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Abstract We introduce a new class of fat, not necessarily convex or polygonal, ob-
jects in the plane, namely locally y-fat objects. We prove that the union complexity of
any set of n such objects is O (Ay42(n)log?n). This improves the best known bound,
and extends it to a more general class of objects.
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1 Introduction

The running time of geometric algorithms and the amount of storage used by geomet-
ric data structures often depend on the combinatorial complexity of certain geometric
structures. Hence, the study of the combinatorial complexity of geometric structures
is an important and active area within computational geometry. In this paper we study
the combinatorial complexity of the union of a set F of n objects in the plane. This
is relevant because there are many geometric algorithms and data structures whose
performance depends on the union complexity of certain collections of planar ob-
jects. Examples are algorithms for hidden-surface removal [13], data structures for
ray shooting [4, 5, 12], algorithms for computing depth orders [1, 5, 12], and algo-
rithms for motion planning [14, 20].

In the worst case the complexity of the union of n constant-complexity objects in
the plane can be as high as ©(n?), a bound which is for example achieved by a set
of n long and thin rectangles arranged in a grid-like pattern. In many applications,
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however, one would expect that the objects have some favorable properties and that
the union complexity is much lower. One such property that has received considerable
attention is fatness. Intuitively, an object is called fat if it is not arbitrarily long and
skinny—see Sect. 2 for precise definitions. There are many algorithmic results for fat
objects, several of which depend on the union complexity of fat objects in the plane.
Hence, the union complexity of fat objects in the plane has been studied extensively.

One of the first results on the union complexity of fat objects was for fat wedges,
that is, wedges whose interior angle is bounded from below by a constant. For this
case it has been shown [2, 10] that the union complexity is O (n). Matousek et al. [15]
considered the case of §-fat triangles, that is, triangles all of whose angles are at least
8 for some fixed constant §. They proved that the union complexity of n such triangles
is O((1/ 8 Hn loglogn). Later this bound was improved by Pach and Tardos [17] to
O((1/61og(1/6))nloglogn).

Several people have worked on extending these results to more general types of
fat objects, in particular to curved and/or non-convex objects [8, 9, 11, 21] and to
higher dimensions [3, 16]. The most general result for planar objects to date is by
Efrat [8], who considered so-called (o, 8)-covered objects—see the next section for
a definition. Efrat proved that the union complexity of n constant-complexity («, f)-
covered objects is bounded by O (As42(n) log2 nloglogn), where s is the maximum
number of intersections between any pair of object boundaries and A;(n) denotes the
maximum length of an (n, t) Davenport—Schinzel sequence; A;(n) is near-linear for
any constant 7 [18]. (The constant hidden in the O-notation depends on the constants
o and B.)

We introduce in Sect. 2 a new class of fat objects in the plane, namely locally
y-fat objects. This class is more general than the class of («, 8)-covered objects.
We prove that the union complexity of n constant-complexity locally y-fat objects
is O(rs42(n)log®n), thus not only generalizing the result of Efrat but also slightly
improving the bound.

One of the novel ingredients of our proof is a lemma—we call it the Density
Lemma—stating that the set of boundary pieces of the union of fat objects in the
plane has low density. This is a powerful tool, which we also used elsewhere [4], and
which we believe will find other applications in the study of unions of fat objects
in the plane. The Density Lemma implies that the union complexity of two sets of
locally fat objects can be bounded by the sum of the union complexities of the two
sets (with a constant multiplicative factor that depends on the fatness). It then fol-
lows for example that the union of a set of fat triangles and disks in the plane has
O (nloglogn) complexity, which was, to the best of our knowledge, not known.

The Density Lemma allows us to reduce the problem of bounding the union com-
plexity of locally y-fat objects to the problem of bounding the union complexity
of so-called consistently oriented fat quasi-triangles; these are almost triangular fat
shapes with two edges in a fixed orientation. We then give a simple proof that the
union complexity of such shapes is O (Asy2(n) log2 n). An interesting feature of our
proof is that, unlike Efrat’s proof, it does not rely on the result of Matousek et al. [15]
for fat triangles.
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2 Preliminaries

Let F :={o1,...,0,} be a set of objects in the plane. From now on, we assume
that each object is compact, that is, bounded and closed. We also assume that each
object has constant complexity; in particular we assume that the boundary of each
object consists of O(1) algebraic curves of constant maximum degree. Hence, any
two object boundaries intersect at most s times for some constant s. We denote the
boundary of an object o by do.

Fatness and low density We first define (o, 8)-covered objects, as introduced by
Efrat [8]. Figure 1(i) illustrates the definition.

Definition 2.1 A planar object o is called («, B)-covered if for every point p on the
boundary of o one can place a triangle 7, with the following properties:

(i) 1, is contained inside o;
(ii) p isa vertex of 1p;
(iii) ¢, is an o-fat triangle, that is, all its angles are at least o;
(iv) the length of each edge of ¢, is at least 8 - diam(0), where diam(o) is the diameter
of o.

Next we introduce a new characterization of fatness. Let area(o) denote the area
of an object 0. Consider an object o and a disk D whose center lies inside o. If o is
non-convex D N o may consist of several connected components. We define D Mo to
be the connected component that contains the center of D.

Definition 2.2 Let o be an object in the plane and y a parameter with 0 <y < 1. We
say that o is locally y-fat if, for any disk D whose center lies in o and that does not
fully contain o in its interior, we have area(D Mo) > y - area(D).

This definition is illustrated in Fig. 1(ii). It is similar to the fatness definition in-
troduced by Van der Stappen et al. [19, 20], except that we use area(D M o) instead
of area(D N o). Thus for convex objects, where D 1o = D N o, the definitions are
identical.

The following proposition shows the relation between (o, §)-covered objects and
locally y-fat objects.

Proposition 2.3

(i) Any (a, B)-covered object is locally y-fat for some y = Q(ap?).
(ii) There are no constants o,  that depend only on y such that any locally y-fat
object is an (o, B)-covered object.

Fig. 1 Illustration of the () (ii)
definition of («, B8)-covered p

object and the definition of p
locally y-fat object
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Fig.2 (i) A fat object that is (i) 1
not locally fat. (ii) The first two
objects in a construction
showing that objects that are fat
according to the definition of
Van der Stappen et al. [19, 20]
can have a quadratic union

™
™

(if)

Proof (i) Let o be an (a, B)-covered object and let D be a disk centered at a point
p € o and not containing o in its interior.

First assume p € do. Then there is an «-fat triangle 7, C o with p as a vertex all
of whose edges have length at least 8 - diam(o). Clearly (D Nt,) C (DMo).If t, is
not fully contained in D then area(D Nt,) = Q(a - area(D)) because all angles of
tp are at least «. If, on the other hand, t, C D then

area(DMo) > area(DNty) = area(ty) = Q(a -(B ~diam(0))2) = Q(ozﬂ2 . area(D)),

where the last equality follows because D does not fully contain o.

Now assume p lies in the interior of 0. Let p’ be a point on do with mini-
mum distance to p. If dist(p, p’) > radius(D)/2 then area(D M o) > area(D) /4.
Otherwise, let D’ C D be the disk with center p’ and radius radius(D)/2. Now
(D' Mo) C (DMo), and since p’ € do we can apply the argument above and get

area(D o) > area(D' Mo) = Q(aﬂ2 -area(D")) = Q(ot,B2 -area(D)).

(ii) Consider the object shown in Fig. 1(ii). It is impossible to place a triangle
with the point p as a vertex that is relatively large and stays inside the object. In fact,
the size of the largest triangle that can be placed at p will tend to zero as the part
of the object sticking out in the top right shrinks, while the local fatness does not
significantly change when this happens. O

Thus the class of locally y-fat objects is more general than the class of (¢, 8)-
covered objects. On the other hand, the class of locally fat objects is less general than
the class of fat objects as defined by Van der Stappen et al. The object in Fig. 2(i)
shows this: when ¢ tends to zero, the local fatness of the object tends to zero as
well, while the fatness according to the definition of Van der Stappen et al. remains
lower bounded by a fixed constant. A more strict definition is a necessity, however,
to obtain near-linear bounds on the union complexity: one can place n objects of the
type shown in Fig. 2(i) in such a way that the resulting union has complexity € (n?).
To see this, consider Fig. 2(ii). It consists of two such objects, where the value of ¢ in
the darker object is three times as small as in the lighter object. We can put another
(n/2) — 2 objects in a similar way, each time reducing the value of ¢ by a factor
three, to obtain a collection of objects whose union is a square with n/2 thin vertical
rectangles to the right of it. We can then copy this whole construction and rotate it by
90 degrees to obtain a union of complexity € (n?).

Besides the concept of fatness, we also need the concept of density [6]. For an
object 0 in R?, we use size(0) to denote the radius of the smallest enclosing disk of o.
Note that a locally y-fat object o in RR? has area Q(y - size(0)?).
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Fig. 3 A collection of three
objects whose union has
complexity 12

Definition 2.4 The density of a set S of objects in R? is defined as the smallest
number A such that the following holds: any disk D C R? is intersected by at most A
objects o € S such that size(0) > size(D).

Notation We end with some more notation and terminology. We use I/(S) to denote
the union of a set S of objects. The union boundary a2/ (S) of a set S of planar objects
consists of maximally connected portions of the boundaries of the objects in S. We
call these portions the edges of U/(S); the endpoints of these edges are called the
corners of U(S).! The (combinatorial) complexity of U(S) is defined as the total
number of edges and corners of I/ (S). For example, the union in Fig. 3 has complexity
12, as it has six corners and six edges. Notice that, up to an additive term equal to the
number of objects in S, the complexity of ¢/(S) is linear in the number of corners.
Hence, it suffices to bound that number.

3 The Density Lemma

In this section we prove the Density Lemma, which will enable us to bound the com-
plexity of the union of two unions of fat objects. Recall that by an edge of the union
of a set of objects we mean a maximally connected portion of the union boundary
that is contributed by a single object.

Lemma 3.1 (Density Lemma) Let F be a set of n locally y -fat objects, and let E (F)
denote the set of edges of the union U(F). Then the density of E(F) is O(1/y).

Proof Let D be a disk, and assume without loss of generality that size(D) = 1. Let
Ep C E(F) be the set of edges e € E(F) that intersect D and for which size(e) > 1.
We have to show that |Ep|= O(1/y).

We partition the bounding square of D into four unit squares. Together these four
squares—the four squares drawn with thick lines in Fig. 4(i)—cover D. Let S be any
one of these squares, and let Eg, C Ep denote the edges intersecting S;. Let S and
Smid be squares with the same center as S, where S, has edge length /2 and Smid has

The boundaries of the objects may contain vertices (breakpoints between adjacent boundary segments
or arcs) as well. Such vertices may also show up on the union boundary. These are not corners in our
definition and, hence, do not contribute to the complexity. However, their total number is bounded by the
total complexity of the objects, so counting them does not change the bounds asymptotically.
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Fig. 4 Tllustration for the proof of Lemma 3.1

4

edge length (1 ++/2)/2. Thus Spmiq is midway between S and S». Since size(¢;) > 1
for any e; € E,, such an edge e; cannot be completely contained in the interior of S.
Since e; intersects S; by definition, it must therefore cross the square annulus S, \ Sj.
In fact, if we cover Sy \ S7 using four (partially overlapping) rectangles—Fig. 4(i)
shows one of these rectangles shaded—of size +/2 by (v/2 — 1)/2, then there must
be one such rectangle R crossed by e;. That is, a portion e} of e; connects the two
longer sides of R—see Fig. 4(ii).

We shall bound the number of such edge portions e} for which ¢/ (F) lies locally
to the right of e}'; the number of edges for which /(F) lies locally to the left can be
bounded similarly. Let p?‘ be a point where e;k intersects the line £ midway between
the two longer sides of R, and let §; be the disk centered at p;‘ of radius («/E —1)/4.
Let object(e;) be the object of which e¢; is a boundary piece. Because e; is locally
y-fat, we have

area(8; Mobject(e;)) > y - rr((«/i — 1)/4)2.

Now consider another edge ¢; € Eg,, with a portion e;f crossing R and where U (F)
lies locally to the right, and consider a disk §; of radius (v/2 — 1)/4 centered at a
point of ejf N £. Then area(s; Mobject(e;)) can be bounded as above. Because e} and

e* are portions of union edges, they do not intersect any other object (except possibly
at their endpoints). It follows that

(8; Mobject(e;)) N (8; Mobject(e;)) = 1.

Since the area of Ris 1 — %«/5, the number of edge portions we have to count for R
for which U (F) lies locally to the right is at most

1= (1/2)V3
=0(1 .
NRETN TN

The lemma follows. O

The Density Lemma allows us to bound the complexity of the combined union of
sets of locally fat objects.

Lemma 3.2 (Merging Lemma) Let S| and Sy be sets of constant-complexity objects
in the plane such that all objects in Sy are locally y)-fat and all objects in Sy are
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locally y»-fat. Let Uy and U, denote the complexity of the union of S1 and S», re-
spectively. Then the complexity of U(S1 U 82) is O(Uy/y2 + Ua/y1).

Proof A corner of U(S1 U §y) is either a corner of U/(S1), or a corner of U(S>2), or
it is the intersection of an edge of U/ (S1) with an edge of I/(S1). The total number
of corners of the first two types is obviously O (U; + U»), so it remains to count the
number of corners of the third type. We charge each such corner v to the smaller of the
two edges that define it, that is, if v = e] N ey and size(eq) < size(ez), then we charge
v to e1. Note that an edge e of U/(S1) is charged only by larger edges from U/ (S>). By
the Density Lemma, the set of edges of ¢/ (S>) has density O(1/y»). This implies that
any edge from U(S) is charged O(1/y») times. A similar argument shows that any
edge from U/(S>) is charged O (1/y1) times, which proves the lemma. U

Since the union-complexity of n é-fat triangles is bounded by 0((% log %)n X
loglogn) [17], any set of m disks has complexity O (m) [14], and disks are (1/4)-fat,
we get the following corollary.

Corollary 3.3 Let F be a set of n §-fat triangles and let D be a set of m disks in the
plane. Then the complexity of U(F U D) is 0((% log %)n loglogn + %m).

4 From Locally y-Fat Objects to Quasi-Triangles

As in most papers on the union complexity of fat objects, we wish to replace our
locally y-fat objects by simpler ‘canonical’ objects. Let D be a set of 40/y equally
spaced orientations, where we assume for simplicity that 40/y is an integer. Thus the
angle between two consecutive orientations in D is y* := yw/20. We call a direction
in D a standard direction. A quasi-triangle is an object A bounded by two straight
edges and one smooth Jordan arc without inflection points.

Definition 4.1 A y-standard quasi-triangle is a quasi-triangle A such that:

(a) its two edges have standard directions, and their angle inside A is between
7 —Ty*andw — y*;

(b) the tangent line at any point of the Jordan arc makes an angle of at least y* with
the edges of A, and the tangent direction along o does not vary by more than y*.

We say that two y-standard quasi-triangles are consistently oriented if their edges
have the same standard orientations.

Fig. 5 illustrates this definition. Observe that property (b) implies that any line
parallel to one of the two edges of A intersects its Jordan arc at most once. Also note
that because of property (a) any set of y-standard quasi-triangles can be partitioned
into O (1/y) subsets of consistently oriented y -standard quasi-triangles.

The following lemma follows easily from the fact that the angles at each vertex of
a y-standard quasi-triangle are all at least y*—this follows from (b)—and that the
tangent direction along the arc cannot vary too much.
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Fig. 5 The standard directions

*
and four consistently oriented ) 7
y-standard quasi-triangles .

Lemma 4.2 A y-standard quasi-triangle is locally y'-fat for y' = Q(y)

We now set out to reduce the problem of bounding the union of locally y-fat
objects to the problem of bounding the union of y-standard quasi-triangles. We do
this by covering the boundary of each locally y-fat object using y-standard quasi-
triangles, as follows.

Let o be alocally y-fat object. We partition do into a number of subarcs by putting
breakpoints on do in two steps. In the first step we put breakpoints at the following
three types of points:

(i) every non-smooth point of do;
(i1) every inflection point of do;
(iii) every smooth point where the tangent line has a standard direction.

Let B; be the resulting set of breakpoints. Because o has constant complexity and
there are O(1/y) standard directions, |B1| = O(1/y). In the second step we further
refine do by putting breakpoints as follows.

(iv) Put a breakpoint at each point p € do for which there is a breakpoint ¢ € B
such that the line segment pg has a standard direction and pg C o.

Let B, denote the resulting set of breakpoints. We have |B;| = |B1| - O(1/y) =
o1/y?).

Next, we define a y-standard quasi-triangle A(c) for each of the O(1/ y2) sub-
arcs o induced by the set of breakpoints. Let p and g be the endpoints of a sub-
arc o. Assume without loss of generality that pq is parallel to the x-axis and that o
bounds o from above. Let £, and £, be the vertical lines through p and g, respec-
tively. Rotate £, and £, in counterclockwise direction around p resp. g until they
have a standard direction. The y-standard quasi-triangle A(c) is now formed by o
and two straight segments pr and gr, where r is a point in between £, and £, de-
fined as follows. Draw a line £; through p whose angle with ¢ at the point p is 2y *.
Rotate ¢ clockwise until it reaches a standard direction. Similarly, draw a line £»
through ¢ whose angle with o at the point ¢ is 2y *, and rotate £, counterclockwise
until it reaches a standard direction. We define r to be the intersection point of £ and
£,—see Fig. 6. Note that the point » must lie below o and between £, and £,.

Lemma 4.3 The quasi-triangle A(o) formed by o and the segments pr and qr is a
y -standard quasi-triangle.

Proof By construction, pr and gr have standard directions. Moreover, the angles that
pr and gr make with o are at least 2™ and at most 3y *. Since the tangent direction
along o does not vary by more than y*, this implies that the angle between pr and gr
is between 7 — 7y* and w — y*, which establishes property (a).
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Fig. 6 The y-standard
quasi-triangle A (o) defined
for o

Property (b) follows because the angles that pr and gr make with o at p resp. g
are at least 2y * and the tangent direction along o does not vary by more than y*. [

Lemma 4.4 The y-standard quasi-triangle A(o) defined above is contained in o.

Proof Let x be the lowest point on £, such that px C o. Clearly x € do. (Note that
it may happen that x = p.) Imagine sweeping a segment s from left to right through
o, as follows. Start with s = px. Move s to the right, keeping it parallel to £, and
keeping its endpoints on do, until s reaches £,. Note that the upper endpoint of s will
move along o. The lower endpoint of s cannot encounter a breakpoint from B during
the sweep, otherwise this breakpoint would have generated a type (iv) breakpoint on
o and o would not be a subarc. Let ¢’ be the part of do followed by the lower
endpoint of s—see Fig. 7(i). Because there is no breakpoint on ¢’, we know that o’
does not contain a point where the tangent line has a standard direction. Hence, o’
can cross both pr and gr at most once.

If o’ crosses neither pr nor gr, then A(o) C o and we are done, so assume for a
contradiction that ¢’ crosses pr and gr. Take a line through p whose angle with pg
is y* and a line through ¢ whose angle with pg is y*, such that their intersection
point r’ lies above o, as in Fig. 7(ii).

Consider the 6-gon defined by the following six points: p, r’, ¢, the intersection of
the extension of pr with £,, r, and the intersection of the extension of gr with £ ,—see
Fig. 7. Then both ¢ and ¢’ are contained in this 6-gon. Let w be the distance between
¢, and ¢,. Using that angle(pq, pr’) = angle(pq, gr') = y*, and that angle(pq, pr) <
4y* and angle(pq, gr) < 4y™, one can show that the area of the 6-gon is at most

(i) (if) D

Fig. 7 llustrations for the proof of Lemma 4.4
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(9/2)y*w?. Now let D be the disk centered at a point of o and touching ¢ pand £,.
Because o is locally y-fat, we have area(D Mo) > ym(wcos(y*)/2)? > 0.24ymw?.
On the other hand, D Mo is contained in the area enclosed by o and o’. But this area
is at most (9/2)y*w?, which is a contradiction since y* = y/20. d

Now we can reduce the problem of bounding the union complexity of a set of
locally y-fat objects to the problem of bounding the union complexity of a set of
locally fat y-standard quasi-triangles.

Proposition 4.5 Let u, (n) denote the maximum complexity of the union of a collec-
tion of n consistently oriented y -standard quasi-triangles. Then the maximum union
complexity of any set F of n locally y-fat objects is O((1/y?) - uy (n/y?)).

Proof Replace each 0 € F by a collection T (0) of quasi-triangles as described above.
Since we have do C dU(T (0)) and U(T (0)) C o for each object o, the complexity of
U (F) is no more than the complexity of U ({T (0): o € F}).

This gives us a set T of O (n/y?) y-standard quasi-triangles. We partition 7' into
O(1/y) subsets T; of consistently oriented quasi-triangles. Set n; := |T;|. Every cor-
ner of U (F) will show up either as (i) a corner of U/ (7;) for some i, or (ii) as a corner
of U(T; U T;) for some pair i, j. The number of corners of type (i) is > uy (n;),
which is O (u) (n/ )/2)) since u,, (+) is at least linear. To bound the corners of type (ii)
we use the Merging Lemma and Lemma 4.2, which imply that the complexity of
U(T; UTj) is O((uy (n;) +uy(nj))/y). Hence, the total number of type (ii) corners
is bounded by

D> 0(y (i) +uy () /v)

J

=Y {0/y)- Oy () /) + O(uy (n/y*) /y)} = O((1/¥?) - uy (n/yD)). O

5 The Union Complexity of y-Standard Quasi-Triangles

Let T be a set of consistently oriented y-standard quasi-triangles. Without loss of
generality we assume each A € T has one edge parallel to the x-axis, and one edge
that makes an angle o with the positive x-axis. Recall that 7 — 7y* <o <m — p*.
Setm :=|T|.

Draw a horizontal line through the horizontal edge and the highest point of every
A € T. This partitions the plane into at most 2m + 1 horizontal strips. Let 7 be a
balanced binary tree whose leaves correspond to these strips in order. We associate
each node v in 7 with the horizontal strip that is the union of the strips corresponding
to the leaves in the subtree rooted at v. We denote this strip by strip(v). Finally, we
associate with each node v a subset 7' (v) C T, as follows: A € T'(v) if A completely
crosses the strip of v but does not completely cross the strip of the parent of v. (This
is equivalent to constructing a segment tree [7] on the projections of the A’s onto
the y-axis, and defining T (v) to be the quasi-triangles whose projections are stored
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\ A CfA(p)
N

\

Fig. 8 Illustration for the proof of Lemma 5.1. For clarity the two straight edges of the quasi-triangles
are drawn at a right angle (as could be achieved by a suitable transformation) although in fact the angle is
almost

=4
L

in the canonical subset of v.) We clip each A € T(v) to strip(v), so that T (v) will
only contain the parts of these quasi-triangles lying within strip(v). Note that if N(A)
is the collection of nodes to which a quasi-triangle A is associated, then the clipped
pieces of A within the strips of the nodes v € N (A) together form A. So by assigning
A to the nodes in N(A) and clipping it, we effectively cut A into |N(A)| pieces.
Since any A is associated to at most two nodes at every level of 7—this is a standard
property of segment-tree like structures [7]—A 1is cut into O (logm) pieces. Hence,
if we set m, :=|T'(v)| then ) _7m, = O(mlogm).

Lemma 5.1 The complexity of U(T (v)) is O (Ag42(m,)).

Proof Let £ be the line bounding strip(v) from below. For each A € T'(v), we define
a function fa : £ — R as follows. Let /(p) be the line through the point p that makes
an angle o with the positive x-axis. Then

fa(p) := the length of I(p) N A.

Recall that the properties of a y-standard quasi-triangle imply that /(p) intersects
A in a single segment, if at all. Hence, the boundary of ¢/ (7 (v)) is the upper enve-
lope of the set of functions { fa(p): A € T (v)}—see Fig. 8—which has complexity
O (As42(my)) [18], where s is the maximum number of intersections between two
object boundaries. (]

Next we consider the union of all (clipped) quasi-triangles associated to nodes at
a fixed depth in 7. Let N (k) denote the nodes of 7 at depth k, and define T (k) :=

UveN(k) T ).
Lemma 5.2 The complexity of U(T (k)) is O (Ag42(m)).

Proof The strips of the nodes at a fixed level in the tree are disjoint. Hence, the
complexity of U(T (k)) is bounded by the sum of the complexities at each of the
nodes v € N (k), which is ZUE N O (As42(my)) by the previous lemma. Since any
quasi-triangle can be associated with at most two nodes at any fixed level, we have
> _veN(k) Mv < 2m. The lemma follows. O

To combine the unions of different levels of the tree we use the following lemma.

Lemma 5.3 The set E (k) of boundary edges of U(T (k)) has density 0(1/)/2).
@ Springer
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Proof For v € N(k), let E(v) denote the set of boundary edges of (T (v)). Since
the strips of the nodes in N (k) are disjoint, we have E (k) =, cyx) E(V).

First we note that, even though the quasi-triangles in 7'(v) are not necessarily fat
because they are clipped, the set E(v) still has density O(1/y). Indeed, the edges
of the union of the unclipped quasi-triangles have density O(1/y) by the Density
Lemma; clipping the union to strip(v) can only remove or shorten edges, which does
not increase the density.

Now consider an edge e € E(v) and let w be the width of strip(v). We observe that
size(e) = O(w/y), because at any point p € e the tangent to ¢ makes an angle 2(y)
with the boundary lines of the strip. Let D be a disk and assume without loss of gen-
erality that D has unit radius. We must argue that D is intersected by O(1/y?) edges
e € E(k) with size(e) > 1. By the previous observation, we only have to consider
edges lying in strips of width Q(y). Clearly D can be intersected by only O(1/y)
such strips, because the strips in N (k) are disjoint. Since within each strip the density
of the boundary edges is O(1/y), the overall density is O (1/y?). O

We can now prove a bound on the total union complexity of 7'.
Lemma 5.4 The complexity of U(T) is O((hg2(m)log?m)/y?).

Proof Consider a corner v of U(T) that is an intersection point of the boundaries
of two quasi-triangles A; and Aj. Let v; be the node such that A is associated
to v and the clipped portion of A within szrip(v1) contains v. Define v, similarly
for Aj. Let k1 and k, be the depths of vy and vy, respectively. If k; = k, then the
corner v is already accounted for in the bound O (As42(m)) on the complexity of
U(T (k1)). To account for the corners v where k| # k; we must consider the unions
U(T (k1) U T (ko)) at different depths k1 and k>. Since the sets of boundary edges
of U(T (k1)) and U(T (k2)) have density O(1/y?) by the previous lemma, we can
use Lemma 5.2 and argue as in the proof of the Merging Lemma: we charge each
intersection to the smaller of the two edges, and observe that every edge is charged
0(1/)/2) times. This way we can bound the complexity of U(T (k1) U T (kp)) by
O(XAs+2 (m)/y?). Because the depth of 7 is O (logm) we now have

YD 0(Cur2(m) /y?) = O((usy2(m) log” m) /),

ki ko

which completes the proof. O
Plugging this result into Proposition 4.5 we get our main theorem.

Theorem 5.5 The union complexity of any set F of n constant-complexity locally

y-fat objects is O((1/y°) - hs2(n)log® n).

6 Concluding Remarks

We have introduced a new class of fat objects, namely locally y-fat objects, and
proved that the union complexity of n such objects of constant complexity is
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O((1/y%) - As12(n)log® n). This slightly improves the best known bounds on the
union complexity of (possibly non-convex and curved) fat objects and extends the
result to a more general class of objects. We feel that our definition of fatness is more
natural than the existing definitions for non-convex and curved objects: the S-fat ob-
jects of van der Stappen et al. [19, 20] can have thin parts (and this may cause the
union of n such objects to have €2 (n%) complexity), the k-curved objects of Efrat and
Katz [9] are not allowed to have sharp corners (even when the interior angle is large),
and the («, B8)-covered objects of Efrat [8] cannot have small parts (e.g. the union of
two touching squares is not fat in this definition when the two squares differ a lot in
size).

It is unlikely that our bounds are tight: the two logarithmic factors seem artifacts
of our proof technique. It would be very interesting to shave off one or two logarithms
from the bounds. Note that our results, in particular the Density Lemma, imply that it
is sufficient to prove better bounds on the union complexity of so-called consistently
oriented fat quasi-triangles.
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