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Abstract. Alternative expressions for calculating the prolate spheroidal radial func-
tions of the second kind (c. £) and their first derivatives with respect to £ are shown
to provide accurate values over wide parameter ranges where the traditional expressions
fail to do so. The first alternative expression is obtained from the expansion of the prod-
uct of (c, £) and the prolate spheroidal angular function of the first kind (c, rj)
in a series of products of the corresponding spherical functions. A similar expression for
the radial functions of the first kind was shown previously to provide accurate values for
the prolate spheroidal radial functions of the first kind and their first derivatives over all

(o)
parameter ranges. The second alternative expression for Rml (c, £) involves an integral of
the product of (c, rf) and a spherical Neumann function kernel. It provides accurate
values when £ is near unity and I —mis not too large, even when c becomes large and tra-
ditional expressions fail. The improvement in accuracy using the alternative expressions
is quantified and discussed.

1. Introduction. The scalar Helmholtz wave equation for steady waves, (X72+k2)ty =
0, where k = 2-7r/A and A is the wavelength, is separable in the prolate spheroidal co-
ordinates (£, 77, y>), with 1 < £ < 00, — 1 < ri < 1, and 0 < < 2n. The factored
solution is given by = Rmi(c,£)Smi(c,ri)$m(tp), where Rml(c,£) is the radial
function, Smi(c,r)) is the angular function, and is the azimuthal function. Here
c = ka/2, where a is the interfocal distance of the elliptic cross section of the spher-
oid. The radial function of the first kind R^j (c, £) and the radial function of the second

(o)
kind Rml{c,£) are the two independent solutions to the second order radial differential
equation resulting from the separation of variables. These solutions are dependent on
four parameters (m, Z, c, £) and an eigenvalue (separation constant) Ami(c). Similarly,
Smj (c; v) and s'^l (c, rj) are the two independent solutions to the second order angular
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differential equation resulting from the separation of variables. In the following discus-
sion we assume that the degree m is either zero or a positive integer, with I equal to
m.m + l.m + 2,....

Prolate spheroidal functions are used in solving boundary value problems of radiation,
scattering, and propagation of scalar and vector acoustic and electromagnetic waves in
prolate spheroidal coordinates. They also find application in the representation of band-
limited and time-limited physical processes.

Existing computer programs for calculating the prolate radial functions including those
developed at the Naval Research Laboratory [1] [3] utilize traditional expressions that
fail to provide accurate results for some parameter ranges, especially at low values of? —to
when c becomes large. In a previous paper [4], we showed that an alternative expression
for calculating the prolate radial functions of the first kind provides accurate values for all
parameter ranges. This expression follows directly from the product expression provided
by Meixner and Schafke [5, p. 307] that represents the product of the radial and angular
functions in a series of products of the corresponding spherical Bessel and associated
Legendre functions.

We show in this paper that the product expansion also leads to an alternative ex-
pression for (c, £) that provides accurate values over most parameter ranges when £
is not near unity. The traditional spherical Neumann function expression for calculat-
ing R'rfj (c, £) is shown to be a special case of this alternative expression. We show also

(2)that the traditional associated Legendre function expression used to calculate Rmi(c,£)
when £ is near unity follows from the product expansion. We examine an expression for
Rml (c> 0 giyen by Flammer [6, p. 53] that involves an integral of the product of S^j (c, r/)
and a spherical Neumann function kernel. This expression is shown to provide accurate
values when £ is near unity and I — m is not too large, even when c is large and the
traditional associated Legendre expression fails. We describe some of the features of a
new Fortran computer program we have developed to calculate the prolate spheroidal
functions using both the traditional and the alternative expressions. We conclude the
paper with a summary.

2. Angular functions of the first kind. The prolate angular function of the first
kind S^> (c./rj) is expressed [see for example ref. 6, p. 16] in terms of the corresponding
associated Legendre functions of the first kind by

Sml(C^) = ^2 dn(c\ml)Pm+n(v), (!)
n=0,1

where the prime sign on the summation indicates that n = 0, 2,4,... if I — m is even
or n = 1,3,5,... if I — m is odd. A three term recursion formula relates successive
expansion coefficients dn,dn+2, and dn+4 for given values of I, to, and c. Use of this
formula to calculate the expansion coefficients requires a value for the separation con-
stant or eigenvalue which is chosen to ensure nontrivial convergent solutions for
Smi (c,r/)- The variational procedure developed by Bouwkamp [7] provides accurate val-
ues for both the eigenvalue and the ratios of successive coefficients dn+2/dn. Use of a
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starting value algorithm given in ref. [3] assures that the Bouwkamp procedure converges
to the correct eigenvalue. We normalize the coefficients by requiring that (c, rj) has
the same normalization factor as P™(77) [5], resulting in the following relation:

OO
2(n + 2m)! . . ,2 2(7+ m)! . .

JZ [2(n + m) + l]n![ n(c| )] ~ (2/+ !)(/-m)f (2)

This normalization has the practical advantage of eliminating the need to numerically
evaluate the normalization factor that is often encountered in problems involving expan-
sions in spheroidal angular functions.

3. Expansion of the product of the radial and angular functions. The ex-
pansion of the product of (c, £) and S'r^j (c, rj) in terms of the corresponding spherical
functions is given by:

OO

- E' in+m-ldn(c\ml)yn+rn(kr)P™m(cos6). (3)
71—0,1

This is a special case of the more general expansion given by Meixner and Schafke [5, p.
307]. Using the relationship between the spherical coordinates r and 6 and spheroidal
coordinates (about the same origin and with rj = 1 coincident with 9 = 0), we obtain
kr = c(£2 + r]2 — l)1/2 and cos6 = ?y£/(£2 + rj2 — l)1/2. Substituting for S^J(c,r)) from
(1) and solving for 11^ (c, £) produces

OO

in+m-ldn(c\rnl)yn+m{c(e +V2- l)1/2]P™+m[vt/(e + V2~ 1)1/2]
d(2) (r c\ -  

ml 1 ' V 00

E dn{c\ml)P^+rn(T])
n=0,1

(4)
The significance of this general expression is that it allows us to choose the value for 77
that provides the maximum accuracy for calculated values of (c, £).

4. Traditional spherical Neumann function expression. We consider the case
when 77 = 1. The argument of P£+m in both the numerator and the denominator ap-
proaches unity as 77 approaches unity. Although P™+m approaches zero in this case for
to 7^ 0, the limit of the rhs of (4) exists and we obtain:

OO

2 m,2 S' (" +jm"
/ 1 \ /  

— :.T     • (5)

z—' n\
n=0,l

Flammer [6, p. 32] derives (5) using integral representations of the spheroidal wave func-
?(2)<ml 'tions. The corresponding expression for the first derivative of (c, £) with respect to

£ is obtained by taking the first derivative of the rhs of (5).
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Equation (5) is the expression commonly used to calculate numerical values for
Rmi (c' £) when £ is not dose to unity. Its numerator is an asymptotic series that is
not absolutely convergent for any finite value of c£. However, this series often provides

(2)accurate values for Rml (c, £) if one takes the partial sum of the series up to and including
the term where the relative contribution is a minimum (consecutive terms of the same
sign are added and treated as a single term). It provides reasonably accurate results
unless c£ is small or £ is close to unity or c is large and I — m is not large. Although the
denominator series in (5) converges, it suffers subtraction errors when c is large and l — m
is not large, i.e., the sum of the positive terms in the series becomes close in magnitude
to the sum of the negative terms in the series. The subtraction error is defined to be the
number of accurate decimal digits that are lost in calculating the sum of the series. It
is equal to the number of leading decimal digits that are the same in the positive and
negative sums.

The subtraction error in the denominator series of (5) increases as c increases. At a
given value of c and for m = 0, the error is greatest at Z = 0, decreases as I increases, and
becomes negligible for I somewhat larger than 2c/7T. As m increases for a given value of
c, the error decreases at I = m and falls off more slowly with increasing I — to. Figure
1 shows examples of this behavior. We note that for c = 40, m = 0, and I = 0 the
subtraction error is about 16 decimal digits. Increasing c to 100 results in a subtraction
error large enough to produce zero accuracy in the sum even when the calculations are
performed in quadruple precision arithmetic (128 bits) with more than 30 decimal digits.

Figure 2 shows examples of the corresponding loss of accuracy in the numerator series
of (5). The values plotted here are either the subtraction error in the partial sum or the
number of decimal digits that are lost due to less than full convergence of the partial
sum, depending on which is larger. We note that the loss in accuracy is comparable to
that shown in Fig. 1 for the denominator.

Calculated values for R^J (c, £) and its first derivative with respect to £ have additional
inaccuracy due to a lack of full accuracy in the dn coefficients and the spherical Neumann
functions used in their calculation. This inaccuracy can be limited to approximately two
decimal digits with careful numerical technique.

5. Traditional associated Legendre function expression. We can use the prod-
uct expansion for R^J (c, £) and the angular function of the second kind S^j (c, rj) in terms
of the corresponding spherical functions to obtain:

OO

in+rn ldn(c\ml)yn+m[c(£2 + q2 - 1 )1/2]Q™+m[r?£/(£2 + rj1 - l)1/"]

K>(2)(r c) - n=~°° 
s2(c,,)

(6)
Here the summation must be taken from — oo to +00 since the associated Legendre
functions of the second kind Q'^+m d° not vanish for n less than zero as -P^m does.
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-k-A-A-A-X-A-X-A-Z-A-k-A-X-A-A-A-A-A-X-A-*

0 50 100 150 200
l-m

Fig. 1. Subtraction error in decimal digits in the denominator of
the traditional expressions (5) and (10) plotted versus I — m for
selected parameters (c,m): 0(10,0); D(40,0); X(40,100); A(100,0);
o(100,100).

Taking the limit of the rhs of (6) as rj approaches infinity produces:

lim [in+m~lyn+rn(cr))]dn{c\ml)Q™+ ((;)
L' r/—>oo

(<=• 0 = =   , ■ (7)Mm SSkv)
The phase term in+m 1 is real and equal to (—l)(n+m 0/2 since n has the same parity
as I — m. Using the asymptotic properties of j/n+TO and the requirement that the radial
functions are defined to have the same asymptotic limit as the corresponding spherical
functions, we obtain:

lim \in+m lyn+m(c7?)] = lim yi{cr]) = lim (8)
77—»oo 77—>00 77—*00

?(2)
yn+m\^'ij\ — 11111 yiy^'u — 11111

77—KX> 77—>00

Equation (7) now becomes:
00

Rml(c>0 = ^{^}(C,V)/S{J(C,V)} dn(C\ml)Qn+m{i)- (9)

(2) (
Since Rrnl (c, £) and Sml (c, rf) satisfy the same differential equation, they are proportional
to each other. The term in brackets is thus independent of r). It is defined to be the

/o\ (o)
reciprocal of the joining factor of the second kind nml(c). Useful expressions for Kml{c)
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0 ^A-X-X-X-X-X-A-X-. ■A-k-A-X-A-X-A-X-X-X-A-A

100 150 200
l-m

Fig. 2. Loss of accuracy in decimal digits due to both subtraction
error and lack of full convergence in the numerator of the spheri-
cal Neumann function expression (5) plotted versus I — m for se-
lected parameters (£,c, m): x(1.1,10, 0); o(2,100,0); 0(2,100,100);
□(2,200,100); A(10,100,100).

are found in Flammer [6, p. 33]. We thus have the following expression:
oo

= ^2l7T £' dn(c\ml)Q™+m(0- (10)
Kml (C)n=-oo

/o) /O\

Of course, we could have used the fact that Rml{c, £) and (c, rf) are proportional to
each other to obtain (10) directly without using the product expansion.

Although Qn+m(£) becomes infinitely large when n is less than —2to, its product with
cLn is finite and proportional to P™n_m_1(£). The rhs of (10) then divides into two series,
one over n from —2m (or —2m+ 1 if I — m, is odd) to oo involving Q™+m(£) and one over
n from 2m + 2 (or 2to + 1 if I — m is odd) to oo involving P^_m_1(^). The result is the

(2)traditional associated Legendre function expression used to evaluate Rrnl (c,^) when £ is
(2)

near unity [see, e.g., ref. 6]. The joining factor Kmi(c) contains the same series that is
given in the denominator of the traditional Neumann function expression (5). Thus the
denominator of the associated Legendre function expression (10) suffers loss in accuracy
for low values of I — m similar to that shown in Fig. 1 due to subtraction errors that
increase without bound as c increases. In Fig. 3 we show examples of the corresponding
loss in accuracy due to subtraction errors in the numerator of (10). The results are
comparable to those for the denominator.
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200

Fig. 3. Loss of accuracy in decimal digits due to subtrac-
tion error in the numerator of the associated Legendre func-
tion expression (10) plotted versus I — m for selected pa-
rameters (£,c,m); 0(1.00000001,100,0); A(1.00000001,100,100);
x(1.001,10,0); o(l.001,40,0); □(!.!, 100,0).

6. An alternative variable 77 expression for calculating (c, £). We now
consider the expression (4) for R^J (c, £) in the case where 0 < rj < 1. I11 Ref. 4 we
examined the corresponding expression for £) given by the rhs of (4) with the
spherical Neumann function yn+m[c(£2 + rf - 1)1/2] replaced with the spherical Bessel
function jn+m[c(£2 +ry2 — l)1/2]. We showed there that the expression obtained by taking
the limit of the rhs as rj approaches zero is numerically robust, providing accurate values
for R^\ (c, £) over all parameter ranges with no subtraction error unless £ is near a root.

The equivalent expression for R^J(c,^) obtained from the limit of (4) as 77 approaches
zero is unfortunately not as robust. However, it does provide accurate values at low
values of I — m unless c£ is small or £ is close to unity, even when c is large and the
traditional spherical Neumann expression (5) fails. Nearly full accuracy is obtained over
a range of values of I extending from m to some nominal value. The accuracy then
decreases monotonically toward zero with increasing I.

(2)To estimate the accuracy of calculated values for R(c, £) and the first derivative, we
compare the theoretical value for the Wronskian

0(1 )dRml p(2 )dRml 1 nn
"ml ^ *ml ^ - c(£2 _ 1) ^
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200 400 600 800 1000
l-m

Fig. 4. Wronskian accuracy in decimal digits obtained for £ = 1.35,
c — 500, and m = 100 when using the variable r? expression (4)
plotted versus I — m for selected values of r/.

with its value computed from numerical values for the radial functions and their first
derivatives. Accurate values for Ft^j (c. £) and its first derivative are available using the
expressions and methods described in ref. 4. The number of decimal digits of agreement
between the theoretical and computed Wronskian is then a measure of the accuracy of

and its first derivative.
When we evaluate (4) with i) chosen to be somewhat larger than zero, say equal to 0.4,

we find that the resulting accuracy for R^](c, £) is lower for I = m than was obtained
when r\ — 0. However, the accuracy increases with increasing I until a maximum in
accuracy is obtained. This maximum is nearly full accuracy when £ is not near unity.
It is somewhat less than full accuracy when £ is near unity especially when both c and
m are very large. The maximum in accuracy is maintained for a range of I values, and
then the accuracy decreases toward zero at values of I somewhat higher than for rj = 0.
Evaluating (4) with progressively larger values of r\ (up to unity) results in progressively
higher values of I where a local maximum in accuracy is obtained.

An example of this behavior is shown in Fig. 4 for £ = 1.35, c = 500, and m = 100.
Calculations were performed on a personal computer in quadruple precision arithmetic
with 33 decimal digits. Only a few values of 7] are necessary to provide at least 25
digits of Wronskian accuracy over the full range of I. We have also plotted in Fig. 4
the Wronskian accuracy obtained using the new computer program profcn (see Sec. 8).
Profcn increments rj as I increases in order to maintain a specified minimum number of
decimal digits of accuracy, assuming that this accuracy is achievable. The results shown
here were computed with 27 decimal digits specified.

In Fig. 5 we show corresponding results for £ = 1.1, c = 500, and = 100. Here
there are no values of rj that provide a Wronskian accuracy greater than 20 digits when



IMPROVED CALCULATION OF PROLATE SPHEROIDAL RADIAL FUNCTIONS 501

200 400 600 800 1000
l-m

Fig. 5. Wronskian accuracy in decimal digits obtained for £ = 1.1,
c = 500, and m = 100 when using the variable rj expression (4)
plotted versus I — m for selected values of r/.

I — m is less than about 150. The accuracy curves for individual values of 77 are much
narrower than those for £ = 1.35 except for 77 near unity. We also show in Fig. 5 the
Wronskian accuracy obtained using profcn with 15 digits specified. Profcn continues to
use the same value of 77 as I increases until the accuracy falls to 15 when it then searches
for a higher value of 77 where the accuracy is 16 or greater. As I — m increases, the
resulting accuracy curve exhibits a number of peaks and valleys as it sequentially follows
the rise and fall in Wronskian accuracy for progressively larger values of 7]. Of course,
25 or more digits of accuracy can be obtained for values of I — m greater than about 200
through use of different values of 77 than were selected in profcn. However, this would
increase the computation time and probably offers no practical value since most of the
lower order function values do not have more than 18 digits of accuracy.

7. Integral expression for calculating i?^(c, £). When f is close to unity, c is
large, m is not small, and / — to is not large, both the traditional expressions as well as

(n\
the variable 77 expression described above provide values for Rml (c, £) with significantly
reduced accuracy. The resulting function values, even when computed using quadru-
ple precision arithmetic, can have insufficient accuracy. We have discovered that the
following integral expression given by Flammer [6] is useful for this case:

«Sw)=(-1)""™"!(2m+1>
2m+177i! do(c\ml)

/: (£2 + ?12 - 1)
ym[c{i2 + tf - 1 )1/2]S{2)1 (c, r))drj, I - m even.
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(2) = (-l)('-"-i)/2(2m + 3)
mil 2m+1m\ di(c\ml)

x/t (^2 + i)(m+i)/2 ^m+i[c(42 + r/2 - 1 )1/2]5l1;)(c,7?)d?7, Z-m odd.

(13)

It is convenient to define z = c(£2 + rf — l)1/2 and a window function Fm(£,r)) given by

Fm{Z,r)) =
(£2 — i)(i — v2)1 m/2

^2 _|_ jy2 _ i
(14)

In (12) and (13) we use (1) to expand S^J (c, 77) in terms of associated Legendre functions
and obtain:

Rml (C' 0 = (C) d^(C\ml)Imn(^ 0> 1 ~ m even> (15)
n=0

oo

Rml(C>0 = dn(clml)^mn(c,0^ 1 ~ m odd' (16)
n=l

where B^lJ(c) is the leading coefficient in (12), B^J(c) is the leading coefficient in (13),
and

= I ^ Fm(£nT])yrn(z)P^+n(r])dT], I-m even, (17)

Jmn(c>0 = C J ^ lFm(^V)/z]Vym+l(z)Pm+n(v) dr], l-m odd. (18)

The series on the rhs of (15) and (16) are both well behaved. They converge rapidly
with negligible subtraction error when I — m is not large and £ is near unity, even when
c becomes extremely large.

We obtain corresponding expressions for the first derivatives of R^J (c, £) with respect
to £ from (12) and (13) by differentiating, utilizing standard recursion relations for the
spherical Neumann functions, and collecting terms. This gives:

dRlL n = J*_RW(r n _ (-l)(/-"l)/2(2m+lK
^ e-lK""l<'U 2m+1rn!d0(c|m/)

x/_! ((^2 + ^3 i)(l+i)/2 ym+1 [c(g2 + r,2 - 1)1/2]^(C, 7?) dt), I - m even,

n = (m + l)£2-l (2) _ (-l)('-m-1)/2(2m + 3)c£2
di [ £(£2-l) ml[ ' 2m+1m\ d1(c\ml)

r+l \((2 _ 1 VI - r?\\ml2
(^2 + ^ 1)(l+2)/2 ^m+2[c(£2 + rf — l)1/2]g^(c,77) drh I - m odd.

(20)
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Replacing (c, rj) with its expansion in (1) we obtain:

(2) oo

—^(c,0 = 7^ZT^m/(c'0 - <£Bmi ^n(c|m/)/^(c,C), I ~ m even, (21)
^ ^ n=0

n _ (m + l)^ - 1 r(2)
dti

where

(C' ̂ = m^2 _ !) (c> 0 - 2Bmi Y1 d»(cHJ£(c. 0» I - m odd,

(22)

r+1

7mn(c»0 = y [^m(C!??)/^]2/m+l(^)JPm+n(7?)cJ'?> 1 ~ m even, (23)

/• + 1
7mn(c> 0 = J ^ [Fm(t, v) / z2}vym+2{z)P^+n{v) d'i], l-m odd. (24)

The series on the rhs of (21) and (22) converge rapidly with negligible subtraction error.
The required integrals /mn(c;£) have an integrand that is symmetric about 77 = 0.

They can be computed using Gauss quadrature over positive values of 77 and doubling
the result. However, one must be careful to increase the density of quadrature points
near 77 = 0 when £ approaches unity because of the singularity of the spherical Neumann
functions at z = 0. The integrals tend to decrease in magnitude as n increases, the
decrease accompanied by loss of accuracy from increasing subtraction error. This causes

(2)a decrease in accuracy in both Rml (c. £) and its first derivative as I — m increases and
limits the integration method to non-large values of I — m.

We have derived relations between the different integrals through use of recursion
relations for the associated Legendre functions. For example, we can replace rjPm+ni1!)
in the rhs of (24) with its equivalent in terms of P™+n_1(rj) and P™+n+1(??) and obtain
the following relation:

(2 n + 2 m+ 1 )/<$, = (n + 2m)/,(nc)n_1 + (n + 1 )l£]n+1 ■ (25)

Thus the integrals Imh can be calculated directly from (25) instead of computing them
using Gauss quadrature. Other relations we have derived are not as useful for calculating
radial functions with a given degree m since they relate integrals of one kind and degree
m to integrals of a second kind and degree mil. These could, however, be useful when
one is computing the radial functions for a range of m values.

The window function i7'm(£,?7) given in (14) is equal to unity at 77 = 0 and decreases
monotonically to zero as rj increases to 1. Its rate of decrease with respect to 77 increases
as m increases, especially when £ is near unity. A large rate of decrease effectively
lowers the upper limit of the range of integration. With a smaller range of integration,
fewer oscillations of the integrand contribute. The result is that the integrals decrease in
magnitude more slowly (and lose accuracy) more slowly with increasing n. This allows
the integral expression to be used to higher values oil —m when m is large and £ is near
unity.

In Figures 6 and 7 we show examples of the accuracy obtained using the integral
expression. Here the Wronskian accuracy is plotted versus l—m for selected combinations



504 ARNIE L. VAN BUREN and JEFFREY E. BOISVERT

35

200 400 600 800 1000
l-m

Fig. 6. Wronskian accuracy in decimal digits obtained using the
integral expressions (12), (13), (19), and (20) plotted versus l — m for
selected parameters (£, c, m): 0(1.0001,100,0); X (1.0001, 500, 300);
*(1.001,100,0); A(1.01,100,0); o(l.01, 500,0); 0(1.01,500,300).

of c, and m. Results are given for £ = 1.01,1.001, and 1.0001 in Fig. 6 and for £ = 1.05
and 1.1 in Fig. 7. We see that in general the integral expression tends to provide accurate
results to higher values of l — m when £ is closer to unity. When £ is less than about 1.05
and c is large, the accuracy for fixed I — m tends to increase with increasing m. When £
is greater than about 1.05, this is true only if m is not small or l — m is large.

8. A computer program for calculating the prolate spheroidal functions.
We have developed a Fortran computer program called profcn to calculate the prolate
spheroidal functions. Profcn performs calculations in quadruple precision arithmetic with
30+ decimal digits available and runs on a personal computer equipped with a Fortran
compiler that supports quadruple precision arithmetic. Calculation options include (1)
radial functions of the first kind and their first derivatives, (2) radial functions of both the
first and second kind and their first derivatives, (3) angular functions of the first kind, and
(4) angular functions of the first kind and their first derivatives. If desired, both radial
and angular functions can be calculated during the same run. Profcn provides an estimate
of the number of accurate digits in the function values based either on the Wronskian
(when both and are calculated and the Wronskian is not used to determine
the denominator for variable calculations) or on the calculation of the subtraction and
convergence errors introduced into the results. The output of profcn includes diagnostic
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35

200 400 600 800 1000
l-m

Fig. 7. Wronskian accuracy in decimal digits obtained using the
integral expressions (12), (13), (19), and (20) plotted versus I — m
for selected parameters (£,c, m): o(1.05,100,300); A(1.05,500,0);
+(1.05,500,300); *(1.1,100,300); 0(1.1,500,100); □(!.!, 500,300).

files (one for radial functions and one for angular functions) including information such
as the number of terms both available and used in the various series.

Profcn calculates the angular functions of the first kind using (1) and the radial func-
tions of the first kind using the new method described in ref. [4]. It calculates the radial
functions of the second kind using either the traditional spherical Neumann function
expression (5), the traditional associated Legendre function expression (10), the variable
r) expression (4), or the integral expressions in (12) and (13). One specifies the number
of accurate decimal digits that are desired. The expression chosen for a specific calcula-
tion depends on the input parameters and the desired accuracy. For small to moderate
values of c, profcn uses the traditional Neumann function expression for values of £
greater than 1.4 and the traditional associated Legendre function expression elsewhere.
For larger values of c, it uses the integral expressions, starting with I = m and contin-
uing until the maximum desired value for I is reached or the Wronskian accuracy has
decreased to the number of accurate decimal digits desired. In the latter case profcn also

(21calculates Fcmi(c,£) using a second method beginning with the next value of I. It uses
a traditional expression when the subtraction error in the denominator of the Neumann
function expression is sufficiently small. If this provides the desired accuracy, the inte-
gral expressions are abandoned in favor of the traditional expression. If the traditional
expression is unable to provide the desired accuracy, the variable r] expression is tried.
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Here profcn tries values of 17 beginning near zero and increasing toward unity using a
variable step size algorithm. Usually a value for r] is found after a few steps that provides
the desired accuracy. This value of 7) is used for succeeding values of I until the accuracy
falls below the desired accuracy. Then profcn increments rj until the desired accuracy is
obtained. The process is repeated as necessary. Whenever the desired accuracy cannot
be obtained, the algorithm converges to the value of 1} that gives the highest possible
accuracy for that value of I. Profcn switches to a traditional expression when it provides
sufficiently accurate results. It determines this by testing the appropriate traditional
expression every ten values of I once the subtraction error in the denominator of the
Neumann expression is sufficiently small.

Our calculations using profcn have shown that the use of the integral expression to-
gether with the traditional expressions provides at least 10 digits of accuracy (when using
quadruple precision arithmetic) for £ < 1.001 when c < 1000 and for 1.001 < £ < 1.01
when c < 500. Ten digits should be sufficient accuracy for most applications. When we
include the variable 77 expression, we obtain at least ten digits of accuracy for all values of
£ when c < 1000 except for values of £ between 1.005 and 1.15 where fewer than 10 digits
(as few as zero) may be obtained when c is greater than about 400 and m is between
about 30 and 120. We tested the expressions for the first 1001 values of I — m, unless c
was larger than 500 where we tested for the first 2c + 1 values. Few if any applications
will require spheroidal function values for I — m larger than this, although the traditional
expressions should provide accurate values if required.

We have improved this situation significantly by using the fact that the numerator in
the variable r/ expression (4) can be significantly more accurate than the denominator
for a narrow range of i) values. This is also true for the corresponding expression for the
first derivative, which has the same denominator as (4). We can then use the Wronskian
expression (11) to solve for the value of the denominator in (4) using values for the cor-
responding numerators of both (c, £) and its first derivative and calculated accurate
values for i?^j(c, £) and its first derivative. This results in the following expression:

P(2) = n(/42!)  ,26v
ml -1 )[R<%N(dR™/dt) - (dR^/domZi)}'

where N(y) denotes the numerator value of y.
(n\

Use of (26) and the corresponding expression for the first derivative of Rml (c, £) often
provides improved accuracy when insufficient accuracy is obtained otherwise. Of course,
we can no longer use the Wronskian expression (11) to estimate the resulting accuracy.
We instead estimate the accuracy using the degree of convergence and associated sub-
traction errors of the two numerators. We now obtain at least ten digits of accuracy for
all values of £ when c < 1000 except for a few values of I — m near 500 when m lies
between about 50 and 120 and £ is between about 1.008 and 1.015. Here as few as 5
digits may be obtained. We have successfully computed accurate values for values of c
significantly larger than 1000 and obtain ten or more digits except for a narrow range of
values for I when £ is near 1.01 and m is moderate to large. In all cases we computed
the spheroidal functions for values of I — m up to 1000 or 2c, whichever is larger.



IMPROVED CALCULATION OF PROLATE SPHEROIDAL RADIAL FUNCTIONS 507

9. Summary. We have identified alternative expressions for calculating the prolate
( o\

spheroidal radial functions of the second kind Rmi(c,^) and their first derivatives with
respect to £ that provide accurate values over wide parameter ranges where the traditional
expressions fail to do so. The variable r/ expression is based on the expansion of the
product of R^J (c, £) and the prolate spheroidal angular function of the first kind S^j (c, rf
in a series of products of the corresponding spherical functions. This expression provides
accurate values over most parameter ranges when c is not small and £ is not near unity.
We showed that both the traditional Neumann function expression and the traditional
associated Legendre function expression can be obtained from the product expansion.

/o\
The second alternative expression for calculating R [(c,^) involves an integral of the
product of S^j(c, vf) and a spherical Neumann function kernel. It can be computed
efficiently to provide accurate values when £ is near unity and I — m is not too large,
even when c becomes large and traditional expressions fail. We also briefly described
a new Fortran computer program profcn that utilizes both traditional expressions and
alternative expressions to compute the prolate spheroidal radial functions of both kinds
and their first derivatives and the prolate spheroidal angular functions of the first kind
and their first derivatives.
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