hoeffding’s lemma we get E
(

exp{aj,ktaj,j
wik}

)
≤ exp{a

2
j,kt

2

2a2j,j
}, hence

exp{−tNε}
N∏
i=1

n∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
≤ exp{−tNε+KjHNt

2/2} (8a)

≤ exp{−tNε+KHNt2/2}. (8b)

The choice

t = ε/KH

minimizes the right hand side. Now if (7) holds then

exp(−tNε)
N∏
i=1

n∏
k=1
k 6=j

E
(

exp{
aj,kt

aj,j
wik}

)
≤ δ/2,

hence we have

Pr(trNH (A) ≤ (1− ε)tr(A)) ≤ δ/2.

Similarly, we obtain that

Pr(trNH (A) ≥ (1 + ε)tr(A)) ≤ δ/2,

and using the union bound finally gives desired result. �
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Comparing (7) to (4), it is clear that the bound of the present subsection is only worthy
of consideration if KH < 3. Note that Theorem 2 emphasizes the relative `2 energy of the
off-diagonals: the matrix does not necessarily have to be diagonally dominant (i.e., where a
similar relationship holds in the `1 norm) for the bound on N to be moderate. Furthermore,
a matrix need not be “nearly” diagonal for this method to require small sample size. In
fact a matrix can have off-diagonal elements of significant size that are far away from the
main diagonal without automatically affecting the performance of the Hutchinson method.
However, note also that our bound can be pessimistic, especially if the average value or
the mode of KjH in (6) is far lower than its maximum, KH . This can be seen in the above
proof where the estimate (8b) is obtained from (8a). Simulations in Section 5 show that the
Hutchinson method can be a very efficient estimator even in the presence of large outliers,
so long as the bulk of the distribution is concentrated near small values.

The case KH = 0 corresponds to a diagonal matrix, for which the Hutchinson method
yields the trace with one shot, N = 1. In agreement with the bound (7), we expect the
actual required N to grow when a sequence of otherwise similar matrices A is envisioned in
which KH grows away from 0, as the energy in the off-diagonal elements grows relatively to
that in the diagonal elements.

3 Gaussian estimator bounds

In this section we consider the Gaussian trace estimator, trNG (A), obtained by setting D = G
in (1), where the components of the random vectors wi are i.i.d standard normal random
variables. We give two sufficient and one necessary lower bounds for the number of Gaussian
samples required to achieve an (ε, δ) trace estimate. The first sufficient bound (5) improves
the result in [4] by a factor of 2.5. Our bound is only worse than (4) by a fraction, and it
is an upper limit of the potentially more informative (if less available) bound (10), which
relates to the properties of the matrix A. The bound (10) provides an indication as to
what matrices may be suitable candidates for the Gaussian method. Then we present a
practically computable, necessary bound for the sample size N .

3.1 Sufficient bounds

The proof of the following theorem closely follows the approach in [4].

Theorem 3 Let A be an n × n SPSD matrix and denote its eigenvalues by λ1, . . . , λn.
Further, define

KjG :=
λj

tr(A)
, KG := max

j
KjG =

‖A‖
tr(A)

. (9)

Then, given a pair of positive small values (ε, δ), the inequality (2) holds with D = G
provided that (5) holds. This estimate also holds provided that

N > 8KGc(ε, δ). (10)
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Proof Since A is SPSD, we have ‖A‖ ≤ tr(A), so if (5) holds then so does (10). We next
concentrate on proving the result assuming the tighter bound (10) on the actual N required
in a given instance.

Writing as in the previous section A = U tΛU , consider N random vectors wi, i =
1, . . . , N , whose components are i.i.d and drawn from the normal distribution, and define
zi = Uwi. Since U is orthogonal, the elements zij of zi are i.i.d Gaussian random variables.
We have as before,

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
= Pr

 N∑
i=1

r∑
j=1

λjz
2
ij ≤ N(1− ε)tr(A)


≤ exp{tN(1− ε)tr(A)}E

exp{
N∑
i=1

r∑
j=1

−tλjz2ij}


≤ exp{tN(1− ε)tr(A)}

N∏
i=1

r∏
j=1

E
(
exp{−tλjz2ij}

)
.

Here z2ij is a χ2 random variable of degree 1 (see [12]), and hence for the characteristics
we have

E
(
exp{−tλjz2ij}

)
= (1 + 2λjt)

− 1
2 .

This yields the bound

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ exp{tN(1− ε)tr(A)}

r∏
j=1

(1 + 2λjt)
−N

2 .

Next, it is easy to prove by elementary calculus that given any 0 < α < 1, the following
holds for all 0 ≤ x ≤ 1−α

α ,
ln(1 + x) ≥ αx. (11)

Setting α = 1−ε/2, then by (11) and for all t ≤ (1−α)/(2α‖A‖), we have that (1+2λjt) >
exp{2αλj}t, so

Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ exp{tN(1− ε)tr(A)}

r∏
j=1

exp(−Nαλjt)

= exp{tN(1− ε− α)tr(A)}.

We want the latter right hand side to be bounded by δ/2, i.e., we want to have

N ≥
ln
(
2/δ
)

(α− (1− ε))tr(A)t
=

2εc(ε, δ)

tr(A)t
,

where t ≤ (1−α)/(2α‖A‖). Now, setting t = (1−α)/(2α‖A‖) = ε/(2(2−ε)‖A‖), we obtain

N ≥ 4(2− ε)c(ε, δ)KG,
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so if (10) holds then
Pr
(
trNG (A) ≤ (1− ε)tr(A)

)
≤ δ/2.

Using a similar argument we also obtain

Pr
(
trNG (A) ≥ (1 + ε)tr(A)

)
≤ δ/2,

and subsequently the union bound yields the desire result. �

The matrix-dependent bound (10), proved to be sufficient in Theorem 3, provides addi-
tional information over (5) about the type of matrices for which the Gaussian estimator is
(probabilistically) guaranteed to require only a small sample size: if the eigenvalues of an
SPSD matrix are distributed such that the ratio ‖A‖/tr(A) is small (e.g., if they are all of
approximately the same size), then the Gaussian estimator bound requires a small number
of realizations. This observation is reaffirmed by looking at the variance of this estimator,
namely 2‖A‖2F . It is easy to show that among all the matrices with a fixed trace and rank,
those with equal eigenvalues have the smallest Frobenius norm.

Furthermore, it is easy to see that the stable rank (see [17] and references therein) of any
real rectangular matrix C which satisfies A = CtC equals 1/KG. Thus, the bound constant
in (10) is inversely proportional to this stable rank, suggesting that estimating the trace
using the Gaussian distribution may become inefficient if the stable rank of the matrix is
low. Theorem 5 in Section 3.2 below further substantiates this intuition.

As an example of an application of the above results, let us consider finding the minimum
number of samples required to compute the rank of a projection matrix using the Gaussian
estimator [4, 6]. Recall that a projection matrix is SPSD with only 0 and 1 eigenvalues.
Compared to the derivation in [4], here we use Theorem 3 directly to obtain a similar bound
with a slightly better constant.

Corollary 4 Let A be an n×n projection matrix with rank r > 0, and denote the rounding
of any real scalar x to the nearest integer by round(x). Then, given a positive small value
δ, the estimate

Pr
(
round(trNG (A)) 6= r

)
≤ δ (12a)

holds if

N ≥ 8 r ln
(
2/δ
)
. (12b)

Proof The result immediately follows using Theorem 3 upon setting ε = 1/r, ‖A‖ = 1 and
tr(A) = r. �

3.2 A necessary bound

Below we provide a rank-dependent, almost tight necessary condition for the minimum
sample size required to obtain (2). This bound is easily computable in case that r = rank(A)
is known.
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Before we proceed, recall the definition of the regularized Gamma functions

P (α, β) :=
γ (α, β)

Γ (α)
, Q (α, β) :=

Γ (α, β)

Γ (α)
,

where γ (α, β) ,Γ (α, β) and Γ (α) are, respectively, the lower incomplete, the upper in-
complete and the complete Gamma functions, see [1]. We also have that Γ (α) =
Γ (α, β) + γ (α, β). Further, define

Φθ(x) := P

(
x

2
,
τ(1− θ)x

2

)
+Q

(
x

2
,
τ(1 + θ)x

2

)
, (13a)

where

τ =
ln(1 + θ)− ln(1− θ)

2θ
. (13b)

Theorem 5 Let A be a rank-r SPSD n×n matrix, and let (ε, δ) be a tolerance pair. If the
inequality (2) with D = G holds for some N , then necessarily

Φε(Nr) ≤ δ. (14)

Proof As in the proof of Theorem 3 we have

Pr
(
|trNG (A)− tr(A)| ≤ ε tr(A)

)
= Pr

| N∑
i=1

r∑
j=1

λjz
2
ij −Ntr(A)| ≤ εNtr(A)


= Pr

(1− ε) ≤
N∑
i=1

r∑
j=1

λj
tr(A) N

z2ij ≤ (1 + ε)

 .

Next, applying Theorem 3 of [16] gives

Pr
(
|trNG (A)− tr(A)| ≤ ε tr(A)

)
≤ Pr

(
c(1− ε) ≤ 1

Nr
X 2
Nr ≤ c(1 + ε)

)
,

where X 2
M denotes a chi-squared random variable of degree M with the cumulative distri-

bution function

CDFX 2
M

(x) = Pr
(
X 2
M ≤ x

)
=
γ
(
M
2 ,

x
2

)
Γ
(
M
2

) .

A further straightforward manipulation yields the stated result. �

Having a computable necessary condition is practically useful: given a pair of fixed
sample size N and error tolerance ε, the failure probability δ cannot be smaller than δ0 =
Φε(Nr).
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Since our sufficient bounds are not tight, it is not possible to make a direct comparison
between the Hutchinson and Gaussian methods based on them. However, using this neces-
sary condition can help for certain matrices. Consider a low rank matrix with a rather small
KH in (7). For such a matrix and a given pair (ε, δ), the condition (14) will probabilistically
necessitate a rather large N , while (7) may give a much smaller sufficient bound for N . In
this situation, using Theorem 5, the Hutchinson method is indeed guaranteed to require a
smaller sample size than the Gaussian method.

The condition in Theorem 5 is almost tight in the following sense. Note that in
(13b), τ ≈ 1 for θ = ε sufficiently small. So, 1 − Φε(Nr) would be very close to
Pr
(
(1− ε) ≤ trNG (A∗) ≤ (1 + ε)

)
, where A∗ is an SPD matrix of the same rank as A whose

eigenvalues are all equal to 1/r. Next note that the condition (14) should hold for all
matrices of the same rank; hence it is almost tight. Figures 1 and 4 demonstrate this effect.

Notice that for a very low rank matrix and a reasonable pair (ε, δ), the necessary N
given by (14) could be even larger than the matrix size n, rendering the Gaussian method
useless for such instances; see Figure 1.

(a) ε = δ = 0.02 (b) n = 10, 000, ε = δ = 0.1

Figure 1: Necessary bound for Gaussian estimator: (a) the log-scale of N according to (14)
as a function of r = rank(A): larger ranks yield smaller necessary sample size. For very low
rank matrices, the necessary bound grows significantly: for n = 1000 and r ≤ 30, necessarily
N > n and the Gaussian method is practically useless; (b) tightness of the necessary bound
demonstrated by an actual run as described for Example 4 in Section 5 where A has all
eigenvalues equal.

4 Random unit vector bounds, with and without replace-
ment, for general square matrices

An alternative to the Hutchinson and Gaussian estimators is to draw the vectors wi from
among the n columns of the scaled identity matrix

√
nI. Note that if wi is the ith (scaled)

unit vector then wt
iAwi = naii. Hence the trace can be recovered in N = n deterministic

steps upon setting in (1) i = j, j = 1, 2, . . . , n. However, our hope is that for some matrices
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a good approximation for the trace can be recovered in N � n such steps, with wi’s drawn
as mentioned above.

There are typically two ways one can go about drawing such samples: with or without
replacement. The first of these has been studied in [4]. However, in view of the exact
procedure, we may expect to occasionally require smaller sample sizes by using the strategy
of sampling without replacement. In this section we make this intuitive observation more
rigorous.

In what follows, U1 and U2 refer to the uniform distribution of unit vectors with and
without replacement, respectively. We first find expressions for the mean and variance of
both strategies, obtaining a smaller variance for U2.

Lemma 6 Let A be an n× n matrix and let N denote the sample size. Then

E
(
trNU1

(A)
)

= E
(
trNU2

(A)
)

= tr(A), (15a)

V ar
(
trNU1

(A)
)

=
1

N

n n∑
j=1

a2jj − tr(A)2

 , (15b)

V ar
(
trNU2

(A)
)

=
(n−N)

N(n− 1)

n n∑
j=1

a2jj − tr(A)2

 , N ≤ n. (15c)

Proof The results for U1 are proved in [4]. Let us next concentrate on U2, and group the
randomly selected unit vectors into an n×N matrix W . Then

E
(
trNU2

(A)
)

=
1

N
E
(
tr
(
W tAW

))
=

1

N
E
(
tr
(
A WW t

))
=

1

N
tr
(
A E

(
WW t

))
.

Let yij denote the (i, j)th element of the random matrix WW t. Clearly, yij = 0 if i 6= j. It
is also easily seen that yii can only take on the values 0 or n. We have

E (yii) = nPr (yii = n) = n

(
n−1
N−1

)(
n
N

) = N,

so E(WW t) = N · I, where I stands for the identity matrix. This, in turn, gives
E
(
trNU2

(A)
)

= tr(A).
For the variance, we first calculate

E
[(
trNU2

(A)
)2]

=
1

N2
E

 N∑
i=1

N∑
j=1

(
wt
iAwi

) (
wt
jAwj

)

=
1

N2

 N∑
i=1

E
[(

wt
iAwi

)2]
+

N∑
i=1

N∑
j=1
j 6=i

E
[(

wt
iAwi

) (
wt
jAwj

)] . (16)
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Let ej denote the jth column of the scaled identity matrix,
√
nI. Using the law of total

expectation (i.e., the tower rule), we have for any two random vectors wi and wj with i 6= j,

E
[(

wt
iAwi

) (
wt
jAwj

)]
=

n∑
k=1

E
[(

wt
iAwi

) (
wt
jAwj

)
|wi = ek

]
· Pr (wi = ek)

=
n∑
k=1

nakk · E
[(

wt
jAwj

)
|wi = ek

]
· 1

n

=

n∑
k=1

akk

n∑
l=1
l 6=k

E
[(

wt
jAwj

)
|wj = el

]
· Pr (wj = el|wi = ek)

=
n∑
k=1

akk

n∑
l=1
l 6=k

nall
1

n− 1
=

n

n− 1

n∑
k=1

n∑
l=1
k 6=l

akkall

=
n

n− 1
(tr(A)2 −

n∑
j=1

a2jj).

Substituting this in (16) gives

E
[(
trNU2

(A)
)2]

=
1

N2

nN n∑
j=1

a2jj +
nN(N − 1)

n− 1
(tr(A)2 −

n∑
j=1

a2jj)

 .

Next, the variance is

V ar
(
trNU2

(A)
)

= E
[(
trNU2

(A)
)2]− [E (trNU2

(A)
)]2

,

which gives (15c). �

Note that V ar
(
trNU2

(A)
)

= n−N
n−1 V ar

(
trNU1

(A)
)
. The difference in variance between these

sampling strategies is small for N � n, and they coincide if N = 1. Moreover, in case that
the diagonal entries of the matrix are all equal, the variance for both sampling strategies
vanishes.

We now turn to the analysis of the sample size required to ensure (2) and find a slight
improvement over the bound given in [4] for U1. A similar analysis for the case of sampling
without replacement shows that the latter may generally be a somewhat better strategy.

Theorem 7 Let A be a real n× n matrix, and denote

K(i,j)
U =

n

tr(A)
|aii − ajj | , KU = max

1≤i,j≤n
i 6=j

K(i,j)
U . (17)

Given a pair of positive small values (ε, δ), the inequality (2) holds with D = U1 if

N >
K2
U

2
c(ε, δ) ≡ F , (18)
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and with D = U2 if

N ≥ n+ 1

1 + n−1
F
. (19)

Proof This proof is refreshingly short. Note first that every sample of these estimators
takes on a Rayleigh value in [nminj ajj , nmaxj ajj ].

The proof of (18), for the case with replacement, uses Hoeffding’s inequality in exactly
the same way as the corresponding theorem in [4]. We obtain directly that if (18) is satisfied
then (2) holds with D = U1.

For the case without replacement we use Serfling’s inequality [14] to obtain

Pr
(
|trNU2

(A)− tr(A)| ≥ εtr(A)
)
≤ 2 exp

{
−2Nε2

(1− fN−1)K2
U

}
,

where fN is the sampling fraction defined as

fN =
N − 1

n− 1
.

Now, for the inequality (2) to hold, we need

2 exp

{
−2Nε2

(1− fN−1)K2
U

}
≤ δ,

so we require that
N

1− fN−1
≥ F .

The stated result (19) is obtained following some straightforward algebraic manipulation.
�

Looking at the bounds (18) for U1 and (19) for U2 and observing the expression (17)
for KU , one can gain insight as to the type of matrices which are handled efficiently using
this estimator: this would be the case if the diagonal elements of the matrix all have similar
values. In the extreme case where they are all the same, we only need one sample. The
corresponding expression in [4] does not reflect this result.

An illustration of the relative behaviour of the two bounds is given in Figure 2.
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Figure 2: The behaviour of the bounds (18) and (19) with respect to the factor K = KU
for n = 1000 and ε = δ = 0.05. The bound for U2 is much more resilient to the distribution
of the diagonal values than that of U1. For very small values of KU , there is no major
difference between the bounds.

5 Numerical Examples

In this section we experiment with several examples, comparing the performance of different
methods with regards to various matrix properties and verifying that the bounds obtained
in our theorems indeed agree with the numerical experiments.

Example 1 In this example we do not consider δ at all. Rather, we check numerically for
various values of ε what value of N is required to achieve a result respecting this relative
tolerance. We have calculated maximum and average values for N over 100 trials for several
special examples, verifying numerically the following considerations.

• The matrix of all 1s (in Matlab, A=ones(n,n)) has been considered in [4]. Here
tr(A) = n, KH = n − 1, and a very large N is often required if ε is small for
both Hutchinson and Gauss methods. For the unit vector method, however, KU = 0
in (17), so the latter method converges in one iteration, N = 1. This fact yields
an example where the unit vector estimator is far better than either Hutchinson or
Gaussian estimators; see Figure 3.

• Another extreme example, where this time it is the Hutchinson estimator which re-
quires only one sample whereas the other methods may require many more, is the case
of a diagonal matrix A. For a diagonal matrix, KH = 0, and the result follows from
Theorem 2.

• If A is a multiple of the identity then, since KU = KH = 0, only the Gaussian
estimator from among the methods considered requires more than one sample; thus, it
is worst.

• Examples where the unit vector estimator is consistently (and significantly) worst are
obtained by defining A = QtDQ for a diagonal matrix D with different positive ele-
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Figure 3: Example 1. For the matrix of all 1s with n = 10, 000, the plot depicts the numbers
of samples in 100 trials required to satisfy the relative tolerance ε = .05, sorted by increasing
N . The average N for both Hutchinson and Gauss estimators was around 50, while for the
uniform unit vector estimator always N = 1. Only the best 90 results (i.e., lowest resulting
values of N) are shown for reasons of scaling. Clearly, the unit vector method is superior
here.

ments which are of the same order of magnitude and a nontrivial orthogonal matrix
Q.

• We have not been able to come up with a simple example of the above sort where the
Gaussian estimator shines over both others, although we have seen many occasions
in practice where it slightly outperforms the Hutchinson estimator with both being
significantly better than the unit vector estimators.

Example 2 Consider the matrix A = xxt/‖x‖2, where x ∈ Rn, and for some θ > 0,
xj = exp(−jθ), 1 ≤ j ≤ n. This extends the example of all 1s of Figure 3 (for which θ = 0)
to instances with rapidly decaying elements.

It is easy to verify that

tr(A) = 1, r = 1, KG = 1,

KjH = ‖x‖2x−2j − 1, KH = ‖x‖2x−2n − 1,

K(i,j)
U =

n

‖x‖2
|x2i − x2j |, KU =

n

‖x‖2
(x21 − x2n),

‖x‖2 =
exp(−2θ)− exp(−2(n+ 1)θ)

1− exp(−2θ)
.

Figure 4 displays the “actual sample size” N for a particular pair (ε, δ) as a function
of θ for the three distributions. The values N were obtained by running the code 100 times
for each θ to calculate the empirical probability of success.
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Figure 4: Example 2. For the rank-1 matrix arising from a rapidly-decaying vector with
n = 1000, this log-log plot depicts the actual sample size N required for (2) to hold with
ε = δ = 0.2, vs. various values of θ. In the legend, “Unit” refers to the random sampling
method without replacement.

In this example the distribution of KjH values gets progressively worse with heavier tail
values as θ gets larger. However, recall that this matters in terms of the sufficient bounds
(4) and (7) only so long as KH < 3. Here the crossover point happens roughly when
θ ∼ 1/(2n). Indeed, for large values of θ the required sample size actually drops when using
the Hutchinson method: Theorem 2, being only a sufficient condition, merely distinguishes
types of matrices for which Hutchinson is expected to be efficient, while making no claim
regarding those matrices for which it is an inefficient estimator.

On the other hand, Theorem 5 clearly distinguishes the types of matrices for which the
Gaussian method is expected to be inefficient, because its condition is necessary rather than
sufficient. Note that N (the red curve in Figure 4) does not change much as a function of
θ, which agrees with the fact that the matrix rank stays fixed and low at r = 1.

The unit vector estimator, unlike Hutchinson, deteriorates steadily as θ is increased,
because this estimator ignores off-diagonal elements. However, for small enough values

of θ the K(i,j)
U ’s are spread tightly near zero, and the unit vector method, as predicted by

Theorem 7, requires a very small sample size.

For Examples 3 and 5 below, given (ε, δ), we plot the probability of success, i.e.,
Pr
(
|trND (A)− tr(A)| ≤ ε tr(A)

)
for increasing values of N , starting from N = 1. We stop

when for a given N , the probability of success is greater than or equal to 1 − δ. In order
to evaluate this for each N , we run the experiments 500 times and calculate the empirical
probability.

In the figures below, ‘With Rep.’ and ‘Without Rep.’ refer to uniform unit sampling
with and without replacement, respectively. In all cases, by default, ε = δ = .05. We also
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provide distribution plots of the quantities KjH , K
j
G and K(i,j)

U appearing in (6), (9) and
(17), respectively. These quantities are indicators for the performance of the Hutchinson,
Gaussian and unit vector estimators, respectively, as evidenced not only by Theorems 2, 3
and 7, but also in Examples 1 and 2, and by the fact that the performance of the Gaussian
and unit vector estimators is not affected by the energy of the off-diagonal matrix elements.

Example 3 (Data fitting with many experiments) A major source of applications
where trace estimation is central arises in problems involving least squares data fitting with
many experiments. In its simplest, linear form, we look for m ∈ IRl so that the misfit
function

φ(m) =
n∑
i=1

‖Jim− di‖2, (20a)

for given data sets di and sensitivity matrices Ji, is either minimized or reduced below some
tolerance level. The m × l matrices Ji are very expensive to calculate and store, so this is
avoided altogether, but evaluating Jim for any suitable vector m is manageable. Moreover,
n is large. Next, writing (20a) using the Frobenius norm as

φ(m) = ‖C‖2F , (20b)

where C is m × n with the jth column Cj = Jjm − dj, and defining the SPSD matrix
A = CtC, we have

φ(m) = tr(A). (20c)

Cheap estimates of the misfit function φ(m) are then sought by approximating the trace in
(20c) using only N (rather than n) linear combinations of the columns of C, which naturally
leads to expressions of the form (1). Hutchinson and Gaussian estimators in a similar or
more complex context were considered in [9, 11, 18].

Drawing the wi as random unit vectors instead is a method proposed in [7] and compared
to others in [13], where it is called “random subset”: this latter method can have efficiency
advantages that are beyond the scope of the presentation here. Typically, m� n, and thus
the matrix A is dense and often has low rank.

Furthermore, the signs of the entries in C can be, at least to some extent, considered
random. Hence we consider below matrices A = CtC whose entries are Gaussian random
variables, obtained using the Matlab command C = randn(m,n). We use m = 200 and
hence the rank is, almost surely, r = 200.

It can be seen from Figure 5(a) that the Hutchinson and the Gaussian methods perform
similarly here. The sample size required by both unit vector estimators is approximately
twice that of the Gaussian and Hutchinson methods. This relative behaviour agrees with
our observations in the context of actual application as described above, see [13]. From
Figure 5(d), the eigenvalue distribution of the matrix is not very badly skewed, which helps
the Gaussian method perform relatively well for this sort of matrix. On the other hand,
by Figure 5(b) the relative `2 energies of the off-diagonals are far from being small, which
is not favourable for the Hutchinson method. These two properties, in combination, result
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(a) Convergence Rate (b) Kj
H distribution

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 5: Example 3. A dense SPSD matrix A is constructed using Matlab’s randn. Here
n = 1000, r = 200, tr(A) = 1,KG = 0.0105, KH = 8.4669 and KU = 0.8553. The method
convergence plots in (a) are for ε = δ = .05.

in the similar performance of the Hutchinson and Gaussian methods despite the relatively

low rank. The contrast between K(i,j)
U ’s is not too large according to Figure 5(c), hence a

relatively decent performance of both unit vector (or, random sampling) methods is observed.
There is no reason to insist on avoiding repetition here either.

Example 4 (Effect of rank and KG on the Gaussian estimator) In this example we
plot the actual sample size N required for (2) to hold. In order to evaluate (2), we repeat
the experiments 500 times and calculate the empirical probability. In all experiments, the
sample sizes predicted by (4) and (5) were so pessimistic compared with the true N that we
simply did not include them in the plots.

In order to concentrate only on rank and KG variation, we make sure that in all ex-
periments KH � 1. For the results displayed in Figure 6(a), where r is varied for each
of two values of KG, this is achieved by playing with Matlab’s normal random generator
function sprandn. For Figure 6(b), where KG is varied for each of two values of r, diagonal
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(a) sprandn, n = 5, 000 (b) diagonal, n = 10, 000

Figure 6: Example 4. The behaviour of the Gaussian method with respect to rank and KG.
We set ε = δ = .05 and display the necessary condition (14) as well.

matrices are utilized: we start with a uniform distribution of the eigenvalues and gradually
make this distribution more skewed, resulting in an increased KG. The low KH values cause
the Hutchinson method to look very good, but that is not our focus here.

It can be clearly seen from Figure 6(a) that as the matrix rank gets lower, the sample
size required for the Gaussian method grows significantly. For a given rank, the matrix with
a smaller KG requires smaller sample size. From Figure 6(b) it can also be seen that for
a fixed rank, the matrix with more skewed KjG’s distribution (marked here by a larger KG)
requires a larger sample size.

Example 5 (Method performance for different matrix properties) Next we con-
sider a much more general setting than that in Example 4, and compare the performance of
different methods with respect to various matrix properties. The matrix A is constructed as
in Example 3, except that also a uniform distribution is used. Furthermore, a parameter d
controlling denseness of the created matrix is utilized. This is achieved in Matlab using the
commands C=sprandn(m,n,d) or C=sprand(m,n,d). By changing m and d we can change
the matrix properties KH , KG and KU while keeping the rank r fixed across experiments.
We maintain n = 1000, tr(A) = 1 and ε = δ = .05 throughout. In particular, the four
figures related to this example are comparable to Figure 5 but for a lower rank.

By comparing Figures 7 and 8, as well as 9 and 10, we can see how not only the values of
KH , KG and KU , but also the distribution of the quantities they maximize matters. Note how
the performance of both unit vector strategies is negatively affected with increasing average

values of K(i,j)
U ’s. From the eigenvalue (or KjG) distribution of the matrix, it can also be

seen that the Gaussian estimator is heavily affected by the skewness of the distribution of
the eigenvalues (or KjG’s): given the same r and n, as this eigenvalue distribution becomes
increasingly uneven, the Gaussian method requires larger sample size.

Note that comparing the performance of the methods on different matrices solely based on
their values KH , KG or KU can be misleading. This can be seen for instance by considering
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 7: Example 5. A sparse matrix (d = 0.1) is formed using sprandn. Here r =
50, KG = 0.0342, KH = 15977.194 and KU = 4.8350.

the performance of the Hutchinson method in Figures 7, 8, 9 and 10 and comparing their
respective KjH distributions as well as KH values. Indeed, none of our 6 sufficient bounds
can be guaranteed to be generally tight. As remarked also earlier, this is an artifact of the
generality of the proved results.

Note also that rank and eigenvalue distribution of a matrix have no direct effect on the
performance of the Hutchinson method: by Figures 9 and 10 it appears to only depend on
the KjH distribution. In these figures, one can observe that the Gaussian method is heavily
affected by the low rank and the skewness of the eigenvalues. Thus, if the distribution of
KjH ’s is favourable to the Hutchinson method and yet the eigenvalue distribution is rather
skewed, we can expect a significant difference between the performance of the Gaussian and
Hutchinson methods.
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 100)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 8: Example 5. A sparse matrix (d = 0.1) is formed using sprand. Here r =
50,KG = 0.0919, KH = 11624.58 and KU = 3.8823.
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(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 9: Example 5. A very sparse matrix (d = 0.01) is formed using sprandn. Here
r = 50, KG = 0.1186, KH = 8851.8 and KU = 103.9593.



24

6 Conclusions and further thoughts

In this article we have proved six sufficient bounds for the minimum sample size N required
to reach, with probability 1 − δ, an approximation for tr(A) to within a relative tolerance
ε. Two such bounds apply to each of the three estimators considered in Sections 2, 3 and 4,
respectively. In Section 3 we have also proved a necessary bound for the Gaussian estimator.
These bounds have all been verified numerically through many examples, some of which are
summarized in Section 5.

(a) Convergence Rate (b) Kj
H distribution (Kj

H ≤ 50)

(c) K(i,j)
U distribution (d) Eigenvalue distribution

Figure 10: Example 5. A very sparse matrix (d = 0.01) is formed using sprand. Here
r = 50, KG = 0.1290, KH = 1611.34 and KU = 64.1707.

Two of these bounds, namely, (4) for Hutchinson and (5) for Gaussian, are immediately
computable without knowing anything else about the SPSD matrix A. In particular, they
are independent of the matrix size n. As such they may be very pessimistic. And yet, in
some applications (for instance, in exploration geophysics) where n can be very large and ε
need not be very small due to uncertainty, these bounds may indeed provide the comforting
assurance that N � n suffices (say, n is in the millions and N in the thousands). Generally,
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these two bounds have the same quality.
The underlying objective in this work, which is to seek a small N satisfying (2), is a

natural one for many applications and follows that of other works. But when it comes to
comparing different methods, it is by no means the only performance indicator. For example,
variance can also be considered as a ground to compare different methods. However, one
needs to exercise caution to avoid basing the entire comparison solely on variance: it is
possible to generate examples where a linear combination of X 2 random variables has smaller
variance, yet higher tail probability.

The lower bound (14) that is available only for the Gaussian estimator may allow better
prediction of the actual required N , in cases where the rank r is known. At the same time
it also implies that the Gaussian estimator can be inferior in cases where r is small. The
Hutchinson estimator does not enjoy a similar theory, but empirically does not suffer from
the same disadvantage either.

The matrix-dependent quantities KH , KG and KU , defined in (6), (9) and (17), respec-
tively, are not easily computable for any given implicit matrix A. However, the results of
Theorems 2, 3 and 7 that depend on them can be more indicative than the general bounds.
In particular, examples where one method is clearly better than the others can be isolated
in this way. At the same time, the sufficient conditions in Theorems 2, 3 and 7, merely dis-
tinguish the types of matrices for which the respective methods are expected to be efficient,
and make no claims regarding those matrices for which they are inefficient estimators. This
is in direct contrast with the necessary condition in Theorem 5.

It is certainly possible in some cases for the required N to go over n. In this connection
it is important to always remember the deterministic method which obtains tr(A) in N
applications of unit vectors: if N grows above n in a particular stochastic setting then it
may be best to abandon ship and choose the safe, deterministic way.
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