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Abstract. This paper presents an improved Cache trace attack on AES and 
CLEFIA by considering Cache miss trace information and S-box misalignment. 
In 2006, O. Acıiçmez et al. present a trace driven Cache attack on AES first two 
rounds, and point out that if the Cache element number of the Cache block is 
16, at most 48-bit of AES key can be obtained in the first round attack. Their 
attack is based on the ideal case when S-box elements are perfected aligned in 
the Cache block. However, this paper discovers that, the S-box elements are 
usually misaligned, and due to this feature and by considering Cache miss trace 
information, about 200 samples are enough to obtain full 128-bit AES key 
within seconds. In 2010, Chester Rebeiro et al. present the first trace driven 
Cache attack on C LEFIA by considering Cache hit information and obtain 128-
bit key with 243 CLEFIA encryptions. In this paper, we present a new attack on 
CLEFIA by considering Cache miss information and S-box misalignment 
features, finally successfully obtain CLEFIA-128 key for about 220 samples 
within seconds.  

Keywords: Driven; Cache Attack; AES; CLEFIA; Cache Miss; S-box 
Misalignment. 

1 Introduction 

Traditionally speaking, the implementation of cipher is a black box and the security of 
cipher depends on the mathematical function EK[P]→C, usually, the adversary tries to 
crack K from (P,C) by linear or differential methods. With the development of cipher 
designing, both the key length and algorithm complexity has been greatly improved; 
it’s very difficult to predict K through mathematically analysis. However, actually, the 
implementation of cryptosystem is a gray box, it may leak information through side 
channels due to the prosperities and physical requirements of the device, e.g., 
execution time, power consumption, electromagnetic emanation, acoustic emanation, 
fault etc. Since the presentation of side channel attack, many research papers have 
been published on using this cryptanalysis technique to successfully attack various 
cryptosystems, such as timing attack[ ]1 , power attack[ ]2 , EM attack[ ]3 , acoustic 
attack[ ]4 , fault attack[ ]5 . In this paper, we focus on a type of side channel cryptanalysis 
utilizing the information leaks through the Cache architecture of a CPU. 
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There are many papers on Cache based side channel attacks. According to the 
different information of the measuring stage, it can be classified into timing driven, 
access driven, and trace driven three types. We present an improved trace driven 
Cache based attack on AES and CLEFIA in this paper. In trace driven attacks, there 
are already some attacks on AES[ ][ ][ ][ ]6 7 8 9  and CLEFIA[ ]11 . However, none of the 
publish papers described to recover AES initial key and CLEFIA round key in the 
first round attack. Our analysis model is much like [9] by considering Cache miss 
trace information, the attacks in this paper show that: due to the feature of S-box 
misalignment in Cache, it’s possible to break AES initial key and CLEFIA round key 
by first round attack within limited samples, and this is much more effective that any 
previous studies. Table 1 demonstrates the improvements of the attacks in this paper 
over several previous attacks. 

Table 1.  Overview of Cache trace attacks on AES-128 and CLEFIA-128.  

Attack Attack Round Sample needed Goal 
[6] First round -- 64-bit key recovery 
[7] First round -- 48-bit key recovery 
[8] First two rounds 40 94.5-bit key recovery 
[8] Final round 100 107.6-bit key recovery 
[9] Final round 31 128-bit key recovery 
This paper First round 200 128-bit key recovery 
This paper Final round 30 128-bit key recovery 
[11] First 3 rounds 243 128-bit key recovery 
This paper First 3 rounds 220 128-bit key recovery 

 
This work is organized as follows. Section 2 presents the background of Cache 

trace attacks. Section 3 and Section 4 present the improved Cache trace attack on AES 
and CLEFIA respectively. Finally, the work is concluded in Section 5.  

2 Background 

2.1   Cache Information Leakage and Cache Analysis model 

Modern microprocessors and microcomputers use memory Cache to solve the speed 
bottleneck between CPU and bus bandwidth. The “Cache hit” and “Cache miss” can 
brought time and power consumption differences, and most block ciphers usually use 
S-box lookup to access Cache. Cache access patterns can be measured through timing 
and power measurement. Cache provides the source of time and power information 
leakage for cipher process.   

Many block ciphers used S-boxes to improve the implement efficiency and the 
non-linearity; however, according to the Cache hit and miss timing and power 
information leakages, these leakages usually have close relationship with the pattern 
of S-box lookup indices and the secret key. With the development of high-grade 
precision and sophisticated equipments, the differential behavior in Cache memory 
with respective to time and power can be measured accurately. Depending on the 
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attacker abilities, Cache attack can be classified into three types: timing driven 
attacks[ ][ ][ ][ ]12 13 14 15 , access driven attacks[ ][ ][ ]16 17 18 , trace driven attacks[ ][ ][ ][ ][ ]6 7 8 9 11 . 
1. Timing driven Cache attack needs to measure the whole encryption or decryption 

time of cipher and usually requires millions of samples, its off-line analysis method 
is more complicated.  

2. Access driven Cache attack requires knowledge of the cipher Cache set access 
pattern by a spy process. Comparing with timing driven Cache attack, its 
measuring methods are more comparatively complicated, but the analysis methods 
are much simple. 

3. Trace-driven analysis is of high efficiency, but it need to measure every Cache 
access hit or miss information during the encrypt process, generally speaking, it is 
usually acquires to gather the Cache hit and miss information by monitoring the 
power consumption. 

2.2   Cache Trace Driven Analysis Model  

Trace driven attack is first presented in on AES[ ]6 , and researchers make some further 
studies in [7][8][9]. In 2010, Chester[ ]11  proposes a differential Cache trace attack on 
CLEFIA, the technique used in this paper is the same as [7] by utilizing Cache hit 
trace information.  

In trace driven Cache attacks, the adversary obtains the traces of Cache hits and 
misses for some samples of encryptions and recovers the secret key of ciphers using 
this data. We define a trace as a sequence of Cache hits and misses. For example, 
MHHM, MMHH, MHHH, MHMH are examples of the 16 Cache access traces of AES 
first round. The letter M and H denotes a Cache miss Cache hit respectively. In such 
condition, the adversary has the ability to determine whether a particular Cache S-box 
lookup to access Cache is a Cache hit or miss. 

 
Fig. 1.  Trace driven attack model 

Fig. 1 shows two access to S-box with indices (x0⊕k0) and (x1⊕k1). If (x0⊕k0) is 
the first time to access Cache, it can always generate a Cache miss. As to the second 
time to access Cache, it has two cases: 
1. (x0⊕k0)= (x1⊕k1) 

A Cache hit occurs in this case. This results in less execution time and lower power 
consumption, also reveals some information about the possible candidates for the 
XOR of the key bits: (k0⊕k1)=(x0⊕x1).  
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2. (x0⊕k0)≠ (x1⊕k1) 
A Cache miss occurs in this case. This result in more execution time and more 

power consumption, also reveals some impossible candidates for the Xor of the key 
bits (k0⊕k1) ≠(x0⊕x1). 

From above, it seems to generate only one guess on the possible k0⊕k1 candidate. 
However, modern Caches do not store individual bytes, but groups of bytes from 
consecutive “lines” of main memory. Line size varies, the two common values are 32 
bytes for a Pentium III and 64 bytes for Athlon 3000+ CPU. Since the usual size of 
common block ciphers like AES, Camellia, CLEFIA table entries is 4 bytes; groups of 
16 consecutive table entries share a line in the Cache on the Athlon 3000+ CPU. This 
value we define it as δ. In general, it will hold that δ=l/b where l is the process’s 
Cache line size and b is the block size of S-box table entries. 

The value of δ is critically important to Cache bases attacks because for any 
address a, b which are equal (<a>=<b>) ignoring the lower log2

δ bits, looking up 
address a will cause an ensuing access to b a hit in Cache. Under this precondition, if 
the second Cache access generates a Cache hit, it will hold <x0⊕k0>= <x1⊕k1> (the 
lower log2

δ bits may not identical), so <k0⊕k1>=<x0⊕x1>, as to 8-bit value k0, using 
more samples, the 8-log2

δ bits of k0⊕k1 can be obtained, but the log2
δ bits of k0⊕k1  is 

still unknown.  
Also, if the second Cache access generates a Cache miss, it will hold that 

<x0⊕k0>≠ <x1⊕k1>,so <k0⊕k1>≠<x0⊕x1>, if x0 and x1 is known, as to one of 256 
candidates k0, the second Cache miss will eliminate δ candidates for k1, ideally 
speaking, if k0 is guessed correctly, about 256/δ Cache miss samples are enough to 
obtain δ un-eliminated k1 candidates, the correct key byte is always among them, but 
if k0 is guessed wrongly, using more samples, it will always eliminate all 256 k1 
candidates and have a empty candidate set. So the adversary can at most recover 8-
log2

δ bits value of k0. 

2.3   S-box alignment in Cache  

Most of the attacks proposed assume that S-box element are perfected aligned in 
Cache block, as to one AES S-box,  the table size is 1Kb, 256 table elements, one S-
box line usually related with 16 elements. If the Cache block size of the processor is 
64 bytes, 4 bytes for each Cache element, one S-box line 16 S-box element are 
perfectly aligned in the same Cache block, as is shown in Fig. 2(a). However, during 
the experiment on Windows platform, we find out that one S-box line 16 elements are 
not mapping to the same Cache block, as is shown in Fig. 2(b). 4 S-box elements from 
16th to19th are stored in the 1st Cache block, and other 12 S-box element from 20th to 
31 are stored in the 2rd Cache block. 
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Fig. 2.  Alignment of S-box in Cache 

2.4   Assumptions  

(1) The Cache trace data is gathered through software simulations. We have 
simulated this process by augmenting the encryption code to keep a record of every S-
box lookup access Cache hits and misses during the encryption operation. 

(2) Unlike the cache trace attacks described by [7], [8] and [10], we do not assume 
the cache is completely clean prior to encryption.  

(3) We do assume that any cache line loaded during encryption will remain there 
for the duration of the encryption. 

3 Improved Attack on AES 

3.1   AES Algorithm  

A full description of the AES cipher is provided in [19], but below is a brief 
description of the cipher’s properties that are utilized in this study. This paper will 
focus exclusively on AES with 128-bit key. 

AES is an iterated cipher: Each round r takes a 16-byte block of input Xr and a 16-
byte block of key Kr, producing a 16-byte block of output Xr+1. Each round is carried 
out by performing the algebraic operations SubBytes, ShiftRows, and MixColumns 
on Xr, then taking the exclusive or with the round key Kr. Performance-oriented 
software implementation of AES combines all three operations and pre-compute the 
values. The values are stored in large lookup tables, T0, T1, T2, T3, each mapping one 
byte of input to four bytes of output. The whole encryption can be performed very 
efficient in software this way, using just 160 table lookups and 176 word-length Xors. 
But as the table lookup results are stored in the cache, and the table lookup index has 
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close relationship with the encryption key, as long as we gather enough information 
of AES table lookup indices, one round expanded key can be calculated. Also, AES 
key expansion structure is explicitly chosen to be invertible given any 16 consecutive 
bytes of the expanded key. This is useful to an attacker in that recovery of any 16 
bytes expand key is equivalent to the recovery of original key. So Cache, AES table 
lookup index, invertible key expansion structure provides good points for attacker. 

3.2   Related Work  

Bertoni et. al. [ ]6  showed that power profiles of the cache reveal secret information 
about the cryptographic algorithm being executed. Their attack was the first trace 
driven Cache attack simulated on a power analysis tool and targeted on a single table 
AES implementation. A first round cache trace attack[ ] 7 on the standard software 
implementation of AES was presented by O. Acıiçmez and extended to the second 
round[ ]8  by exploring Cache hit trace information, Joseph Bonneau[ ]9  extends this 
work to a final round attack by exploring Cache miss trace information, and recovers 
AES-128 bit key for about 31 samples. However, none of the published papers except 
[20] and [21] present the Cache timing attacks by utilizing Cache misalignment 
feature, which great improves the attack efficiency, but [20] and [21] are belonged to 
access driven type attack, in this Section, we present an improved trace driven Cache 
attack using this misalignment feature and Cache miss trace information. 

3.3   First Round Attack  

The AES we analyze is implemented in OpenSSL v. 0.9.8.(a). It employs 4 different 
lookup tables in the first 9 rounds, and a different one in the final round. 

The AES first 9 rounds encryption principle is shown in equation (1). It’s clear to 
see that in each round, there are 16 S-box lookups to access Cache, and 4 S-box 
lookups for T0,T1,T2,T3 S-boxes. 

1 1 1 1
0 1 2 3 0 0 1 5 2 10 3 15 0 1 2 3

1 1 1 1
4 5 6 7 0 4 1 9 2 14 3 3 4 5 6 7

1 1 1 1
8 9 10 11 0 8 1 13 2

( , , , ) [ ] [ ] [ ] [ ] ( , , , )

( , , , ) [ ] [ ] [ ] [ ] ( , , , )

( , , , ) [ ] [ ]

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r

x x x x T x T x T x T x K K K K

x x x x T x T x T x T x K K K K

x x x x T x T x T

+ + + +

+ + + +

+ + + +

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ 2 3 7 8 9 10 11
1 1 1 1

12 13 14 15 0 12 1 1 2 6 3 11 12 13 14 15

[ ] [ ] ( , , , )

( , , , ) [ ] [ ] [ ] [ ] ( , , ,

r r r r r r

r r r r r r r r r r r r

x T x K K K K

)x x x x T x T x T x T x K K K K+ + + +

⎧
⎪
⎪
⎨

⊕ ⊕⎪
⎪ = ⊕ ⊕ ⊕ ⊕⎩

 

(1) 

The first round S-box lookup can be expressed by equation (2), 
0 0

i i i i i ix P K K P x= ⊕ ⇒ = ⊕  (2) 

Pi and Ki are the ith byte of the plaintext and the initial key respectively, and i∈
[0,15]. The indices of the first 4 references to the first table T0 are: 

0 0 0 0
0 0 0 4 4 4 8 8 8 12 12 12  x P K x P K x P K x P K= ⊕ = ⊕ = ⊕ = ⊕； ； ；  (3) 
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The Cache hit and miss result of the second T0 lookup, i.e., the one with the index 
P4⊕K4, gives information about K0 and K4. This paper just explores the Cache miss 
information. If the second T0 lookup generates a Cache miss, it will hold: 

0 0 4 4 4 4 0 0{ }P K P K K P P K< ⊕ >≠< ⊕ >⇒ ≠ ⊕ < ⊕ >  (4) 

From Section 2,we know that a Cache miss means that the high 8-log2
δ
 bit of the 

second S-box lookup index is not equal to the high 8-log2
δ
 bit of the first S-box 

lookup index, so  K4 is impossible to be equal to P4 Xored with δ candidates has the 
same  high 8-log2

δ
 bit value. As to Athlon 3000+ CPU, the Cache line size is 64 bytes, 

the S-box element size is 4 bytes, δ=16. 
If the Cache S-box is perfected aligned in the Cache, each S-box row 16 bytes can 

perfectly be mapped into one Cache line, which means that, every Cache miss block 
is related with 16 high 4-bit identical, and low 4-bit distinct bytes. If P0=0x61, 
P4=0x73, suppose K0=0x00, the second T0 Cache miss will eliminate 16 candidates 
whose high 4-bit identical, and low 4-bit distinct bytes as follows: 

4 4 0 0{ } 0 73 { 0 61 0 00} 0 73 { 0 61 }
    0 73 {0 60,0 61,0 62,0 63,...0 6 }
    {0 13,0 12,0 11,0 10,...0 1 }
    {0 10,0 11,0 12,0 13,...0 1 }

K P P K x x x x x
x x x x x x f
x x x x x c
x x x x x f

≠ ⊕ < ⊕ > ≠ ⊕ < > ⊕ ≠ ⊕ < >
≠ ⊕
≠
≠

 

Using more Cache miss samples, if K0 is guessed right, as the correct K4 candidate 
and the other 15 candidates has the same high 4-bit value as K0 are impossible to be 
eliminated, so at most 16 K4 candidates can be obtained, but if K0 is guessed wrongly, 
all the K4 candidates can be eliminated. 

However, if the Cache S-box is dis-aligned in the Cache, just like Fig .1, it depicts 
that the offset is 12. The second T0 Cache miss will eliminate 16 candidates as 
follows: 

0 0 4 4 4 4 0 0{ }P K P K K P P K< ⊕ >≠< ⊕ >⇒ ≠ ⊕ < ⊕ >  

4 4 0 0{ } 0 73 { 0 61 0 00} 0 73 { 0 61 }
    0 73 {0 54,0 55,0 56,0 57,...0 5 ,0 60,0 61,0 62,0 63}
    {0 27,0 26,0 25,0 24,...0 2 ,0 13,0 12,0 11,0 10}
    {0 10,0 11,0 12,0 13,0 24,0 25,0 2

K P P K x x x x x
x x x x x x f x x x x
x x x x x c x x x x
x x x x x x x

≠ ⊕ < ⊕ > ≠ ⊕ < > ⊕ ≠ ⊕ < >
≠ ⊕
≠
≠ 6,...0 2 }x f

 

It’s clear to see that we can eliminate 16 candidates, among of which both high 4-
bit and low 4-bit are not identical, also 12 high 4-bit identical and 4 high 4-bit 
identical. Using more samples, if K0 is guessed correct we can eliminate all wrong 
255 candidates, and obtain the unique K4, if K0 is guessed wrongly, we can eliminate 
all 256 wrong candidates and obtain an empty candidate set for K4. 

Apply this technique to other 2 T0 lookups to recover K8,K12, other 4 T1 lookups to 
recover K5,K1,K13,K1, other 4 T2 lookups to recover K10,K14,K2,K6, other 4 T3 lookups 
to recover K15,K3,K7,K11. Note that the jth (j>1) Ti table Cache access can eliminate 
16*(j-1) wrong key candidates at most, the Cache eliminate efficiency is increased 
with the latter S-box lookups.  
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3.4   Final Round Attack  

In OpenSSL v. 0.9.8.(a) AES implementation, only T4 table is used in the final round. 
There are 16 S-box lookups T4 lookups to access Cache. The AES final round 
encryption principle is shown in equation (5): 

0 1 2 3

4 5 76

8 9 10 11

9 10 9 10 9 10 9 10
4 0 0 4 5 1 4 10 2 4 15 3

9 10 9 10 9 10 9 10
4 4 4 4 9 5 4 14 6 4 3 7

9 10 9 10 9 10
4 8 8 4 13 9 4 2 10 4 7

( , , , ) ( [ ] , [ ] , [ ] , [ ] )

( , , , ) ( [ ] , [ ] , [ ] , [ ] )

( , , , ) ( [ ] , [ ] , [ ] , [

C C C C T x K T x K T x K T x K

C C C C T x K T x K T x K T x K

C C C C T x K T x K T x K T x

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕

12 13 14 15

9 10
11

9 10 9 10 9 10 9 10
4 12 12 4 1 13 4 6 14 4 11 15

] )

( , , , ) ( [ ] , [ ] , [ ] , [ ] )

K

C C C C T x K T x K T x K T x K

⎧
⎪
⎪⎪
⎨

⊕⎪
⎪

= ⊕ ⊕ ⊕ ⊕⎪⎩

 

(5) 

If the second T4 access generates a Cache miss, it will have: 
1 10 1 10 10 1 10

4 0 0 4 1 5 5 1 4 4 0 0[ ] [ ] { [ [ ]T C K T C K K C T T C K− − −< ⊕ >≠< ⊕ >⇒ ≠ ⊕ < ⊕ ]}>

}>

 (6) 

No matter  is 16 consecutive high 4-bit identical, or 16 
consecutive high 4-bit may not identical, after the  function, they can be transferred 
to 16 non-consecutive and 

1 10
4 0 0{ [ ]T C K−< ⊕

4T
divergent candidates which both high 4-bit and low 4-bit 

are not equal. As there are 16 table lookups to the same table T , so the eliminate 
efficiency are much better than first round’s 4 lookup of each T (i∈[0,3]). As to the 
16  T  table lookup, it can at most eliminate 240 wrong candidates ideally speaking, 
but as the precondition is to predict other 15 K  bytes correctly. 

4

i
th

4

10

3.5   Experiment Results 

As to Athlon 3000+ CPU, the Cache block size is 64 bytes, and each Cache element 
size is 4 bytes, so δ=16. During the first round attack on AES-128, the relations 
between sample size and AES key searching space for different offset ℓ is shown in 
Fig.3. It’s clear to see that if the AES S-box is aligned perfectly (ℓ=0), after the first 
round attack, the adversary can reduce the key searching space down to 280 at best, 
but if the S-box is misaligned, after the first round attack, it’s possible to reduce the 
key searching space down to 216 for about 200 samples.  
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Fig. 3. Sample size and AES key searching space for different offset ℓ 
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Fig. 4. Cache block size and successfully attacking sample size 
During the final round attack on AES, the relations between Cache block element 

size and attacking successfully sample size for different offset ℓ is shown in Fig.4. It’s 
clear to see that no matter the AES S-box is perfectly aligned or misaligned, it’s 
possible to recover AES-128 key within very limited samples. And due to the perfect 
avalanche feature of AES S-box, the final round elimination effect is much better than 
the first round attack. 

Compared with previous works of trace driven Cache attacks against AES [ ][ ][ ][ ]6 7 8 9 , 
all of the attacks above all considered the case that the S-box elements are perfected 
aligned in the Cache block, and it’s impossible to obtain full AES-128 key in the first 
round attack. In fact, at many cases, the S-box elements are usually misaligned in the 
Cache block, and in these cases, all of the attacks above may not work. The attacks 
proposed in this section are effective in all the cases, and also are much more 
effective than previous papers, 200 samples are enough to obtain 128-bit AES key 
very efficiently within seconds.  
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4 Improved Attack on CLAFIA 

4.1   CLAFIA Algorithm  

CLEFIA[ ]22  is a block cipher that has a block length of 128 bits and key lengths of 128, 
192, and 256 bits. The data processing part is a four-branch generalized Feistel 
structure with two parallel F functions (F0, F1) per round. The number of respective 
rounds r for 128-bit, 192-bit and 256-bit keys are 18, 22 and 26. The encryption 
function ENCr generates 128-bit ciphertext from 128-bit plaintext, 2r 32-bit round 
keys (RK0(32), … ,RK2r−1(32)), and four 32-bit whitening keys (WK0,… ,WK3). The 
structure of ENCr is shown in Fig. 3. ENCr is defined as follows. 
Step 1. T0 | T1 | T2 |T3 ← x{0,0} | (x{0,1} ⊕ WK0) | x{0,2} | (x{0,3} ⊕ WK1)  
Step 2. For i=0 to r − 1 do the following: 
Step 2.1. T1 ← T1 ⊕ F0(RK2i, T0), T3 ← T3 ⊕ F1(RK2i+1, T2) 
Step 2.2. T0 | T1 | T2 | T3 ← T1 | T2 | T3 | T0

Step 3. C{r,0} |C{r,1} |C{r,2} |C{r,3} ← T3 | (T0 ⊕WK2) | T1 | (T2 ⊕WK3) 
The two F functions, F0 and F1, have 32-bit data x and 32-bit key RK as input; they 
output the 32-bit data y. F0 is defined as follows. 
F0: 
Step 1. T ← RK ⊕ x 
Step 2. Let T = T0(8) | T1(8) | T2(8) | T3(8)

T0 ←S0 (T0), T1 ← S1(T1), T2 ← S0(T2), T3 ← S1(T3) 
Step 3. Let y = y0(8) | y1(8) | y2(8) | y3(8)
t[y0, y1, y2, y3] = M0 

t[T0, T1, T2, T3] 
F1 is defined by replacing the terms in F0 as follows: S0 is replaced with S1, S1 with S0, 
and M0 with M1. The structures of F0 and F1 are shown in Fig. 6. S0 and S1 are non-
linear 8-bit S-boxes. The two matrices M0 and M1 are defined as 

0

01  02  04  06
02  01  06  04
04  06  01  02
06  04  02  01

M

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
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⎝ ⎠

       1

01  08  02  0
08  01  0   02
02  0   01  08
0   02  08  01

a
a

M
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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 Fig. 5. CLEFIA encryption procedure 

 The key scheduling generates whitening keys WKi(0 ≤ i < 4), and round keys 
RKj(0 ≤ j < 2r). Let K be a k-bit key, where k is 128, 192 or 256. The key scheduling 
is divided into the following two sub-parts.  

(1) Generating an intermediate key L from K. 
(2) Expanding K and L to generate WKi and RKj. 
The key scheduling is explained according to the sub-parts. 
For the 128-bit key scheduling, the 128-bit intermediate key L is generated by 

applying GFN4,12 which takes twenty-four 32-bit constant values CONi
128 , 0≤i<24 as 

round keys and K = K0|K1|K2|K3 as an input. Then K and L are used to generate 
WKi(0≤i<4) and RKj(0≤j<36) in the following steps. 

Step 1. L ← GFN4,12(CON0
(128) , ...,CON23

(128) ,K0, ...,K3) 
Step 2. WK0|WK1|WK2|WK3 ← K 
Step 3. For i= 0 to 8 do the following: 

(128) (128) (128) (128)

24 4 24 4 1 24 4 2 24 4 3( | | | );i i i i LT L CON CON CON CON L
+ + + + + + +

=← ⊕ ( );∑  

if i is odd.   4 4 1 4 2 4 3; | | |i i i iT T K RK RK RK RK T
+ + +

= ⊕ ←
The DoubleSwap function ∑: {0, 1}128 → {0, 1}128 (X128→ Y128) is defined as follows: 

 
Y = X[7 − 63] | X[121−127] | X[0 − 6] | X[64 − 120] 

4.2   Related Work  

In 2009, Chester et al. propose the first Cache timing attack[ ]10  on CLEFIA using the 
same technique as Bernstein, the attack is belonged to time driven type, and recover 
the 121 bits of the 128 bit key with 226.64 CLEFIA encryptions on an Intel Core 2 Duo 
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machine. In earlier 2010, Chester et al. present an trace driven Cache timing attack[ ]11  
on CLEFIA using the same technique as the basic trace driven attack of Bertoni et. 
al.[ ]6  by exploring the Cache hit trace information, successfully obtain the entire 128-
bit key with 243 encryptions and requires around 1 hour and 30 minutes for the 
complete attack. In this Section, we present a new trace driven Cache timing attack on 
CLEFIA by exploring both the Cache miss trace information and S-box misalignment 
feature, our attack are much more efficient than[10] and [11], 1000 encryptions are 
enough to obtain 128-bit CLEFIA key within 3 seconds. 

4.3   Attack Procedure 

In order to obtain CLEFIA, the attacker needs to obtain RK0 and RK1 through first 
round attack, RK2 ⊕WK0 and RK3 ⊕WK1 through the second round attack, RK4 and 
RK5 through the third round attack, and using the key expansion algorithm to reduce 
the CLEFIA key search space from 2128 to 27. 

4.3.1   Determining RK0 and RK1

Each CLEFIA round has 4 times S0 table lookups and 4 S1 table lookups, the 8 table 
lookup index is given by equation (7). 

1,0 1,1
0,0 0 0,0 1,0 1 0,1

1,2 1,3
0,1 2 0,2 1,1 3 0,3

1,4 1,5
1,2 8 1,0 0,2 9 1,1

1,6 1,7
1,3 10 1,2 0,3 11 1,3

               

               

                

               

S S

S S

S S

S S

I P RK I P RK

I P RK I P RK

I P RK I P RK

I P RK I P RK

= ⊕ = ⊕

= ⊕ = ⊕

= ⊕ = ⊕

= ⊕ = ⊕

 

(7) 

Note that  denotes the index to the i,
,

r i
Sj mI th (0≤i) access to CLEFIA table lookups, and 

specifically the mth access to Sj table in round r. 
When the mth (1≤m<4)access to Sj table generates a Cache miss, at most 16m key 

candidates can be eliminated. Using the attack models in Section 2.2, 
RK0,0,RK0,2,RK1,0,RK1,2 can be guessed in sequence together, RK0,1,RK0,3,RK1,1,RK1,3 
can be guessed in sequence together. 

4.3.2   Determining RK2 ⊕WK0 and RK3 ⊕WK1

As RK0 and RK1 can be recovered in Section 4.3.1, the 8 table lookup index of the 
second CLEFIA round is given by equation (8): 
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2,8 2,9
0,4 4 0,0 2,0 0 0 (0 3) 0 1,4 5 0,1 2,1 0 0 (0 3) 1 

2,10 2,11
0,5 6 0,2 2,0 0 0 (0 3) 2 1,5 7 0,3 2,3 0 0 (0 3) 3 

2,12
1,6 12

( ) ( , )       ( ) ( , )    

( ) ( , )       ( ) ( , )  

(

S S

S S

S

I P WK RK F RK P I P WK RK F RK P

I P WK RK F RK P I P WK RK F RK P

I P W

− −

− −

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ 2,13
1,0 3,0 1 1 (8 11) 0 0,6 13 1,1 3,1 1 1 (8 11) 1 

2,14 2,15
1,7 14 1,2 3,2 1 1 (8 11) 2 0,7 15 1,3 3,3 1 1 (8 11) 3 

) ( , )       ( ) ( , )     

( ) ( , )       ( ) ( , )       
S

S S

K RK F RK P I P WK RK F RK P

I P WK RK F RK P I P WK RK F RK P
− −

− −

⊕ ⊕ = ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕

 

(8) 

When the mth (4≤m<8) access to Sj table generates a Cache miss, at most 16m key 
candidates can be eliminated. Using the attack model in Section 2.2, after analysis 
with 4 times S0 lookup, 0,0 2,0WK RK⊕ , 0,2 2,2WK RK⊕ , 1,1 3,1WK RK⊕ , 1,3 3,3WK RK⊕  can be 
guessed in sequence together, after analysis with 4 times S1 table 
lookup, 0,1 2,1WK RK⊕ , ,0,3 2,3WK RK⊕ 1,0 3,0WK RK⊕ , 1,2 3,2WK RK⊕  can be guessed in 
sequence together. Note that the key recovery efficiency of the second round attack is 
much better than the first round due to the increase of m.  

4.3.3   Determining RK4 and RK5

As RK0, RK1, RK2⊕WK0, RK3⊕WK1 can be recovered in Section 4.3.1 and 4.3.2, the 
8 table lookup index of the third CLEFIA round is given by equation (9): 

3,16
0,8 0 0 0 (0 3) (4 7) 0 2 8 4,0

3,17
1,8 0 0 0 (0 3) (4 7) 0 2 9 4,1

3,18
0,9 0 0 0 (0 3) (4 7) 0 2 10 4,2

3,19
1,9 0 0 0 (0 3) (4 7)

( ( , ) , )   

( ( , ) , )   

( ( , ) , )   

( ( , )

S

S

S

S

I F F RK P P WK RK P RK

I F F RK P P WK RK P RK

I F F RK P P WK RK P RK

I F F RK P P WK

− −

− −

− −

− −

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ 0 2 11 4,3

3,20
1,10 1 1 1 (8 11) (12 15) 1 3 0 5,0

3,21
0,10 1 1 1 (8 11) (12 15) 1 3 1 5,1

3,22
1,11 1 1 1 (8 11) (12 15) 1 3 2 5,2

3,
0,11

, )   

( ( , ) , )   

( ( , ) , )   

( ( , ) , )   

S

S

S

S

RK P RK

I F F RK P P WK RK P RK

I F F RK P P WK RK P RK

I F F RK P P WK RK P RK

I

− −

− −

− −

⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕
23

1 1 1 (8 11) (12 15) 1 3 3 5,3( ( , ) , )   F F RK P P WK RK P RK− −= ⊕ ⊕ ⊕ ⊕

 

(9) 

When the mth (8≤m<12) access to Sj table generates a Cache miss, at most 16m 
key candidates can be eliminated. Using the attack model in Section 2.2, after analysis 
with 4 times S0 lookup, 0,0 2,0WK RK⊕ , 0,2 2,2WK RK⊕ , 1,1 3,1WK RK⊕ , 1,3 3,3WK RK⊕  can be 
guessed in sequence together, after analysis with 4 times S1 table 
lookup, 0,1 2,1WK RK⊕ , ,0,3 2,3WK RK⊕ 1,0 3,0WK RK⊕ , 1,2 3,2WK RK⊕  can be guessed in 
sequence together. Note that the key recovery efficiency of the third round attack is 
much better than the first and second round due to the increase of m.  
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4.3.4   Recover Initial Key K 

L0 CON0
T0

L1

RK0 RK1 RK2 RK3

7 57 57 7

57 5777 CON1

T1

RK4 RK5 RK6 RK7

K

T2

RK0 RK1T0

CON0

L0
7 57 57 7

L1

CON1

T1

RK4 RK5 RK6 RK7

T2

WK0 WK1(0-24)

WK0⊕RK2 WK1⊕RK3

T0

RK0 RK1 RK2 RK3(0-24)

GFN4INV

K

RK0 RK1T0

RK4 RK5 RK6 RK7

T2

WK0⊕RK2 WK1⊕RK3

（a）Key Schedule

（b）First 3 Rounds Attack Result

（c）Deduce K
K

GFN4 CON

CON

57 7

57 7

57

111

 

Fig. 6.  CLEFIA-128 key recovery procedure 

According to the key expansion algorithm, the initial key K can be obtained as shown 
as shown in Fig .7 and also as follows: 

Step 1. Recover L0(0,63)  by Xor between CON0 and (RK0,RK1) 
Step 2. Recover L1(0,56)  by the ReveseDoubleSwap function ∑-1(L0(0,63) 
Step 3. Recover T1(0,56)  by Xor between CON1 and L1(0,56)
Step 4. Recover WK0,WK1(0,24)  by Xor between T1(0,56)  and (RK4,RK5) 
Step 5. Recover RK2,RK3(0,24)  by Xor between WK0,WK1(0,24)   and (WK0⊕RK2, 

WK1⊕RK3) 
Step 6. Recover 111 bit of K  by GFN4INV(RK0,RK1,RK2,RK3(0,24), CON) 

4.5 Experiment Results 

As to δ=16, in the first round attack of CLEFIA-128, the relationship between sample 
size and RK0, RK1 key searching space for different offset ℓ is shown in Fig.7. It’s 
clear to see that when the CLEFIA S-box is aligned perfectly (ℓ=0), after the first 
round attack, the adversary can reduce RK0, RK1 key searching space down to 240, but 
if the S-box is misaligned, after the first round attack, 40 and 80 samples are enough 
to reduce 64-bit first round key searching space to 232 and 216 respectively. 
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Fig. 7. Sample size and first round key searching space for different offset ℓ 

Fig.8 depicts the relationship between sample size and first two rounds key 
searching space. It’s clear to see that, 100 and 200 samples are enough to reduce first 
two rounds key(RK0, RK1, RK2 ⊕WK0, RK3 ⊕WK1 ) searching space from 2128 to 216 
and 210 respectively.  
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Fig. 8. Sample size and first two rounds key searching space for ℓ=7 

Fig.9 depicts the relationship between sample size and first three rounds key 
searching space. About 220 samples are enough to reduce first three rounds key(RK0, 
RK1, RK2 ⊕WK0, RK3 ⊕WK1, RK4 and RK5) searching space from 2192 to 29, and as 
recover the initial CLEFIA key needs extra 27 brute force searching, so 220 samples 
can reduce the whole CLEFIA key searching space from 2128 to 216. 
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Fig. 9. Sample size and first three rounds key searching space for ℓ=7 

As there is only one trace driven Cache attack on CLEFIA in [11]. 
Compared with [11], our attack has follow advantages: 
(1) We do not assume the cache is completely clean prior to encryption, while 

attack in [11] assumes a completely “clean” cache prior to encryption. Attack in [11] 
means that no CLEFIA table entries are already loaded into cache. If an attacker can 
run code on the target machine between encryptions, this can be achieved by reading 
enough garbage data from memory. However, if the attacker cannot run code, there 
may be no way to ensure all CLEFIA tables are out of cache. A single table entry left 
in cache is enough to foil the attack in [11] if it assumes hits are generated only from 
the encryption itself, this is a significant limitation. This paper does not make a clean 
cache assumption and explores the effects of a partially pre-loaded cache. In 
particular, this means ignoring hits in the cache trace, since it is unknown whether or 
not they are “false hits” due to a pre-loaded cache. 

（2）Attack in [11] is only applicable to the case that the S-box elements are 
perfect aligned case, while the attack in this paper are applicable to all the cases. 

(3) Attack in [11] utilized the Cache hit information in the CLEFIA encryption to 
analyze the key, while the attack in this paper is focus on the Cache miss information, 
requires fewer samples than [11]. Compared with the 243 encryptions samples in [11], 
only 220 samples are needed in this paper to obtain full 128-bit CLEFIA key within 
seconds. 

5 Conclusion  

This paper presents an improved Cache trace attack on AES and CLEFIA by 
considering Cache miss trace information and S-box misalignment. Contrary to the 
belief that it’s impossible to obtain full 128-bit AES key and CLEFIA round key by 
the first round trace driven Cache attack, we show that due to the S-box misalignment 
feature and by considering Cache miss trace information, about 200 samples are 
enough to obtain full AES-128 key, 220 samples are enough to obtain full CLEFIA-
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128 key. Detailed analysis and experimentation have been performed on an Athlon 
3000+ CPU single core processor to establish that the AES-128 and CLEFIA-128 key 
can be revealed. 
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