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be computed effectively. We also consider two special cases: when S is a planar point 
set in convex position, we prove the existence of a net of size O((1/e) logl"6(1/e)). In 
the case where S consists of the vertices of a regular polygon, we use an argument 
from hyperbolic geometry to exhibit an optimal net of size O(1/e), which improves 
a previous bound of Capoyleas. 

1. Introduction 

Let S be a set of n points in R e. A set W c ~d is called a weak z-net for (convex 
ranges of) S if, for any subset of T of en points of S, the convex hull of T intersects 
W. This contrasts with the notion of z-net for range spaces of finite VC-dimension, 
for which a complete theory has been developed [11], [13]. In our case the 
underlying range space has infinite VC-dimension, so none of that theory applies. 

Alon et al. [1] (see also [2]) have recently shown that weak z-nets for convex 
ranges always exist, which have size O(1/e(d+l)(1-1/sa)), where Sd = (4d + 1) d+ l  

They remarked that their proof  method cannot give a selection exponent se smaller 
than (d + 1) d+ 1. In the plane they obtained an improved bound of O(1/e2). In this 
paper we improve their bound for d _ 3, showing the existence of weak e-nets of 
size O((1/ed) loga~(1/e)), where f12 = 0, f13 = 1, and fld ~ 0.149" 2 d - l ( d -  1)!. Our 
analysis actually produces a more powerful structure. Namely, we obtain a 
collection Q of O(n e) points, such that for any given e > 0 we can obtain a weak 
e-net by an appropriate sampling of points of Q. Moreover, our net has the 
following stronger property: For  any subset T of S of at least en points, a net 
point p which is an approximate center point of T exists. This means that any 
half-space that contains p also contains at least some fixed fraction of the points 
of T. While, for an exact center point, this fraction is at least 1/(d + 1) [8], in our 
case it is only t2(1/logad(1/e)). 

Finally, we look at two special cases: If S consists of points in convex position 
in the plane, then a net of size O((1/e) logO(I/e)) can be found, where c = log 2 3 ~ 1.6. 

If the points of S lie uniformly on a circle (as do, say, the vertices of a regular 
polygon), then we exhibit an optimal weak z-net of size O(1/e), which improves a 
previous bound of O(1/e). 2 ~~ due to Capoyleas [5]. Interestingly, our weak 
z-net consists of vertices from a tessellation of the hyperbolic plane. Thus, we show 
that the problem "lives" naturally in hyperbolic space. 

The motivation for studying weak e-nets is twofold: On a general level, the 
study addresses the central, largely unresolved, issue of sampling in spaces of 
infinite VC-dimension. This arises when dealing with problems whose dimensional- 
ity is a parameter  that is not fixed but part of the input: examples are standard 
optimization problems, such as linear programming, or the problem of simulating 
quasi-uniform distribution for, say, learning boolean formulas. On a more specific 
level, weak e-nets provide threshold tests for convex functions, which might be 
useful in Monte Carlo applications. For  example, suppose that we are given a 
density measure in d-space and we wish to test quickly whether a convex polytope 
has volume above a certain threshold (in the given measure). We can do that in 
the following manner: First, sample very finely according to the given measure 
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and then compute a weak e-net of that sample. It is easy to construct smooth but 
irregular measures where the standard Monte Carlo approach fails miserably: in 
those cases, building a weak e-net appears to be the only solution at this point. 
To extend these threshold tests into full-fledged approximation schemes is open. 
We can show that weak e-approximations (in the standard sense) do not exist, but 
this does not rule out other lines of attack. 

2. Construction of Weak t-Nets  in ~d 

Let S be a given set of n points in ~a. We assume, with no loss of generality, that 
the points of S lie in general position, meaning that their coordinates are nd real 
numbers that are algebraically independent over the rationals. If the points of S 
are not in general position, then we can choose a sequence of sets {Si} that converge 
to S pointwise and are in general position. Let W~ be a weak e-net for Si, all having 
the same size. By compactness, a subsequence of the W~ converges pointwise to a 
set W, having no more points than each of the W~'s, which is easily seen to be a 
weak e-net for S. 

We construct a multilevel structure from the points of S, as follows. At the first 
level we project the points of S on the xl-axis, and denote by $1 the resulting set. 
We consider the set of all intervals on the x~-axis connecting pairs of points in 
$1, and construct an interval tree over these intervals. In more detail, this is a 
binary tree whose root corresponds to a point a on the xl-axis, such that at most 
half of the intervals lie fully to the left of ct and at most half lie fully to its right. 
The intervals that contain ~ are stored at the root. The left (resp. right) subtree 
of the interval tree is obtained recursively by applying the same bisection step to 
the intervals lying fully to the left (resp. to the right) of a. 

This definition of an interval tree is general, and applies to arbitrary collections 
of intervals on a line. In this first-level structure, though, the same tree can also 
be constructed by building a balanced binary tree on the projected points of S, 
and by stopping each interval I at the unique node of the tree whose left subtree 
stores one endpoint of I and whose right subtree stores the other endpoint. In 
what follows we make use of this alternative representation. 

Note that each interval is stored in exactly one node of the tree. Note also that, 
interpreting the structure back in Ed, each node of the tree corresponds to a 
hyperplane of the form xl = a, and the intervals that are stored at the node are 
xa-projections of those segments that connect pairs of points in S and cross the 
hyperplane. 

Now consider the second level of our structure. Let v be a node of the first-level 
interval tree, corresponding to a hyperplane fv: xl = av, and let Nv denote the set 
of segments stored at v. Map each segment pq in Nv to the point pq n fv, and 
label the point by the unordered pair (pq). Let K~ denote the resulting collection 
of points. Consider now the collection of all segments in fv that connect pairs of 
points of K~ of the form (pq), (pr) (i.e., pairs of points whose labels share a common 
point of S). We project these segments onto the x2-axis within f~, and construct 
an interval tree for these projected segments, in the same manner as described 
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above. A node of this second-level tree corresponds  to a (d - 2)-flat f of  the form 
Xx = av, x2 = b, and the intervals [(pq), (pr)] stored at that  node  cor respond to 
triangles pqr tha t  are spanned by points  of S and intersect f It  is easily verified 
that  each triangle pqr spanned by S is s tored in exactly one second-level node 
(over all first-level trees). To  see this, suppose  that  pq is the edge whose Xa- 
projection is longest. Then the first-level node v where pq is s tored must  also store 
(exactly) one of  pr, qr, say it stores pr. Then the segment [(pq), (pr)] is one of the 
segments processed at v and thus is stored somewhere  in the interval tree of v. 
Uniqueness also follows easily from this argument .  

We cont inue in this manner ,  construct ing one extra level of  the structure for 
each dimension. Consider  the j th  level of the structure, for j < d - 1. A node v of 
a ( j - 1 ) - l e v e l  interval tree corresponds  to a ( d - j  + 1)-flat f~ of  the form 
xl  = at,  . . . ,  xj_ 1 = aj_ 1, and each segment stored at v corresponds to a (j  - 1)- 
simplex Pl P2""P~ that  is spanned by S and intersects fv at a point.  Let  N~ denote 
the set of all these simplices and  let K ,  denote  the set of intersection points  of 
these simplices with fv each labeled by the unordered set of vertices of the 
corresponding simplex. We form the collection of all segments within f~ that  
connect  pairs of  points of K~ of  the form (Px " ' "  P j -  lq), (Pl"'" Pj- ~r), project these 
segments  onto  the x j-axis (within fo), and construct  an  interval tree on this set of 
projected segments. Again, a node  u of the resulting tree corresponds to a d - j)-flat 
fu within fo, and  each segment  that u stores, having the form [(PlP2""Pi-lPj), 
(P 1 P 2""  P j -  1 Pj + ~)], cor responds  to the j -s implex p 1 P2"'" Pj + 1, which is easily seen 
to intersect fu. 

Let v be a node  of some interval tree of the last level d - 1. The node  v stores 
a list Nv of ( d -  1)-simplices that  cross the line f~ associated with v, and 
corresponding list K~ of  the intersection points  of these simplices with f~. We sort  
the list K~ in increasing order of  the xd-coordinates of its points. Let Q denote the 
union of all lists K~, over  all nodes v of  the last-level interval trees; note Q does 
not  depend on e. Given e, we now describe a sampled subset W of Q which will 
be a weak e-net. Let v~ denote the node  of the first-level interval tree in whose 
substructure v lies, and suppose that  v~ lies at  depth d _>_ 0 in its tree. 

We define a sequence {fl~}ja2 of integers by  f12 = 0 and fl~+l = 2jfl~ + t, for 
j > 2. If  we put  flj = 2 J - l ( j  -- 1)! {~, then we have {2 = 0, and 

1 
{J +~ = r + .'72"~' 

so that  

j--1 1 
, j - -  y - -  , / 7 -  1.5 < o.149. 

k=2 2kk! 

I t 3"~E~ We now put  ev = ~ )  ~, My = (c/e~) log~d(1/ev), for an appropr ia te  constant  c 
depending on d, and we sample every (nd/Mv)th point of  K~. I f  K~ has fewer than 
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M~ points, we do not sample any point of Ko. Let W be the union of all such 
samples from Q, over all Kv. 

Let tr be a simplex spanned by the points of S, and let u be the node of smallest 
depth { of the first level-interval tree which stores some edge of tr. It is easily 
verified that all vertices of a are stored at the subtree rooted at u. Let S, denote 
the set of points stored at this subtree. The size of Su is n/2 I. Next we claim that 
each (d - 1)-simplex spanned by the points of S, is stored in at most a constant 
number of last-level lists K~, all belonging to the subtree of u. This is best proved 
by showing, using induction on j, that each j-simplex spanned by S, is stored in 
at most mj j-level nodes, for an appropriate constant mj (this argument is omitted 
here). Moreover, none of these lists store simplices having a vertex outside S,. It 
follows that the total number of sampled points at lists Ko in the substructure of 
the same first-level node u is at most 

( ( n )  aMv) ((~)d~ 1 1  1 ~1 aa) 0 ~ n ~  = 0  e~ l o g t  + ( l ~  . 

We now sum these bounds over all 2 t first-level nodes u at the same depth E, and 
then sum over {, to obtain an overall bound of 

Z 0 2 l o g - + g l o g  . 
g>_0 8 

Since d > 2, we have 2(~) a < 1, so the sum is easily seen to be dominated by its 
leading term # = 0, which implies: 

Lemma 2.1. The set W consists of at most 0 ((1/t a) loga"(1/e)) points. 

Lemma 2.2. W is a weak t-net for S. 

Proof Let T be a subset of S consisting of tn points; we need to show that 
cony(T) c~ W ~ ~ .  We proceed through the structure level by level, but, for 
technical reasons, we give the first level separate treatment. Let vl be a node of 
the first-level interval tree of smallest depth f > 0, such that at least ~(3)r points 
of T are stored at each of the two subtrees of vl. Such a node must exist, for 
otherwise we would obtain a single path n in the tree, so that the node of rt at 
depth E stores at least (3)%n points of T in its subtree. However, the number of 
points of S stored at that subtree is at most n/2 t, which is smaller than (~)%n when 

is sufficiently large. Put to = �89 Let T O denote the subset of T consisting of 
those points of T stored at the subtree of vl. By removing some points from T o, 
if necessary, we assume that the size of To is exactly ton, and that exactly half the 
points of To are stored at the subtree of each child of vl. 

We claim that at each level j some node vj exists whose associated list Nv~ 
contains at least cl~Jo+ ~ni+i/logPJ+'(1/eo)j-simplices spanned by the points of T o, 
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for some positive constant cj (with vl being the node just defined). This will imply 
the existence of node Vd- ~ at the last level d - 1, whose list N .... contains at least 
c d_ 1e~nd/logP~(1/eo)(d- 1)-simplices spanned by the points of To. All these sim- 
plices are contained in cony(T), and cony(T) intersects the line f~_~ in an interval 
I which therefore contains all the points of Kv~ , corresponding to these simplices. 
Since vd-1 lies at a substructure of the node vl, it follows by construction (if we 
choose the constant c in the definition of M~ to be cd-1) that I, hence cony(T), 
must contain a point of W. 

To show the existence of the nodes v j, we argue as follows. We make use of 
the following elementary Selection Lemma: 

Lemma 2.3 (Selection Lemma) [3], [6]. Given a set N of  n points on the line, and 
a set M o fm intervals delimited by the points of  N, some point on the line that is 
contained in at least m2/4n 2 intervals of  M exists. 

We now proceed by induction on the level j. For  j = 1, since f12 -- 0, we need 
to show that v 1 stores at least cle2n 2 segments connecting pairs of points of T. 
This follows, with cl = �88 from the fact that both the left and right subtrees of v~ 
store �89 points of T. 

For  the sake of exposition, we treat the case j = 2 separately. Let E be the set 
of intervals spanned by the xl-projections of the points of T O and stored at the 
node v~ obtained above. Let t = IEl _> cle2n 2. Regard E as the edge set of an 
undirected graph, whose nodes are the points of T O . 

We claim that by deleting no more than half the elements of E (and some points 
of To) we can guarantee that every remaining point of T O has degree > t/2eon. This 
is proved by a simple pruning process, that iteratively removes a point and all its 
incident edges if the point has degree smaller than or equal to t/2eon; this process 
cannot remove more than t/2 edges of E. 

Now consider the resulting pruned set E' as a set of points in the hyperplane 
fv,: xl = al corresponding to v~ (thus E' is a subset of Kv,). We construct a set 
of segments in fv~ as follows. Take each point (pq) ~ E', choose any point r ~ p, q 
of T O such that (qr) is also in E', then choose any point s ~ p, q, r of T O such that 
(rs) is also in E', and add to ./r the segment connecting (pq) to (rs) in fvl. The 
pruning procedure ensures that the number of segments in J// is at least 
I E'I �9 (t/2%n) 2. Now apply the Selection Lemma to E' and Jr projected onto the 
x2-axis within fv,, to obtain a point x 2 = a2 contained in at least 

4 

projected segments of Jr Clearly, if [(pq), (rs)] is a segment of J r  whose x 2- 
projection contains a 2, which is formed through the intermediate point (qr), then 
a 2 is also contained in the x2-projection of either [(pq), (qr)] or [(qr), (rs)] (or both). 
Hence, a 2 is contained in at least c'egn 4 projected segments of the latter kind, 
which, by construction, are all stored in the second-level interval tree of fv,. 
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However, these segments are not necessarily distinct, and each may be counted 
with multiplicity at most  2go n (a segment [(pq), (qr)] may be counted once for each 
point s of T O that induces a segment [(qr), (rs)], and once for each point s that  

1 , 3 n 3  distinct induces a segment [(ps), (pq)]). Hence, a 2 is contained in at least ~c eo 
projected segments of this kind. 

Let 7r denote the path in the interval tree of f~, leading to a z, that  is, the path 
that descends from a node u to its left (right) child if a 2 is small (larger) than the 
x2-value associated with u. It is easily verified that each projected segment 
containing a2 must  be stored at some node along ft. Moreover,  the total number  
of projected segments stored at nodes of n at depth > 3  log( l /go)+  l o g ( l / d ) +  2 

1 t 3 3 is at most  ~c eon,  so at least half of the projected segments containing a2 are 
stored at higher nodes along z, which implies that some node v2 ofrt stores at least 

1 ~ 3 3 r  ~3F/3t~ ~C g0 n 

3 log(I/co) + log(i/d) + 2 - log(l/go) 

such projected segments, for an appropriate  positive constant  c 2. In other words, 
the ( d - 2 ) - f l a t  f~2 associated with v 2 crosses at least cze3n3/log(1/eo) distinct 
triangles spanned by the points of T o , all of which are passed to the third-level 
substructure of v z. 

The general inductive step at a level j is argued in much the same way as in 
the case j = 2. That  is, we consider the set E of (j - 1)-simplices spanned by the 
points of T o and stored at the node v s_ 1 produced at the preceding induction step. 
By induction hypothesis, t = [El > cj_ xdonJ/logP'(1/eo). We regard E as the edge 
set of  an unordered j -hypergraph,  whose nodes are the points of T 0. We say that  
a (j -- 1)-set {Pl P2"" Ps- 1 } is present in the hypergraph if the hypergraph contains 
at least one edge that contains that  set. 

We claim that, by deleting no more  than half the elements of  E, we can guarantee 
that, for every (j - 1)-set that  is still present in the pruned hypergraph,  there are 

at least t/2(" Le~ \ remaining edges containing that set. The proof  is similar to 
\ j - l J  

that used in the case j = 2: iteratively remove a (j - 1)-set and all its containing 

if the number  of such edges is smaller than t/2(Le~ this edges process cannot  

remove more than t/2 edges of E, since there are at most  ([-e~ distinct 

~ K 

\ j - l /  
r - D-sets, and each can be removed (with its containing edges) at mos t  once. 

N o w  consider the resulting pruned hypergraph E'  as a set of points in the flat 
fv~_, corresponding to vj_ 1 (thus E' is a subset of K~_,). We construct  a set J/f of  
segments in fv,_, as follows. Take each point (pxpE'"pj)~E',  choose any point  
ql ~ Pl . . . . .  pj of Z o such that (P2'" "Pjql) is also in E', then choose any point  
q2 r Pl . . . . .  Pj, ql of  T o such that (P3""Psqlq2) is also in E', continue in this 
manner  until j new points ql . . . . .  qj are chosen (so the last edge is (qlq2""qj)~ E'), 
and add to ~ '  the segment connecting (PlP2""Pj) and (qlq2""qj) in f~_,. 
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The pruning procedure ensures that the number of segments in act' is at least J. 
t E ' l '  t 2 - j  Now apply the Selection Lemma to E' and J / ,  projected 

onto the xfaxis  within for_,, to obtain a point xj = a t contained in at least 

� 8 8  - j )2j  
C' g2Jn2J 

log2jaJ(1/eo) 

projected segments of .~//, for an appropriate positive constant c', depending on j 
and on cj_ 1. Clearly, if [(PlP2""Pj), (qlq2""qj)] is a segment of ~ whose 
xfprojection contains aj, which is formed, say, through the chain of "point 
replacements" used above, then at least one of the segments [(PlP2""Pj), 
(P2""P~ql)], [(P2""Pjql), (Pa '"Pjq lq2)] , . . . ,  [ (Pjqlq2""qj-  x), (qlq2""qj)] must 
have an xfprojection that also contains a t. Hence, a t is contained in at least 
c'e2Jn2J/log2Ja,(1/eo) projected segments of the latter kind, which, by construction, 
are all sorted in the j-level interval tree constructed within fv,_,. As above, these 
segments are not necessarily distinct, and each may be counted with multiplicity 
at most 0 (4 -1n  J- ~) (which is the number of times such a segment can be extended, 
via the point-replacement mechanism described above, to a segment connecting 
two points of E' whose labels share no point of To). Hence, aj is contained in at 
least c"eJo+lnJ+l/log2ja~(1/eo) distinct segments of this kind, for another con- 
stant c". We now repeat the argument involving the path in the interval tree 
leading to a t, truncated at depth roughly (j + 1)log(1/eo), to conclude that a 
node vj exists in that interval tree whose associated (d - j ) - f l a t  fv, crosses at least 
Cido +~ nJ+l/log22aJ+~(1/eo) distinct j-simplices spanned by the points of T 0, for 
an appropriate positive constant c j, and all these simplices are stored at Nvj. 

This establishes the induction step for j, since flj+ ~ = 2jflj + 1, by definition, and 
thus completes the inductive proof of the lemma. [] 

Theorem 2.4. Any  finite point set in R d admits a weak e-net for convex sets, of  
size O((1/e d) log'S(i/e)). 

There are several interesting consequences of our construction. First, let Q 
denote the collection of all points of intersection between the lines fv, for nodes 
v of the last-level interval trees, and the (d - 1)-simplices spanned by the points 
of S and stored at v. The analysis given above implies that the size of Q is O(nd). 
Note that the set Q depends only on S and is independent of e. We have thus 
shown the existence of a fixed set Q of O(n") points, depending only on S, so that, 
for any e > 0, a weak e-net for S can be obtained by an appropriate sampling of 
the points of Q. 

Second, if we construct the weak e-net W by sampling more points of Q, say 
three times more densely, then W has the following additional property. If Tis a 
subset of S containing en points, then cony(7} contains a point z of W so that there 
are at least cednd/log~(1/e) (d -- 1)-simplices spanned by points of T and lying above 
z, and at least that many such simplices lying below z. This in turn implies that 
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z is an approximate center point of T, meaning that any half-space bounded by a 
hyperplane passing through z must contain at least aen points of T, where 
ct = f2(1/loga~/n(1/e)). It is easily checked that this also holds for any subset T ~_ S 
that contains at least en points. This property is weaker than being a real center 
point of T, which is a point having the property that each half-space bounded by 
a hyperplane passing through p contains at least i/(d + 1) of the points of T (it is 
well known that such a point always exists; see [8]). Still it is interesting that 
the fixed, and reasonably small, set Q contains an approximate center point for 
every subset T o f  S that contains at least en points. 

3. Weak E-Nets for Planar Point Sets on Convex Position 

For 0 < e < 1, let 6(e) be the smallest integer for which any finite planar point set 
S in convex position admits a weak t-net N for convex sets, of size 6(e). We show 
that 

To do this, we prove that for any real number e, 0 < e < 1, and any positive integer 
?, the function 6 obeys the inequality 

(~) 

with the trivial "boundary condition" 6(1)= 1. The bound on di(e) follows by 

choosing • = 3/x/~e, which gives 

o + 

and, consequently, 

6 ( e ) < ( 1 + 3 + 3 2 +  ...+31~176 - O ( ! )  

= O(~ logl~ ~). 

Let S be a planar set of n points in convex position, and let r < n. We select 
points in S enumerated by Po, Pl . . . . .  Pr Pr = Po in counterclockwise direc- 

tion; the choice has to be made so that between any two consecutive points Pi- 
and pl there are at most n/ f  points of S. Let Si denote the points from S between 



10 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir, and E. Welzl 

Pl-1 and Pi (without the points Pl-1 and Pl themselves !). A weak t-net of S can 
now be constructed by choosing: 

(a) The points P = {P0, Pl . . . . .  P~-I}- 
(b) A weak (~/3)-net obtained recursively for each of the sets Si, 1 < i < ~. 
(c) The intersection of segment PjPi with segment PoP~-1, for each pair i , j  with 

l < i < j - l < f - 2 .  

Clearly, this will yield the recursion (1). It remains to verify that this collection 
of points forms a weak t-net. Consider T _ S, I TI > en. If T c~ P # ~ ,  then the 
point set in (a) will hit the convex hull of T. If T is contained in at most three of 
the Si's, then, for one i, IT n Sil > en/3, and cony(T) is thus hit by a point selected 
in (b). So, it remains to consider the case when T has points in at least four of the 
Si's, say for i = a, b, c, d, 1 < a < b < c < d < f .  Then all four quadrants formed 
by the lines through PcPa and PoPc- 1, respectively, contain points from T, and thus 
the intersection of the respective segments lies in the convex hull of T. This 
intersection has been chosen in (c) (note that, indeed, 1 < a < c - 1 < ~ - 2). We 
thus have established our claim. 

Theorem 3.1. Given a planar set S o f  n points in convex position, a weak e-net for 
convex sets o f  S exists, o f  size O((1/e)logl~ 

4. Weak z-Nets for Points Uniformly Distributed on a Circle 

We next show that if S consists of points with a quasi-uniform distribution on the 
unit circle q/, then a weak e-net for S of size O(1/e) exists. By a quasi-uniform 
distribution we mean that any arc of q / o f  length 2 should contain at most Fc2n7 
points of S, for some constant c > 0. This result, which improves a previous bound 
of O(1/e2 '~ by Capoyleas I-5], is a simple corollary of the following theorem. 

Theorem 4.1. Given any e > 0, a set o f  P of  size O(1/e) such that any triangle whose 
vertices lie in ~11 and whose side lengths all exceed e must intersect P. 

A Brie f  Sketch o f  the Proo f  A first attempt might be to put within the disk 
bounded by q / a  sufficiently fine square grid that has O(1/e) vertices, and take the 
set of these vertices as our net. This will not work, unfortunately, because the area 
of a triangle as in the theorem might be much too small to be hit by a grid vertex. 
As an extreme case, consider a triangle uvw where uv, vw are two chords in ~ of 
length ~ each; the area of uvw is easily seen to be O(e3), which is indeed two orders 
of magnitude smaller than areas for which the grid is guaranteed to hit the triangle. 
The trick is to distribute the net points within ~ so that the density of the 
distribution is larger as we approach the boundary q/. We thus take a nonuniform 
grid where the density of points at a distance r from the center is roughly 
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r(1 - r2)  - 3 / 2 .  Why such an odd-looking density? It is the intrinsic area of the 
hyperbolic plane in its projective (Klein) model. Although our proof of Theorem 
4.1 can be interpreted in Euclidean terms [,14], it is nonconstructive and more 
complicated. Strikingly, the proof is completely trivial in hyperbolic geometry, 
which thus appears to be its natural "habitat." We assume that the reader is 
familiar with the basic properties of the hyperbolic plane. See [4], [,7], [9], rio],  
[12], r15], and [16] for background material. 

Lemma 4.2. Let p and q be two points in the PoincarE disk whose Euclidean distance 
6 is equal to 6'/100, where 6' is the Euclidean distance between {p, q} and ~li. Then 
the hyperbolic distance between p and q exceeds a positive constant (independent of 
p and q). 

Proof In the Poincar6 model the metric ds 2 is of the form 4(1 - r 2 ) -  2 (dx2  -J- dy2). 
Because 6 is much smaller than 6', the hyperbolic distance between p and q can be 
estimated accurately by integrating ds along the geodesic from p to q and 
pretending that the value of r is fixed. For the same reason, if we carry the 
integration along the Euclidean segment pq (instead of the geodesic), we lose at 
most another constant factor in the estimation. Clearly, we can assume that 6' is 
very small, which implies that r is close to 1. Then 1/(1 - r E) is on the order of 
1/s and therefore the hyperbolic distance between p and q is on the order of 
6/6'= 1/100. []  

A triangle in the Poincar6 model is the region of ~ bounded by three circular 
arcs orthogonal to q/. The triangle is called ideal if its three vertices lie on ~//. If 
its angles are ~, fl, 7, then its area is rc - (ct + fl + 7). Note that ideal triangles have 
zero angles, so their area is exactly ~ (even though their sides have infinite length). 
Unlike its Euclidean counterpart, a triangle is completely characterized (up to 
congruency) by its three angles. The Poincar6 model is conformal, so we can reason 
directly about angles. For  example, it is easy to show that any regular n-gon can 
be used to tile the whole hyperbolic plane (which shows how much more room 
the hyperbolic plane H 2 has compared with E2). Indeed, consider a regular n-gon 
centered at O. By triangulating it we immediately derive that its area is equal to 
(n - 2)re - net, where ~ is its vertex angle. If the polygon is ideal, i.e., if all of its 
vertices lie on the unit circle ~,  then ~ = 0. If we continuously "shrink" the polygon 
towards O, however, its area goes to 0, and, therefore, ~t tends to (1 - 2/n)rc. (Note 
that near the origin the hyperbolic plane behaves like the Euclidean plane). 
Assuming that n > 3, this means that, at some point during the shrinking, 
becomes equal to 2rc/n (Fig. 1). We can now draw the polygon at that position 
and reflect it about its edges (since angles sum up to 2r~ around the vertices). 
Iterating these reflections (which from a Euclidean standpoint are circle inversions) 
tiles the entire hyperbolic plane. 

A particularly interesting class of tilings is obtained by reflecting triangles 
around their edges. It is a standard theorem [,12] that, given any positive integers 
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Fig. 1. An ideal octagon shrinking toward O. 

l, m, n such that 

1 1 1 
- + - - + - < 1 ,  
l m n 

the triangle with angles re~l, re~m, and rt/n (which is unique up to congruency) can 
tile H 2. Figure 2 shows a tiling with l -- 2, m = 3, n = 7. The tiling is infinite so 
it is only shown within a finite disk. If X denotes reflection around edge x, the 
tiling is generated by the group, denoted T*(l, m, n), with generators L, M, N and 
relations, 

( M N )  z = ( N L ) ' '  = (LM)"  = 1 and L 2 = M  z = N 2 = 1 .  

The first g roup  of relations express the fact that  reflected images incident upon a 
fixed vertex cycle back after a while. The second group says that  reflections are 
involutory. 

Fig. 2. The T*(2, 3, 7) tiling. 
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Fig. 3. Barycentric subdivision. 
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The characterization of hyperbolic triangle groups given above immediately 
implies that (unfortunately) triangular tilings must be made of triangles of 
diameter higher than some fixed constant. In other words, triangles involved 
in a tiling cannot be too small. In fact, T*(2, 3, 7) is the tiling whose fundamental 
region has the smallest possible triangle: from what we said earlier, its area is 
(1 - ~ - ~ - 1  1 ~)n ~"- 0.07479. For concreteness, place the center O of q / a t  a vertex 
of degree 14 in the tiling generated by T* (2, 3, 7) (Fig. 2). 

Fix 0 < r < 1, and let ~ ,  be the disk centered at 0 of Euclidean radius r < 1. 
It is immediate to verify (for example, by using Lemma 4.2) that the number of 
triangles intersecting ~r  is O(1/(1 - r ) ) .  Suppose that we wish to have smaller 
triangles. By decomposing each triangle barycentrically (Fig. 3), and iterating in 
this fashion a constant number of times, we can bring down the hyperbolic 
diameter of every triangle below any desired positive constant. Note that the total 
number of triangles (intersecting 9 , )  remains 0(1/(1 - r)). Although it is not a 
problem here, it is worth noting that this operation is no longer a tiling since the 
new triangles are not congruent (and interestingly can never be made congruent). 
We summarize our results: 

Lemma 4.3. A triangulation of the Poincar~ disk using triangles of hyperbolic 
diameter below any desired positive constant exists such that, given any 0 < r < 1, 
the number of  triangles overlapping the disk ~ ,  of Euclidean radius r is O(1/(1 - r)). 

We are now ready to prove Theorem 4.1. Set r = 1 - e/10 in Lemma 4.3, and 
choose a triangulation g of the Poincar6 disk with triangles of hyperbolic diameter 
less than some suitable constant d > 0. We claim that, for d small enough, the set 
P consisting of the vertices of J within ~ , ,  when mapped back to the Klein disk 
satisfies the conditions of Theorem 4.1. To begin with, observe that the set contains 
O(1/(1 -- r)) = O(1/e) points. 

Next, let uvw be an ideal triangle whose Euclidean side lengths exceed 5. Since 
a constant number of random points hit every triangle with big enough sides, we 
can certainly assume that the sides of uvw are fairly short. Now, let uvh be the 
triangle obtained as the intersection of the triangles uvw and v'uv, where v' is the 
reflection of v around u (Fig. 4). We can assume that uv and vw are congruent, 
for, otherwise, if w is further from v than u is, then sliding w toward v shrinks the 
triangle uvh, within which we will seek a net point. Let 2 > ~ be the Euclidean 
distance from u to v. Elementary calculations show that the triangle uvh contains 
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u v 

Fig. 4. The proof of Theorem 4.1. 

a disk D* whose Euclidean radius and Euclidean distance to q /a re  both greater 
than, say, 2/10. By our choice of r, the disk is entirely contained in @,. Suppose 
for the sake of contradiction that D* does not contain any point of P. Then the 
triangle of ~- that contains the (Euclidean) center p of D* must also contain a 
point at Euclidean distance at least 2/10 from p. Since the Euclidean distance from 
p to og is less than 22, the triangle must contain a point q such that the pair p, q 
satisfies the conditions of Lemma 4.2. This implies that their hyperbolic distance 
exceeds a fixed positive constant. Thus, choosing d small enough leads to a 
contradiction, and the proof of Theorem 4.1 is now complete. [] 
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