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Abstract We consider the task of generating discrete-time
realisations of a nonlinear multivariate diffusion process sat-
isfying an Itô stochastic differential equation conditional on
anobservation taken at afixed future time-point. Such realisa-
tions are typically termed diffusion bridges. Since, in general,
no closed form expression exists for the transition densities
of the process of interest, a widely adopted solution works
with the Euler–Maruyama approximation, by replacing the
intractable transition densities with Gaussian approxima-
tions. However, the density of the conditioned discrete-time
process remains intractable, necessitating the use of compu-
tationally intensive methods such as Markov chain Monte
Carlo. Designing an efficient proposal mechanism which
can be applied to a noisy and partially observed system that
exhibits nonlinear dynamics is a challenging problem, and is
the focus of this paper. By partitioning the process into two
parts, one that accounts for nonlinear dynamics in a deter-
ministic way, and another as a residual stochastic process,
we develop a class of novel constructs that bridge the resid-
ual process via a linear approximation. In addition, we adapt
a recently proposed construct to a partial and noisy obser-
vation regime. We compare the performance of each new
construct with a number of existing approaches, using three
applications.
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1 Introduction

Diffusion processes satisfying stochastic differential equa-
tions (SDEs) provide a flexible class ofmodels for describing
many continuous-time physical processes. Some applica-
tion areas and indicative references include finance, e.g.
Kalogeropoulos et al. (2010), Stramer et al. (2010), reac-
tion networks, e.g. Fuchs (2013), Golightly et al. (2015) and
population dynamics, e.g. Heydari et al. (2014). Fitting such
models to data observed at discrete-times can be problem-
atic since the transition densities of the diffusion process
are likely to be intractable. A review of inferential meth-
ods for diffusions can be found in Fuchs (2013). A widely
adopted solution is to approximate the unavailable transi-
tion densities either analytically (Aït-Sahalia 2002, 2008)
or numerically (Pedersen 1995; Elerian et al. 2001; Eraker
2001; Roberts and Stramer 2001). Within the Bayesian
paradigm, the numerical approach can be seen as a data aug-
mentation problem. The simplest implementation augments
low-frequency data by introducing intermediate time-points
between observation times. An Euler–Maruyama scheme
is then applied by approximating the transition densities
over the induced discretisation as Gaussian. Computation-
ally intensive algorithms such as Markov chain Monte Carlo
(MCMC) are then used to integrate over the uncertainty asso-
ciatedwith themissing data. The key challenges of designing
such an MCMC scheme include overcoming dependence
between the parameters andmissing data (first highlighted as
a problem by Roberts and Stramer (2001)) and overcoming
dependence between successive values of the missing data.
Dealing with the latter requires repeatedly generating real-
isations known as diffusion bridges from an approximation
of the conditioned process. Methods built upon exact simu-
lation, that avoid use of the Euler–Maruyama approximation
and the associated discretisation error, have been proposed
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by Beskos et al. (2006) (see also Beskos et al. 2009). How-
ever, these exact methods are limited to diffusions which can
be transformed to have unit diffusion coefficient, known as
reducible diffusions.

Designing bridge constructs for irreducible, multivariate
diffusions is a challenging problem and has received much
attention in recent literature. The simplest approach (see e.g.
Pedersen 1995) is based on the forward dynamics of the diffu-
sion process and generates a bridge by sampling iteratively
from the Euler–Maruyama approximation of the uncondi-
tioned SDE. This myopic approach induces a discontinuity
at the observation time (as the discretisation gets finer) and
is well known to lead to low Metropolis–Hastings accep-
tance rates. The modified diffusion bridge (MDB) construct
of Durham andGallant (2002) (see also extensions to the par-
tial and noisy observation case in Golightly and Wilkinson
2008) pushes the bridge process towards the observation in a
linear way and provides the optimal sampling method when
the drift and diffusion coefficients of the SDE are constant
(Stramer andYan 2006).However, this construct is less effec-
tive when the process exhibits nonlinear dynamics. Several
approaches have been proposed to overcome this problem.
For example, Lindström (2012) (see also Fearnhead 2008
for a similar approach) combines the Pedersen and MDB
approaches, with a tuning parameter governing the precise
dynamics of the resulting sampler. Del Moral and Murray
(2014) (see also Lin et al. 2010) use a sequential Monte
Carlo scheme to generate realisations according to the for-
ward dynamics, pushing the resulting trajectories towards the
observation using a sequence of reweighting steps. Schauer
et al. (2016) combine the ideas of Delyon and Hu (2006) and
Clark (1990) to obtain a bridge based on the addition of a
guiding term to the drift of the process under consideration.
The guiding term is derived using a tractable approximation
of the target process.

1.1 Contributions and organisation of the paper

Our contribution is the development of a novel class of bridge
constructs that are computationally and statistically efficient,
simple to implement, and can be applied in scenarios where
only partial and noisy measurements of the system are avail-
able. Essentially, the process is partitioned into two parts, one
that accounts for nonlinear dynamics in a deterministic way,
and another as a residual stochastic process. A bridge con-
struct is obtained for the target process by applying theMDB
sampler of Durham and Gallant (2002) to the end-point con-
ditioned residual process. We consider two implementations
of this approach. Firstly, we use the bridge introduced by
Whitaker et al. (2015) that constructs the residual process by
subtracting the solution of an ordinary differential equation
(ODE) systembased on the drift, from the target process. Sec-
ondly, we recognise that the intractable SDE governing the

residual process can be approximated by a tractable process.
We therefore extend the first approach by additionally sub-
tracting the expectation of the approximate residual process
and bridging the remainder with the MDB sampler. In addi-
tion, we adapt the guided proposal proposed by Schauer et al.
(2016) to a partial and noisy observation regime.

We evaluate the performance of each bridge construct
(as well as the constructs proposed by Durham and Gallant
(2002) and Lindström (2012)) using three examples: a sim-
ple birth–death model, a Lotka–Volterra system and a model
of aphid growth.

The remainder of this article is organised as follows.
Section 2 provides a brief introduction to the problem of
sampling conditioned SDEs and examines two previously
proposed approaches. In Sect. 3 we describe a novel class of
bridge constructs and adapt an existing approach to a more
general observation regime. Applications are considered in
Sect. 4 and a discussion is provided in Sect. 5.

2 Sampling conditioned SDEs

Consider a continuous-time d-dimensional Itô process
{Xt , t ≥ 0} governed by the SDE paramaterised by θ =
(θ1, . . . , θp)

′ of the form

dXt = α(Xt , θ) dt + √
β(Xt , θ) dWt , X0 = x0. (1)

Here, α is a d-vector of drift functions, the diffusion matrix
β is a d × d positive definite matrix with a square root rep-
resentation

√
β such that

√
β
√

β
′ = β and Wt is a d-vector

of (uncorrelated) standard Brownian motion processes. We
assume that α and β are sufficiently regular so that the SDE
has a weak non-explosive solution (Øksendal 2003).

For tractability,wemake the sameassumption asGolightly
andWilkinson (2008), Golightly andWilkinson (2011), Pic-
chini (2014) and Lu et al. (2015) among others, that the
process is observed at t = T according to

YT = F ′XT + εT , εT |Σ ∼ N (0,Σ). (2)

Here, YT is a do-vector, F is a constant d × do matrix and
εT is a random do-vector for some do ≤ d. This flexible
setup allows for only observing a subset of components.
For simplicity we also assume that the process is known
exactly at t = 0. This is the case when a diffusion process is
observed completely and without error. In the case of partial
and/or noisy observations, typically the initial position is an
unknown parameter in an MCMC scheme and a new bridge
is created at each iteration conditional on the current para-
meter values, so in terms of the bridge, the initial position
is effectively known. The complication of multiple partial
and/or noisy observations is discussed in Sect. 5.
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Our aim is to generate discrete-time realisations of Xt

conditional on x0 and yT . To this end, we partition [0, T ] as

0 = τ0 < τ1 < τ2 < · · · < τm−1 < τm = T,

giving m intervals of equal length �τ = T/m. Since, in
general, the form of the SDE in (1) will not permit an analytic
solution, we work with the Euler–Maruyama approximation
which gives the change in the process over a small interval
of length �τ as a Gaussian random vector. Specifically, we
have that

Xτk+1 − Xτk = α(Xτk , θ)�τ + √
β(Xτk , θ) �Wτk

where �Wτk ∼ N (0,�τ I d) and Id is the d × d iden-
tity matrix. The continuous-time conditioned process is then
approximated by the discrete-time skeleton bridge, with the
latent values x(0,T ] = (xτ1 , . . . , xτm = xT )′ having the (pos-
terior) density

π(x(0,T ]|x0, yT , θ,Σ) ∝ π(yT |xT ,Σ)

m−1∏

k=0

π(xτk+1 |xτk , θ)

(3)

where

π(xτk+1 |xτk , θ)=N
(
xτk+1; xτk+α(xτk , θ)�τ, β(xτk , θ)�τ

)

is the transition density under the Euler–Maruyama approx-
imation, π(yT |xT ,Σ) = N (yT ; F ′xT ,Σ) and N (·;m, V )

denotes the multivariate Gaussian density with mean vector
m and variance matrix V . In the special case where xT is
known (so that yT = xT and F = Id ), the latent values
x(0,T ) = (xτ1 , . . . , xτm−1)

′ have the density

π(x(0,T )|x0, xT , θ) ∝
m−1∏

k=0

π(xτk+1 |xτk , θ). (4)

For nonlinear forms of the drift and diffusion coefficients, the
products in (3) and (4) will be intractable and samples can
be generated via computationally intensive algorithms such
as Markov chain Monte Carlo or importance sampling. We
focus on the former but note that in either case, the efficiency
of the algorithmwill depend on the proposalmechanismused
to generate the bridge. A common approach to constructing
an efficient proposal is to factorise the target in (3) as

π(x(0,T ]|x0, yT , θ,Σ) ∝
m−1∏

k=0

π(xτk+1 |xτk , yT , θ,Σ). (5)

The density in (4) can be factorised in a similar man-
ner. This suggests seeking proposal densities of the form

q(xτk+1 |xτk , yT , θ,Σ) which aim to approximate the
intractable constituent densities in (5). In what follows, we
consider some existing approaches for generating bridges via
approximation ofπ(xτk+1 |xτk , yT , θ,Σ) before outlining our
contribution. For each bridge, the proposal densities take the
form

q(xτk+1 |xτk , yT , θ,Σ) = N
(
xτk+1 ; xτk

+ μ(xτk )�τ , Ψ (xτk )�τ
)

(6)

and our focus is on the choice ofμ(·) andΨ (·). For simplicity
and where possible, we drop the parameters θ and Σ from
the notation as they remain fixed throughout.

2.1 Myopic simulation

Ignoring the information in the observation yT and sim-
ply applying the Euler–Maruyama approximation over each
interval of length �τ leads to a proposal density of the form
given by (6) withμ EM(xτk ) = α(xτk ) andΨ EM(xτk ) = β(xτk ).
Sampling iteratively according to (6) for k = 0, 1, . . . ,m−1
gives a proposed bridge which we denote by x∗

(0,T ]. TheMet-
ropolis-Hastings (MH) acceptance probability for a move
from x(0,T ] to x∗

(0,T ] is

min

{
1 ,

π(yT |x∗
T )

π(yT |xT )

}
.

This strategy is likely to work well provided that the obser-
vation yT is not particularly informative, that is, when the
measurement error dominates the intrinsic stochasticity of
the process. However, as Σ is reduced, the MH acceptance
rate decreases. A related approach can be found in Pedersen
(1995), where it is assumed that xT is known. In this case, a
move from x(0,T ) to x∗

(0,T ) is accepted with probability

min

{
1 ,

π(xT |x∗
τm−1

)

π(xT |xτm−1)

}

which tends to 0 as m → ∞ (or equivalently, �τ → 0).

2.2 Modified diffusion bridge

For known xT , Durham and Gallant (2002) derive a lin-
ear Gaussian approximation of π(xτk+1 |xτk , xT ), leading to
a sampler known as the modified diffusion bridge (MDB).
Extensions to the partial and noisy observation regime are
considered in Golightly and Wilkinson (2008). In brief, the
joint distribution of Xτk+1 and YT (conditional on xτk ) is
approximated by
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(
Xτk+1

YT

) ∣
∣
∣
∣xτk

∼ N

{(
xτk + αk�τ

F ′(xτk + αk�k)

)
,

(
βk�τ βk F�τ

F ′βk�τ F ′βk F�k+Σ

)}

where αk = α(xτk ), βk = β(xτk ) and �k = T − τk . Condi-
tioning on YT = yT gives

μMDB(xτk ) = αk + βk F
(
F ′βk F�k + Σ

)−1

× {
yT − F ′(xτk + αk�k)

}
(7)

and

ΨMDB(xτk ) = βk − βk F
(
F ′βk F�k + Σ

)−1
F ′βk�τ. (8)

In the case of no measurement error and observation of all
components (so that xT is known), (7) and (8) become

μ∗
MDB(xτk )=

xT − xτk

T−τk
and Ψ ∗

MDB(xτk )=
T− τk+1

T− τk
β(xτk ).

2.2.1 Connection with continuous-time conditioned
processes

Consider the case of no measurement error and full observa-
tion of all components. The SDE satisfied by the conditioned
process {Xt , t ∈ [0, T ]}, takes the form

dXt = α̃(Xt ) dt + √
β(Xt ) dWt , X0 = x0 (9)

where the drift is

α̃(Xt ) = α(Xt ) + β(Xt )∇xt log p(xT |xt ). (10)

See for example chap. IV.39 of Rogers and Williams (2000)
for a derivation. Note that p(xT |xt ) denotes the (intractable)
transition density of the unconditioned process defined in
(1). Approximating α(Xt ) and β(Xt ) in (1) by the constants
α(xT ) and β(xT ) yields a process for which p(xT |xt ) is
tractable. The corresponding conditioned process satisfies

dXt = XT − Xt

T − t
dt + √

β(Xt ) dWt . (11)

Use of (11) as a proposal process has been justified by
Delyon and Hu (2006) (see also Stramer and Yan (2006),
Marchand (2011) and Papaspiliopoulos et al. (2013)), who
show that the distribution of the target process (conditional
on xT ) is absolutely continuous with respect to the distribu-
tion of the solution to (11). As discussed by Papaspiliopoulos
et al. (2013), it is impossible to simulate exact (discrete-
time) realisations of (11) unless β(·) is constant. They also
note that performing a local linearisation of (11) according to

Shoji andOzaki (1998) (see also Shoji 2011) gives a tractable
process with transition density

q(xτk+1 |xτk , xT )

= N

(
xτk+1 ; xτk + xT − xτk

T − τk
�τ ,

T − τk+1

T − τk
β(xτk )�τ

)
,

that is, the transition density of the modified diffusion bridge
discussed in the previous section. Plainly, taking the Euler–
Maruyama approximation of (11) yields the MDB construct,
albeit without the time dependent multiplier of β(xτk ) in
the variance. As observed by Durham and Gallant (2002)
and discussed in Papaspiliopoulos and Roberts (2012) and
Papaspiliopoulos et al. (2013), the inclusion of the time
dependent multiplier can lead to improved empirical perfor-
mance.

Unfortunately, the MDB is only efficient when the drift
of (1) is approximately constant. When this is not the
case, so that realisations of the SDE started from the same
point exhibit strong and similar non-linearity over the inter-
observation time, the modified diffusion bridge is likely to
be unsatisfactory.

2.3 Lindström bridge

A bridge construct that combines the myopic sampler with
the MDB is proposed in Lindström (2012), for the special
case of known xT . Extending the sampler to the observation
scenario in (2) is straightforward.Whereas theMDB approx-
imates the variance of YT |xτk by F ′βk F�k +Σ , the simplest
version of the Lindström bridge (LB) has that

Var(YT |xτk )  F ′ {βk�k + C(�k+1)
2
}
F + Σ,

where C(�k+1)
2 is the squared bias of XT |xτk+1 using a sin-

gle Euler–Maruyama time-step and C is an unknown matrix.
By assuming that the squared bias is a fraction γ of the vari-
ance over an interval of length �τ , a heuristic choice of C is
given by

CHeur = γβk

�τ
,

with γ > 0. This particular choice of CHeur ensures that
Var(YT |xτk ) is a positive definite matrix. The joint dis-
tribution of Xτk+1 and YT (conditional on xτk ) is then
approximated by

(
Xτk+1

YT

) ∣
∣
∣
∣xτk

∼ N

{(
xτk + αk�τ

F ′(xτk + αk�k)

)
,

(
βk�τ βk F�τ

F ′βk�τ F ′βk F�
γ

k+Σ

)}
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where�
γ

k = �k+γ (�k+1)
2/�τ . Conditioning onYT = yT

gives

μ LB(xτk ) = αk + βk F
(
F ′βk F�

γ

k + Σ
)−1

× {
yT − F ′(xτk + αk�k)

}
(12)

and

Ψ LB(xτk ) = βk − βk F
(
F ′βk F�

γ

k + Σ
)−1

F ′βk�τ. (13)

In the case of no measurement error and observation of all
components, (12) and (13) become

μ∗
LB(xτk ) = w

γ

k μ∗
MDB(xτk ) + (1 − w

γ

k )α(xτk )

and

Ψ ∗
LB(xτk ) = w

γ

k Ψ ∗
MDB(xτk ) + (1 − w

γ

k )β(xτk )

where

w
γ

k = (τk+1 − τk)(T − τk)

(τk+1 − τk)(T − τk) + γ (T − τk+1)2
.

The Lindström bridge can therefore be seen as a convex com-
bination of the MDB and myopic samplers, with γ = 0
giving the MDB and γ = ∞ giving the myopic approach.
In practice, Lindström (2012) suggests that γ ∈ [0.01, 1],
given that these values have proved successful in simulation
experiments. Note also that for a fixed γ , if T − τk+1 � �τ

then w
γ

k  0 and the myopic sampler dominates. However,
as τk+1 approaches T , w

γ

k approaches 1 and the LB is dom-
inated by the MDB.

Whilst the LB attempts to account for nonlinear dynam-
ics by combining the MDB with the myopic approach,
having to specify a model-dependent tuning parameter is
unsatisfactory, since different choices of γ will lead to dif-
ferent properties of the proposed bridges. Moreover, the link
between the regularised sampler and the continuous-time
conditioned process is unclear.

3 Improved bridge constructs

In this section we describe a novel class of bridge constructs
that require no tuning parameters, are simple to implement
(even when only a subset of components are observed with
Gaussian noise) and can account for nonlinear dynamics
driven by the drift. In addition, we discuss the recently pro-
posed bridging strategy of Schauer et al. (2016) and describe
an implementation method in the case of partial observation
with additive Gaussian measurement error.

3.1 Bridges based on residual processes

Suppose that Xt is partitioned as Xt = ζt + Rt where
{ζt , t ≥ 0} is a deterministic process and {Rt , t ≥ 0} is a
residual stochastic process, satisfying

dζt = f (ζt )dt, ζ0 = x0,

dRt = {α(Xt ) − f (ζt )}dt + √
β(Xt ) dWt , R0 = 0. (14)

We then aim to choose ζt (and therefore f (·)) to adequately
account for nonlinear dynamics (so that the drift in (14) is
approximately constant), and construct theMDB of Sect. 2.2
for the residual stochastic process rather than the target
process itself. Suitable choices of ζt and f (·) can be found in
Sects. 3.1.1 and 3.1.2. It should be clear from the discussion
in Sect. 2.2 that for known xT , the MDB approximates the
density of Rτk+1 |rτk , rT by

q(rτk+1 |rτk , rT )

= N

(
rτk+1 ; rτk + rT − rτk

T − τk
�τ ,

T − τk+1

T − τk
β(xτk )�τ

)
.

(15)

In this case, the connection between (15) and the intractable
continuous-time conditioned residual process can be estab-
lished by following the arguments of Sect. 2.2.1. By approx-
imating the drift and diffusion matrix in (14) by the constants
α(xT ) − f (ζT ) and β(xT ) gives a process with a tractable
transition density. The corresponding conditioned process
then satisfies

dRt = RT − Rt

T − t
dt + √

β(Xt ) dWt . (16)

The density in (15) is then obtained by a local linearisation
of (16).

It remains for us to choose ζt to balance the accuracy
and computational efficiency of the resulting construct. We
explore two possible choices in the remainder of this section.

3.1.1 Subtracting the drift

In the simplest approach to account for dynamics based on
the drift, we take ζt = ηt and f (·) = α(·) where

dηt = α(ηt )dt, η0 = x0, (17)

so that

dRt = {α(Xt ) − α(ηt )}dt + √
β(Xt ) dWt , R0 = 0. (18)

The MDB can be constructed for the residual process by
approximating the joint distribution of Rτk+1 and YT − F ′ηT
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(conditional on rτk ), where YT −F ′ηT can be seen as a partial
and noisy observation of RT since

YT − F ′ηT = F ′RT + εT , εT |Σ ∼ N (0,Σ).

As in Sect. 2.2, we obtain the (approximate) joint distribution

(
Rτk+1

YT − F ′ηT

) ∣
∣
∣
∣rτk

∼ N

{(
rτk + (αk − α

η
k )�τ

F ′(rτk+(αk − α
η
k )�k)

)
,

(
βk�τ βk F�τ

F ′βk�τ F ′βk F�k+Σ

)}

(19)

where α
η
k = α(ητk ) and αk , βk and �k are as defined in

Sect. 2.2. Note that the mean in (19) uses the tangent α
η
k at

(τk, ητk ) to approximate dηt/dt over time intervals of length
�τ and �k . Since ητk+1 will be available either exactly from
the solution of (17) or from the output of a (stiff) ODE solver,
we propose to approximate dηt/dt via the chord between
(τk, ητk ) and (τk+1, ητk+1), that is, by

δ
η
k = ητk+1 − ητk

�τ
.

Replacing α
η
k in (19) with δ

η
k , conditioning on yT −F ′ηT and

using the partition Xt = ηt +Rt givesΨ RB(xτk ) = ΨMDB(xτk )

and

μ RB(xτk ) = αk + βk F
(
F ′βk F�k + Σ

)−1

× {
yT − F ′(ηT + rτk + (αk − δ

η
k )�k)

}
. (20)

Note that in the case of known xT , Ψ ∗
RB(xτk ) = Ψ ∗

MDB(xτk )

and (20) becomes

μ∗
RB(xτk ) = δ

η
k + (xT − xτk ) − (ηT − ητk )

T − τk
.

3.1.2 Further subtraction using the linear noise
approximation

Whilst the solution of the SDE governing the residual sto-
chastic process in (18) is unavailable in closed form, a
tractable approximation can be obtained. Therefore, in situ-
ations where ηt fails to adequately capture the target process
dynamics, we propose to further subtract an approximation
of the conditional expectation ρt = E(Rt |r0, yT ), which
we denote by ρ̂t = E(R̂t |r0, yT ). Here, {R̂t , t ∈ [0, T ]}
is obtained through the linear noise approximation (LNA) of
(18). The LNA can be derived in a number of more or less
formal ways (see e.g. Kurtz (1970), van Kampen (2001) and
Fearnhead et al. (2014)). Here, we give a brief exposition of
the LNA and refer the reader to Fearnhead et al. (2014) and
the references therein for a complete derivation.

By Taylor expanding α(Xt ) and β(Xt ) about ηt (the solu-
tion of (17)), truncating the expansion of α at the first two
terms and taking only the first term of the expansion of β,
we obtain

d R̂t = H(ηt )R̂t dt + √
β(ηt ) dWt ,

where H(ηt ) is the Jacobian matrix with (i, j)th element
(H(ηt ))i, j = ∂αi (ηt )/∂η j,t . It should be clear from the trun-
cations used in theTaylor expansions of the drift anddiffusion
coefficients that the key assumption underpinning the LNA
is that the stochastic term β(Xt ) is “small”. Now, for a fixed
initial condition R̂0 = r̂0, it is straightforward to show that

R̂t |R̂0 = r̂0 ∼ N
(
Pt r̂0 , Ptψt P

′
t

)
(21)

where Pt and ψt satisfy the ODE system

dPt
dt

= H(ηt )Pt , P0 = Id , (22)

dψt

dt
= P−1

t β(ηt )(P
−1
t )′, ψ0 = 0. (23)

The joint distribution of R̂t and YT − F ′ηT (conditional on
r̂0) is

(
R̂t

YT − F ′ηT

) ∣
∣
∣
∣r̂0

∼ N

{(
Pt r̂0

F ′PT r̂0

)
,

(
Ptψt P ′

t Ptψt P ′
T F

F ′PTψt P ′
t F ′PTψT P ′

T F+Σ

)}
.

(24)

Conditioning further on yT − F ′ηT and noting that r̂0 =
r0 = 0 gives

ρ̂t = E(R̂t |r0, yT )

= Ptψt P
′
T F(F ′PTψT P

′
T F + Σ)−1(yT − F ′ηT ).

Having obtained an explicit, closed-form (subject to the
solution of (17), (22) and (23)) approximation of the expected
conditioned residual process, we adopt the partition Xt =
ηt+ρ̂t+R−

t where {R−
t , t ∈ [0, T ]} is the residual stochastic

process resulting from the additional decomposition of Xt .
Although the SDE satisfied by R−

t will be intractable, the
joint distribution of R−

τk+1
and YT − F ′(ηT + ρ̂T ) can be

approximated (conditional on r−
τk
) by
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(
R−

τk+1

YT − F ′(ηT + ρ̂T )

) ∣
∣
∣
∣r

−
τk

∼ N

{(
r−
τk

+ (αk − δ
η
k − δ

ρ
k )�τ

F ′(r−
τk

+ (αk − δ
η
k − δ

ρ
k )�k)

)
,

(
βk�τ βk F�τ

F ′βk�τ F ′βk F�k + Σ

)}

where again we use the chord

δ
ρ
k = ρ̂τk+1 − ρ̂τk

�τ

in preference to the tangent. Hence we obtain Ψ RB−(xτk ) =
ΨMDB(xτk ) and

μ RB−(xτk ) = αk + βk F
(
F ′βk F�k + Σ

)−1

× {
yT − F ′(ηT + ρ̂T + r−

τk

+ (αk − δ
η
k − δ

ρ
k )�k)

}
. (25)

Note that in the case of known xT , Ψ ∗
RB−(xτk ) = Ψ ∗

MDB(xτk )

and (25) becomes

μ∗
RB−(xτk ) = δ

η
k + δ

ρ
k

+ (xT − xτk ) − (ηT − ητk ) − (ρ̂T − ρ̂τk )

T − τk
.

3.2 Guided proposals

For known xT , van der Meulen and Schauer (2015) (see also
Schauer et al. 2016) derive a bridge construct which they
term a guided proposal (GP). They take the SDE satisfied by
the conditioned process {Xt , t ∈ [0, T ]} in (9) and (10) but
replace the intractable p(xT |xt ) with the transition density
associated with a class of linear processes {X̂t , t ∈ [0, T ]}
satisfying

d X̂t = B(t)X̂t dt + b(t) dt + √
σ(t) dWt , X̂0 = x. (26)

Here, B(t) and σ(t) are d × d matrices and b(t) is a d-
vector. Note that the LNA (see Sect. 3.1.2) satisfies (26) with
B(t) = H(ηt ), b(t) = α(ηt ) − H(ηt )ηt and σ(t) = β(ηt ).

The guided proposal can be extended to theGaussian addi-
tive noise regime in (2) by noting that in this case, the drift
in (10) becomes

α̃(Xt ) = α(Xt ) + β(Xt )∇xt log p(yT |xt ). (27)

Given a tractable approximation of p(yT |xt ), the Euler–
Maruyama approximation of (9) can be applied over the
discretisation of [0, T ] to give a proposal density of the form
(6) with μ GP(xτk ) = α̃(xτk ) and Ψ GP(xτk ) = β(xτk ).

We will approximate p(yT |xt ) using the LNA. Using the
partition X̂t = ηt + R̂t and combining the transition density
of R̂t in (21) with the observation regime defined in (2) gives

p̂(yT |xt ) = N
(
yT ; F ′{ηT + PT |t (xt − ηt )},

F ′PT |tψT |t P ′
T |t F + Σ

)

where PT |t andψT |t are found by integrating theODE system
in (22) and (23) from t to T with Pt |t = Id and ψt |t = 0.
Hence the drift (27) becomes

α̃(Xt ) = α(Xt ) + β(Xt )P
′
T |t F(F ′PT |tψT |t P ′

T |t F + Σ)−1

× {
yT − F ′(ηT + PT |t [xt − ηt ])

}
. (28)

Note that a computationally efficient implementation of this
approach is obtained by using the identities PT |t = PT P

−1
t

and ψT |t = Pt (ψT − ψt )P ′
t . Hence, the LNA ODEs in (17),

(22) and (23) need only be integrated once over the inter-
val [0, T ]. Unfortunately, we find that this approach does
not work well in practice, unless the total measurement error
tr(Σ) is large relative to the infinitesimal variance β(·). Note
that the variance of YT |xt under the LNA is a function of the
deterministic process ηt . If ηt and xt diverge as t is increased,
the guiding term in (28) will result in an over or under dis-
persed proposalmechanism (relative to the target conditioned
process) at times close to T . The problem is exacerbated in
the case of no measurement error, where the discrepancy
between xt and ηt can result in a singularity in the guid-
ing term in (28) at time T . This naive approach (henceforth
referred to asGP-N) can be alleviated by integrating theODE
system given by (17), (22) and (23) for each interval [τk, T ],
k = 0, 1, . . . ,m − 1, with ητk = xτk . In this case, the drift
(27) is given by

α̃(Xt ) = α(Xt ) + β(Xt )P
′
T |t F(F ′PT |tψT |t P ′

T |t F + Σ)−1

× (
yT − F ′ηT

)
.

In the special case that xT is known, we have that
Ψ ∗

GP-N(xτk ) = Ψ ∗
GP(xτk ) = β(xτk ),

μ∗
GP-N(xτk ) = α(xτk ) + β(xτk )P

′
T |τk (PT |τkψT |τk P ′

T |τk )
−1

× {
xT − [ηT + PT |τk (xτk − ητk )]

}

and

μ∗
GP(xτk ) = α(xτk ) + β(xτk )P

′
T |τk (PT |τkψT |τk P ′

T |τk )
−1

× (xT − ηT ) .

The limiting form of the acceptance rate in this case can be
found in Schauer et al. (2016), who also remark that a key
requirement for absolute continuity of the target and pro-
posal process is that σ(T ) = β(xT ). For the LNA, we have
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σ(t) = β(ηt ). Again, we note that the naive implementation
of the guided proposal (GP-N) will not meet this condition
in general (when xT is known). Ensuring that σ(t) → β(xT )

as t → T by integrating (17), (22) and (23) for each τk is
likely to be time consuming, unless the LNA ODE system is
tractable. In the case of exact observations, a computation-
ally less demanding approach is obtained in van der Meulen
and Schauer (2015) by taking the transition density of (26)
with B(t) = 0 and σ(t) = β(xT ) to construct the guided
proposal. Setting b(t) = α(ηt ) leads to a proposal density
for the simplified guided proposal (GP-S) of the form (6)
with Ψ ∗

GP-S(xτk ) = β(xτk ) and

μ∗
GP-S(xτk ) = α(xτk ) + β(xτk )β(xT )−1

×
{
xT − xτk − (ηT − ητk )

T − τk

}
.

Further (example-dependent) methods for constructing
guided proposals in the case of known xT can be found in
van der Meulen and Schauer (2015).

3.2.1 Use of the MDB variance

Using the Euler–Maruyama approximation of (9) gives the
variance of Xτk+1 |xτk , yT in the guided proposal process as
Ψ GP(xτk )�τ = β(xτk )�τ . In Sect. 4 we investigate the effect
of using the variance (8) of themodified diffusion bridge con-
struct by takingΨ GP(xτk ) = ΨMDB(xτk ). Although in this case,
deriving the limiting form of the acceptance rate under the
resulting proposal is problematic, we observe a worthwhile
increase in empirical performance. In the case of known xT ,
use of the MDB variance in place of β(xτk )�τ comes at
almost no additional computational cost.We denote this con-
struct GP-MDB.

3.3 Computational considerations

For the observation regime in (2), all bridge constructs (with
the exception of the myopic approach) require the inver-
sion of a do × do matrix at each intermediate time τk ,
k = 1, 2 . . . ,m − 1 and for each skeleton bridge required.
For known xT , the proposal densities associated with each
construct simplify. In this case, only the LNA-based residual
bridge and guided proposal require the inversion of a d × d
matrix at each intermediate time.

The Lindström bridge and modified diffusion bridge have
roughly the same computational cost. The bridges based on
residual processes incur an additional computational cost of
having to solve a system of either d (when subtracting ηt ) or
order d2 (when further subtracting ρt ) coupled ODEs. How-
ever, we note that for known x0, theODE systemneed only be
solved once, irrespective of the number of skeleton bridges
required. This is also true of the naive and simplified guided

proposals. However, we note that in the case of known xT ,
the guided proposal requires solving order d2 ODEs over
each interval [τk, T ], k = 0, 1, . . . ,m−1 for each simulated
skeleton bridge, in order to maintain reasonable statistical
efficiency (as measured by, for example, estimated accep-
tance rate of a Metropolis–Hastings independence sampler).

4 Applications

We now compare the accuracy and efficiency of the bridging
methods discussed in the previous sections, by using them to
make proposals inside a Metropolis–Hastings independence
sampler. We consider three examples: a simple birth–death
model in which the ODEs governing the LNA are tractable, a
Lotka–Volterra system in which the use of numerical solvers
are required, and a model of aphid growth inspired by real
data taken from Matis et al. (2008). Generating discrete-
time realisations from the SDE model of aphid growth is
particularly challenging due to nonlinear dynamics, and an
observation regime inwhich only one component is observed
and is subject to additive Gaussian noise.

In what follows, all results are based on 100K iterations
of a Metropolis–Hastings independence sampler targeting
either (3) or (4), depending on the observation regime. We
measure the statistical efficiency of each bridge via their
empirical acceptance probability. R code for the implemen-
tation of theM-H scheme can be found at https://github.com/
gawhitaker/bridges-apps. The bridge constructs used in each
example, together with their relative computational cost can
be found inTable 1.Note that in contrast toLindström (2012),
we found that γ ∈ [0.001, 0.3] was required in order to find
a near-optimal γ . Where LB is used, we only present results
for the value of γ that maximised empirical performance.

4.1 Birth–death

We consider a simple birth–death process with birth rate θ1
and death rate θ2, characterised by the SDE

dXt = (θ1−θ2)Xt dt+
√

(θ1 + θ2)Xt dWt , X0 = x0 (29)

which can be seen as a degenerate case of a Feller square-
root diffusion (Feller 1952). The ODE system ((17), (22)
and (23)) governing the linear noise approximation of (29) is
tractable, and we obtain ηt = x0e(θ1−θ2)t , Pt = e(θ1−θ2)t and

ψt = θ1 + θ2

θ1 − θ2

(
1 − e−(θ1−θ2)t

)
x0.

In this example we assume that xT is known and, to ade-
quately assess the performance of each bridge construct, we
take xT to be either the 5, 50 or 95% quantile (denoted by
xT,(5), xT,(50) and xT,(95) respectively) of XT |X0 = x0,
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Table 1 Example and bridge
specific relative CPU cost for
100K iterations of a
Metropolis–Hastings
independence sampler. Due to
well known poor performance in
the case of known xT , EM is not
implemented for the first two
examples. Likewise, due to poor
performance, we omit results
based on GP-N and GP-S in the
second example, and results
based on MDB and LB in the
final example

Birth–Death Lotka–Volterra Aphid

Myopic Euler–Maruyama (EM) – – 1.0

Modified diffusion bridge (MDB) 1.0 1.0 –

Lindström bridge (LB) 1.1 1.1 –

Residual bridge, subtract ηt (RB) 1.0 1.0 7.3

RB, further subtract ρt (RB−) 1.0 1.0 7.9

Guided proposal (GP) 1.2 30.7 7.1

GP with MDB variance (GP-MDB) 1.3 31.0 7.9

Naive GP (GP-N) 1.2 – –

Simplified GP (GP-S) 1.1 – –
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Fig. 1 Birth–death model. Empirical acceptance probability against m with T = 1 (1st row) and T = 2 (2nd row). The results are based on 100K
iterations of a Metropolis–Hastings independence sampler. Black MDB, brown LB, red RB, blue RB−, grey GP-N, green GP-S, purple GP, pink
GP-MDB

found by repeatedly applying the Euler–Maruyama approx-
imation to (29) with a small time-step. To allow for different
inter-observation intervals, we take T ∈ {1, 2}. An initial
condition of x0 = 50 and parameter values θ = (0.1, 0.8)′
gives (x1,(5), x1,(50), x1,(95)) = (18.49, 24.62, 31.68) and
(x2,(5), x2,(50), x2,(95)) = (6.97, 12.00, 18.35).

Since the ODE system governing the LNA is tractable for
this example, there is little difference inCPUcost between the

bridges (see Table 1). Therefore, we use statistical efficiency
(as measured by empirical Metropolis–Hastings acceptance
probablity) as a proxy for overall efficiency of each bridge,
with higher probabilities preferred.

Figure 1 shows empirical acceptance probabilities against
the number of sub-intervals m for each bridge and each
xT . Figures 2 and 3 compare 95% credible regions of the
proposal under various bridging strategies with the true con-
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Fig. 2 Birth–death model. 95% credible region (dashed line) and mean (solid line) of the true conditioned process (red) and various bridge
constructs (black) using xT = x1,(50)

ditioned process (obtained from the output of theMetropolis–
Hastings independence sampler). It is clear from the figures
that asT is increased, theMDBfails to adequately account for
the nonlinear behaviour of the conditioned process. Indeed,
in terms of empirical acceptance rate, MDB is outperformed
by all other bridges for T = 2. As m is increased so that
the discretisation gets finer, the acceptance rates under all
bridges (with the exception of GP-N) stay roughly constant.
For GP-N, the acceptance rates decrease with m when xT is
either the 5 or 95% quantile of XT |X0 = 50. In this case, the
variance associated with the approximate transition density
either overestimates (when xT is the 5% quantile) or under-
estimates (when xT is the 95% quantile) the true variance at
the end-point. For example,when xT is the 95%quantile, this
results (see Fig. 3) in a ‘tapering in’ of the proposal relative to
the true conditioned process. GP-S, GP and LB give similar
performance, although we note that GP-S and LB perform
particularly poorly when xT is the 5% quantile. Moreover,
LB requires the specification of a tuning parameter γ and
we found that the acceptance rate was fairly sensitive to the
choice of γ . In all scenarios, RB,RB− andGP-MDBcompre-
hensively outperform all other bridge constructs. When xT is

themedian of XT |X0 = 50,we see that RB andRB− (red and
blue lines in Fig. 1) give near identical performance, with ηt
adequately accounting for the observed nonlinear dynamics.
In terms of statistical efficiency, GP-MDB outperforms both
RB and RB− in all scenarios, although the relative difference
is small.

4.2 Lotka–Volterra

In this example we consider a Lotka–Volterra model of pred-
ator-prey dynamics. We denote the system state at time t
by Xt = (X1,t , X2,t )

′, ordered as prey, predators. The mass-
action SDE representation of systemdynamics takes the form

dXt =
(

θ1X1,t − θ2X1,t X2,t

θ2X1,t X2,t − θ3X2,t

)
dt

+
(

θ1X1,t+θ2X1,t X2,t −θ2X1,t X2,t

−θ2X1,t X2,t θ3X2,t+θ2X1,t X2,t

) 1
2

dWt .

(30)

123



Stat Comput (2017) 27:885–900 895

MDB

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

RB

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

LB, γ = 0.0025

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

GP-N

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

GP-S

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

GP

0.0 0.5 1.0 1.5 2.0

20
30

40
50

Xt

Time

Fig. 3 Birth–death model. 95% credible region (dashed line) and mean (solid line) of the true conditioned process (red) and various bridge
constructs (black) using xT = x2,(95)

Table 2 Lotka–Volterra model.
Quantiles of XT |X0 = (71, 79)′
found by repeatedly simulating
from the Euler–Maruyama
approximation of (30) with
θ = (0.5, 0.0025, 0.3)′

T = 1 T = 2 T = 3 T = 4

xT,(5) (82.47, 62.78) (107.35, 57.95) (142.00, 60.02) (185.04, 71.23)

xT,(50) (96.82, 71.93) (133.35, 70.75) (182.64, 77.36) (242.08, 97.23)

xT,(95) (112.13, 81.58) (162.28, 84.63) (228.82, 97.12) (308.58, 128.76)

The components of θ = (θ1, θ2, θ3)
′ can be interpreted as

prey reproduction rate, prey death and predator reproduc-
tion rate, and predator death. Note that the ODE system
((17), (22) and (23)) governing the linear noise approxi-
mation of (30) is intractable and we therefore use the R
package lsoda to numerically solve the system when nec-
essary.

Following Boys et al. (2008) we impose the parame-
ter values θ = (θ1, θ2, θ3)

′ = (0.5, 0.0025, 0.3)′ and let
x0 = (71, 79)′. We assume that xT is known and generate a
number of challenging scenarios by taking xT as either the
5, 50 or 95% marginal quantiles of XT |X0 = (71, 79)′ for
T ∈ {1, 2, 3, 4}. These quantiles are shown in Table 2. Note
that for this parameter choice, the expectation of Xt |X0 =
(71, 79)′ is approximately periodic with a period around
17.

We fixed the discretisation by taking m = 50, but note
no appreciable difference in results for finer discretisations
(e.g.m = 1000).As in the previous example,GP-NandGP-S
perform relatively poorly, therefore in what follows we omit
these bridges from the results. Note that we includeMDB for
reference. Figure 4 shows empirical acceptance probabilities
against T for each bridge and each xT . Figure 5 compares
95% credible regions of the proposal under various bridging
strategies with the true conditioned process (obtained from
the output of the Metropolis–Hastings independence sam-
pler).

Unsurprisingly, as T is increased,MDB fails to adequately
account for the nonlinear behaviour of the conditioned
process. LB offers a modest improvement (except when
xT = xT,(5)) but is generally outperformed by the other
bridge constructs. We found that as T was increased, LB
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Fig. 4 Lotka–Volterra model. Empirical acceptance probabilities against T . The results are based on 100K iterations of a Metropolis–Hastings
independence sampler. Black MDB, brown LB, red RB, blue RB−, purple GP, pink GP-MDB
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Fig. 5 Lotka–Volterra model. 95% credible region (dashed line) and mean (solid line) of the true conditioned predator component X2,t |x0, xT
(red) and various bridge constructs (black) using xT = xT,(95) with T = 1 (1st row) and T = 4 (2nd row)

required larger values of γ , reflecting the need for more
weight to be placed on the myopic component of the con-
struct. As for the previous example, unless xT is the median
of XT |x0, RB is comprehensively outperformed by RB− (see
Fig. 5 for the effect of increasing T on RB and RB−). How-

ever, we see that the acceptance probabilities are decreasing
in T for both constructs. As noted by Fearnhead et al. (2014),
the LNA can become poor as T increases, with the impli-
cation here being that the approximation of the expected
residual (as used in RB−) degrades with T .
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We note that the estimated acceptance probabilities are
roughly constant for GP and (to a lesser extent) GP-MDB,
and in terms of statistical efficiency for a fixed number of
iterations, GP-MDB should be preferred over all other algo-
rithms considered in this article. However, the difference in
estimated acceptance probabilities between GP-MDB and
RB− is fairly small, even when T = 4 (e.g. 0.857 vs 0.577
when xT = xT,(5) and 0.834 vs 0.606 when xT = xT,(50)).
We also note that a Metropolis–Hastings scheme that uses
RB or RB− is some 30 times faster than a scheme with
GP or GP-MDB, since the latter require solving the LNA
ODE system for each sub-interval [τk, T ] to maintain rea-
sonable statistical efficiency for a given m. Therefore, we
further compare RB, RB−, GP and GP-MDB by computing
theminimum effective sample size (ESS) at time T/2 (where
the minimum is over each component of XT/2) divided by
CPU cost (in seconds). We denote this measure of overall
efficiency by ESS/s. When xT = xT,(5) and T = 1, ESS/s
scales roughly as 1 : 3 : 56 : 83 for GP : GP-MDB : RB :
RB−. When T = 4, ESS/s scales roughly as 1 : 3 : 1 : 17.
Hence, for this example, RB− is to be preferred in terms of
overall efficiency, although the relative difference between
RB− and GP-MDB appears to decrease as T is increased,
consistent with the behaviour of the empirical acceptance
rates observed in Fig. 4.

4.3 Aphid growth

Matis et al. (2008) describe a stochastic model for aphid
dynamics in terms of population size (Nt ) and cumulative
population size (Ct ). The diffusion approximation of their
model is given by

(
dNt

dCt

)
=

(
θ1Nt − θ2NtCt

θ1Nt

)
dt

+
(

θ1Nt + θ2NtCt θ1Nt

θ1Nt θ1Nt

)1/2

dWt (31)

where the components of θ = (θ1, θ2)
′ characterise the birth

and death rate respectively. Matis et al. (2008) also provide
a dataset consisting of cotton aphid counts recorded at times
t = 0, 1.14, 2.29, 3.57 and 4.57 weeks, and collected for 27
different treatment block combinations. The analysis of these
data via a stochastic differential mixed-effects model driven
by (31) is the focus of Whitaker et al. (2015).

Driven by the real data of Matis et al. (2008) and to
illustrate the proposed methodology in a challenging partial
observation scenario,we assume that XT cannot bemeasured
exactly. Rather, we observe

YT = F ′XT + εT , εT |Σ ∼ N (0,Σ),

Table 3 Aphid growth model. Quantiles of Y3.57|X2.29 =
(347.55, 398.94)′ found by repeatedly simulating from the Euler–
Maruyama approximation of (31) with θ = (1.45, 0.0009)′, and
corrupting N3.57 with additive N (0, σ 2) noise

σ = 5 σ = 10 σ = 50

y3.57,(5) 726.75 724.57 762.36

y3.57,(50) 786.09 815.51 774.41

y3.57,(95) 841.82 856.36 910.86

where Σ = σ 2 and F = (1, 0)′ so that only noisy obser-
vation of NT is possible, and CT is not observed at all.
We consider a single treatment-block combination and con-
sider the dynamics of the process over an observation time
interval [2.29, 3.57], over which nonlinear dynamics are
typically observed. We fix θ and x2.29 at their marginal
posterior means found by Whitaker et al. (2015), that is,
at θ = (1.45, 0.0009)′ and x2.29 = (347.55, 398.94)′. We
generate various end-point conditioned scenarios by taking
y3.57 to be either the 5, 50 or 95% quantile of Y3.57|X2.29 =
(347.55, 398.94)′, σ . To investigate the effect of measure-
ment error, we further take σ ∈ {5, 10, 50}. The resulting
quantiles are shown in Table 3.Aswith the previous example,
the ODE system governing the linear noise approximation of
(31) is intractable and we again use the lsoda package to
numerically solve the system when necessary.

Figure 6 shows empirical acceptance probabilities against
σ for EM, RB, RB−, GP and GP-MDB. Figure 7 compares
95% credible regions for a selection of bridges with the true
conditioned process (obtained from the output of the inde-
pendence sampler). All results are based on m = 50 (but
note that no discernible difference in output was obtained
for finer discretisations). As illustrated by both figures, the
myopic sampler (EM) performs poorly (in terms of statistical
efficiency, as measured by empirical acceptance probability)
when themeasurement error variance is relatively small (σ =
5). For σ = 50, the performance of EM is comparable with
the other bridge constructs. In fact, as σ increases, the bridge
constructs coincide with the Euler–Maruyama approxima-
tion of the target process. The gain in statistical performance
of RB− over RB is clear. Likewise, GP-MDB outperforms
GP, although the difference is very small for σ = 50 and
again we note that as σ increases, the variance under GP-
MDB,ΨMDB(xτk ), approaches the Euler–Maruyama variance,
as used in GP.

The relative computational cost of each scheme can
be found in Table 1. EM is particularly cheap to imple-
ment, given the simple form of the construct and the M-H
acceptance probability. However, this approach cannot be
recommended in this example for σ < 10, due to its dire sta-
tistical efficiency. The computational cost of RB, RB−, GP
and GP-M is roughly the same, since for the guided propos-
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Fig. 6 Aphid growth model. Empirical acceptance probabilities against σ . The results are based on 100K iterations of a Metropolis–Hastings
independence sampler. Turquoise EM, red RB, blue RB−, purple GP, pink GP-MDB
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Fig. 7 Aphid growth model. 95% credible region (dashed line) and mean (solid line) of the true conditioned aphid population component
Nt |x2.29, y3.57 (red) and various bridge constructs (black) using y3.57 = y3.57,(50) with σ = 5 (1st row) and σ = 50 (2nd row)

als, we found that a naive implementation that only solves the
LNAODEs once, gave no appreciable difference in empirical
acceptance probability as obtained when repeatedly solving
the ODE system for each sub-interval [τk, T ] (as is required
in the case of no measurement error). Consequently, in this
example, GP-MDBoutperformsRB− in terms of overall effi-
ciency.

5 Discussion

We have presented a novel class of bridge constructs that
are both computationally and statistically efficient, and can
be readily applied in situations where only noisy and par-
tial observation of the process is possible. Our approach is
straightforward to implement and is based on a partition of
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the process into a deterministic part that accounts for forward
dynamics, and a residual stochastic process. The intractable
end-point conditioned residual SDE is approximated using
the modified diffusion bridge of Durham and Gallant (2002).
Using three examples, we have investigated the empirical
performance of two variants of the residual bridge. The first
constructs the residual SDE by subtraction of a determinis-
tic process based on the drift governing the target process
(denoted RB). The second variant further subtracts the lin-
ear noise approximation (LNA) of the expected conditioned
residual process (denoted RB−). Our examples included a
scenario in which the LNA system is tractable, and another
where the system must be solved numerically. An example
that considers partial and noisy observation of the process at
a future time was also presented.

5.1 Choice of residual bridge

We find that for all examples considered, the residual bridge
that further subtracts the LNA mean results in improved sta-
tistical efficiency (over the simple implementation based on
the drift subtraction only) at the expense of having to solve
a larger ODE system consisting of order d2 equations (as
opposed to just d when using the simpler variant). For a
known initial time-point x0, the ODE system need only be
solved once, irrespective of the number of skeleton bridges
required. Taking the Lotka–Volterra diffusion (described in
Sect. 4.2) as an example, overall efficiency (as measured by
minimum effective sample size per second, ESS/s, at time
T/2) of RB− is 1.5 times that of RB when T = 1 and
xT is either the 5 or 95% quantile of XT |x0. This factor
increases to 17 when T = 4. However, for unknown x0,
as would typically be the case when performing parameter
inference, the ODE solution will be required for each skele-
ton bridge, and the difference in computational cost between
the two approaches is likely to be important, especially as
the dimension of the state space increases. For the Lotka–
Volterra example, the computational cost for solving theODE
system for each bridge scales as 1 : 2.8 for RB : RB−. There-
fore, the relative difference in ESS/s would reduce to a factor
of roughly 0.5 when T = 1 (so that RB would be preferred)
and 6 when T = 4. We therefore anticipate that in prob-
lems where x0 is unknown, the simple residual bridge is to
be preferred, unless the ODE system governing the LNA is
tractable, or the dimension d of Xt is relatively small, say
d < 5.

5.2 Residual bridge or guided proposal?

We have compared the performance of our approach to sev-
eral existing bridge constructs (adapting where necessary to
the case of noisy and partial observation). These include the
modified diffusion bridge (Durham and Gallant 2002), Lind-

strömbridge (Lindström2012) and guided proposal (Schauer
et al. 2016). Our implementation of the latter uses the LNA
to guide the proposal. We find that a further modification
that replaces the Euler–Maruyama variance with the MDB
variance gives a particularly effective bridge, outperforming
all others considered here, in terms of statistical efficiency.
We find that for fixed x0 and noisy observation of xT , an
efficient implementation of the guided proposal is possi-
ble, where the ODE system governing the LNA need only
be solved once. In this case, the guided proposal outper-
forms both implementations of the residual bridge in terms
of overall efficiency. However, we found that in the case
of no measurement error (so that xT is known exactly), the
guided proposal required that the ODEs governing the LNA
be re-integrated for each intermediate time-point and for each
skeleton bridge required. Unless the ODE system can be
solved analytically, we find that when combining statistical
and computational efficiency, the guided proposal is outper-
formed by both implementations of the residual bridge.

5.3 Extensions

Our work can be extended in a number of ways. For exam-
ple, it may be possible to improve the statistical performance
of the residual bridges by replacing the Euler–Maruyama
approximation of the variance of YT |X0 with that obtained
under the LNA. This approach could also be combined with
the Lindström sampler to avoid specification of a tuning
parameter. Deriving the limiting (as �τ → 0) forms of
the Metropolis–Hastings acceptance rates associated with
the residual bridges would be problematic due to the time
dependent terms entering the variance of the constructs. Nev-
ertheless, this merits further research. Interest also lies in the
comparison of the bridge constructs for SDEs that exhibit
multimodal behaviour, although we anticipate that further
modification of the constructs will be required to efficiently
deal with such a scenario.
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