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We report new shell-model calculations of the isospin-symmetry-breaking correction δC to superallowed 0+ →
0+ nuclear β decay. The most important improvement is the inclusion of core orbitals, which are demonstrated
to have a significant impact on the mismatch in the radial wave functions of the parent and daughter states.
We determine which core orbitals are important to include from an examination of measured spectroscopic
factors in single-nucleon pickup reactions. In addition, where new sets of effective interactions have become
available since our last calculation, we now include them; this leads to small changes in δNS as well. We also
examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show
that it is possible to preserve the conventional separation into a nucleus-independent “inner” radiative term, �V

R ,
and a nucleus-dependent “outer” term, δ′

R . We tabulate the new values for δC, δNS, and δ′
R for 20 superallowed

transitions, including the 13 currently well-studied cases. With these new correction terms, the corrected F t

values for the 13 cases are statistically consistent with one another, and the anomalousness of the 46V result
disappears. These new calculations lead to a lower average F t value and a higher value for Vud. The sum of
squares of the top-row elements of the Cabibbo-Kobayashi-Maskawa matrix now agrees exactly with unitarity.
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I. INTRODUCTION

Superallowed 0+ → 0+ nuclear β decay currently provides
the most precise value for Vud, the up-down element of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1–3]. This
element is the key ingredient of the most demanding available
test of CKM-matrix unitarity, a fundamental requirement
of the electroweak standard model. To extract Vud from
the experimental data, small theoretical corrections—of or-
der ∼1%—must be applied to take account of unobserved
radiative effects as well as the isospin symmetry break-
ing that occurs between the analog parent and daughter
states of each superallowed transition [4,5]. Even though
these corrections are very small, experimental measure-
ments have by now reached such high precision that the
uncertainty on Vud(±0.03%) is currently dominated not
by experiment but by the uncertainty on these theoretical
corrections.

In the determination of Vud, an important strength of the
nuclear measurements is that many 0+ → 0+ transitions are
available for study; currently, 13 transitions, ranging from 10C
to 74Rb, have been measured with high precision. With so
many, it becomes possible to validate the analysis procedure
by checking that all transitions individually yield statisti-
cally consistent results for Vud. Since the isospin-symmetry-
breaking corrections depend on nuclear structure, they differ
from transition to transition and are particularly sensitive to
this consistency test. Thus the appearance of an anomalous
result from any transition could signal a problem with the
structure-dependent correction for that case, a problem which
might have implications for other cases as well.

*Present address: Department of Physics, Queen’s University,
Kingston, Ontario K7L 3N6, Canada.

In the most recent survey of superallowed 0+ → 0+ transi-
tions, which appeared in 2005 [1], the results for all precisely
measured cases—there were 12 at that time—were statistically
consistent with one another. Today, there are 13 such cases,
and they still form a statistically consistent ensemble overall.
However, recent precise Penning-trap measurements [6,7] of
the QEC value for the superallowed decay of 46V have left
the result for that transition more than two standard deviations
away from the average of all other well-known transitions.
This possible anomaly led us initially to reexamine the
isospin-symmetry-breaking corrections for the 46V transition,
but what we learned from that reexamination prompted us
to a more general reevaluation of the corrections for other
transitions as well.

Our previous shell-model calculations for 46V considered
six valence nucleons occupying the pf-shell orbitals outside
a 40Ca closed shell. This model space generated reasonable
energies and spins for the known states in 46Ti, the daughter
of 46V. However, an important part of the charge-dependent
correction depends on the radial mismatch between the
decaying proton in the parent nucleus and the resulting neutron
in the daughter nucleus; but both these nucleons are bound to
45Ti, so the structure of that nucleus turns out to be important
too. What is most striking about 45Ti is that it has a 3/2+ state
at an excitation energy of only 330 keV, which is strongly
populated in single-nucleon pickup reactions such as (p, d)
and (3He,α). Such low-lying sd-shell states can contribute to
the structural parentage of the initial and final states of the
superallowed transition and consequently must affect the radial
mismatch between them. This indicated to us that a complete
calculation of the isospin-symmetry-breaking correction for
the decay of 46V should include contributions from shells
deeper than the pf shell.

Two questions then arose. How many deeper shells need to
be included? And, if this effect is important for 46V decay,
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how many other transitions will be similarly affected? In
Sec. III of this paper, we address these questions and settle on
criteria for including deeper shells. Using these criteria—and
incorporating more recent effective interactions that have
become available since our last work—we then reevaluate
the isospin-symmetry-breaking corrections for all transitions
of relevance to the study of superallowed 0+ → 0+β decay.
For the cases with A � 38, the changes in the corrections are
very small—typically 0.03%—but for the heavier nuclei, the
changes can be as large as 0.2%. Most significantly, with the
new calculated corrections, the result for 46V is no longer
anomalous.

In Sec. IV, we incorporate recent improvements made by
Marciano and Sirlin [8] to the calculation of the radiative
corrections for superallowed decays; and then in Sec. V,
we apply both types of corrections—isospin-symmetry-
breaking and radiative—to the current experimental data
for superallowed decays. The result for Vud is changed
appreciably, although it is still within the quoted uncertainties
of its old value, and the CKM-unitarity sum is improved.

II. SUPERALLOWED β DECAY

Superallowed Fermi β decay between 0+ states depends
uniquely on the vector part of the hadronic weak interaction.
When it occurs between isospin T = 1 analog states, the
conserved vector current (CVC) hypothesis indicates that the
ft values should be the same irrespective of the nucleus, viz.,

f t = K

G2
V |MF |2 = const, (1)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec
2)5 = (8120.278 ± 0.004)×

10−10 GeV−4 s; GV is the vector coupling constant for
semileptonic weak interactions; and MF is the Fermi matrix
element. The CVC hypothesis asserts that the vector coupling
constant GV is a true constant and not renormalized to another
value in the nuclear medium.

In practice, Eq. (1) has to be amended slightly. First,
there are radiative corrections because, for example, the
emitted electron may emit a bremsstrahlung photon that goes
undetected in the experiment. Second, isospin is not an exact
symmetry in nuclei, so the nuclear matrix element MF is
slightly reduced from its ideal value, leading us to write

|MF |2 = |M0|2(1 − δC), (2)

where M0 is the exact-symmetry value, which for T = 1 states
is M0 = √

2. Thus, we define a “corrected” F t value as

F t ≡ f t(1 + δR)(1 − δC) = K

2G2
V

(
1 + �V

R

) = const, (3)

where δC is the isospin-symmetry-breaking correction, δR

is the transition-dependent part of the radiative correction,
and �V

R is the transition-independent part. Fortunately, these
corrections are all of order 1%; but even so, to maintain an
accuracy criterion of 0.1%, they must be calculated with an
accuracy of 10% of their central value. This is a demand-
ing request, especially for the nuclear-structure-dependent
corrections.

To separate out those terms that are dependent on nuclear
structure from those that are not, we split the transition-
dependent radiative correction into two terms,

δR = δ′
R + δNS, (4)

of which the first, δ′
R , is a function only of the electron’s

energy and the charge of the daughter nucleus Z; it therefore
depends on the particular nuclear decay but is independent of
nuclear structure. The second term, δNS, like δC , depends in
its evaluation on the details of nuclear structure. To emphasize
the different sensitivities of the correction terms, we rewrite
the expression for F t as

F t ≡ f t(1 + δ′
R)(1 + δNS − δC) = K

2G2
V

(
1 + �V

R

) , (5)

where the first correction in brackets is independent of
nuclear structure, while the second incorporates the structure-
dependent terms.

From Eq. (5) it can be seen that a measurement of any
one superallowed transition establishes a single value for
GV ; moreover, measurement of many transitions provides an
excellent test of the validity of the whole analysis. Since CVC
requires a unique value of GV , all the extracted F t values
should be identical within experimental uncertainties.

The ft value that characterizes any β transition depends
on three measured quantities: the total transition energy QEC;
the half-life t1/2 of the parent state; and the branching ratio
R for the particular transition of interest. The QEC value is
required to determine the statistical rate function f , while
the half-life and branching ratio combine to yield the partial
half-life t . In 2005, we published a new survey of world
data on superallowed 0+ →0+ β decays [1]. All previously
published measurements were included, even those based on
outdated calibrations if enough information was provided that
they could be corrected to modern standards. In all, more
than 125 independent measurements of comparable precision,
spanning four decades, made the cut. In the two years since
the survey was closed, another ten relevant publications have
appeared [6,7,9–16], and we have now incorporated these
results into our data base. Based on these data for the 13 most
precisely known transitions, we obtain the ft values shown on
the left side of Fig. 1; then, by incorporating the corrections
calculated by us in 2002 [4] and used in our 2005 survey [1],
we obtain the corrected F t values plotted on the right side of
the figure.

Obviously, the calculated corrections do a remarkable job
eliminating the considerable scatter that is evident in the
ft-value plot on the left but is absent in the corrected F t values
shown on the right. Overall, the statistical agreement among
the F t values is quite satisfactory, the normalized χ2 being
0.8. Thus, considering that the correction terms were evaluated
completely independently of these data, the consistency among
the F t values can be taken as strong evidence that the
correction terms are, in general, soundly based.

However, there is a small but noticeable deviation from
the average at 46V (and possibly 42Sc), which has only been
revealed by the recent Penning-trap measurements [6,7] of
the transition QEC values. Though its statistical significance
appears rather marginal in the figure, it must be remarked that
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FIG. 1. Results from the 2005 survey [1] updated with more recent published results [6,7,9–16]. The uncorrected ft values for the 13
best-known superallowed decays (left) are compared with the same results after corrections have been applied to obtain F t values (right).
Here we have used the corrections calculated by us in 2002 [4], which were used in the original survey. The shaded horizontal band gives one
standard deviation around the average F t value.

the uncertainties quoted on these F t values have been very
conservatively determined. The measured data for each input
parameter—QEC value, half-life, and branching ratio—were
separately evaluated [1], and, if the measurements were incon-
sistent with one another, the weighted-average uncertainty for
that parameter was increased to account for that inconsistency.
In effect, for such cases, the original uncertainties quoted with
the published measurements were all increased by a common
“scale factor” that was large enough to restore statistical
consistency among the measurements. (These scale factors
are tabulated for each parameter in Ref. [1]; they range from
1 to 3.6.) This method, which is also used by the Particle
Data Group [17], leads to final average values that have a
high confidence level, but it does so at the cost of producing
uncertainties that are in many cases larger than would result
from a strict statistical average.

With this method of analysis in mind, the excursion of
the 46V F t value cannot be entirely ignored as a possible
signal that the nuclear-structure-dependent corrections in this
mass region are deficient. It certainly proved to be sufficiently
provocative that we were led to the reevaluation of correction
terms that is reported here.

III. ISOSPIN-SYMMETRY-BREAKING CORRECTION δC

For weak vector interactions in hadron states, the CVC hy-
pothesis protects the decay amplitudes from strong-interaction
corrections. However, there is a caveat. The CVC hypothesis
also requires the hadron state to be an exact eigenstate of SU(2)
symmetry (isospin). In nuclei, SU(2) is always broken, albeit
weakly, by Coulomb interactions between protons. There may
be other charge-dependent effects as well. These influences
shift the value of the hadron matrix element from its exact

symmetry limit to a new value, and this shift has to be evaluated
before weak-interaction physics can be probed with hadrons.
In the case of superallowed β decay, the hadron matrix element
MF is given by Eq. (2), and it is δC that we seek to evaluate.

In the shell model for the cases of interest here, the A-
particle wave functions representing the initial and final states
for superallowed β decay, |i〉 and |f 〉, are states of angular
momentum zero and isospin one. In a second quantization
formulation, the Fermi matrix element is written as

MF = 〈f |τ+|i〉 =
∑
α,β

〈f |a†
αaβ |i〉〈α|τ+|β〉, (6)

where the operator for Fermi β decay is the isospin ladder
operator, a†

α creates a neutron in quantum state α, and aβ

annihilates a proton in quantum state β. The single-particle
matrix element 〈α|τ+|β〉 is just a radial integral

〈α|τ+|β〉 = δα,β

∫ ∞

0
Rn

α(r)Rp

β (r)r2dr ≡ δα,βrα. (7)

If the proton and neutron radial functions Rn
α(r) and R

p

β (r) are
identical, then the radial integral reduces to the normalization
integral and has the value rα = 1.

Now we introduce into Eq. (6) a complete set of states for
the (A − 1)-particle system, |π〉, by writing

MF =
∑
π,α

〈f |a†
α|π〉〈π |aα|i〉rπ

α . (8)

This is the essence of our model: we have allowed the radial
integral to depend on the parentage expansion. Thus, we have
added an additional label to rα and now write rπ

α .
If isospin is an exact symmetry, then the matrix elements

of the creation and annihilation operators are related by
Hermiticity, 〈π |aα|i〉 = 〈f |a†

α|π〉∗ . With that requirement and

025501-3



I. S. TOWNER AND J. C. HARDY PHYSICAL REVIEW C 77, 025501 (2008)

with the radial integrals set to unity, the symmetry-limit matrix
element is

M0 =
∑
π,α

|〈f |a†
α|π〉|2. (9)

Thus we see that the breakdown of isospin symmetry can enter
the evaluation of MF in one of two ways: either the matrix
elements of aα and a†

α are not related by Hermiticity, or the
radial integrals are not unity. Since each effect is small, we can,
to first order, write the isospin-symmetry-breaking correction
as the sum of two terms

δC = δC1 + δC2, (10)

where in evaluating δC1, all radial integrals are set to unity
but the matrix elements are not assumed to be related by
Hermiticity; while in evaluating δC2, it is assumed that
〈π |aα|i〉 = 〈f |a†

α|π〉∗, but the radial integrals are allowed
to differ from unity. Past calculations [4,5] have indicated
the radial overlap correction, δC2, is the larger of the two
corrections, so we will study this first.

A. Radial overlap correction δC2

1. Strategy for calculation

For the δC2 calculation, the Fermi matrix element is

MF =
∑
π,α

|〈f |a†
α|π〉|2rπ

α

=
∑
π,α

|〈f |a†
α|π〉|2 −

∑
π,α

|〈f |a†
α|π〉|2(1 − rπ

α

)

= M0

(
1 − 1

M0

∑
π,α

|〈f |a†
α|π〉|2�π

α

)
, (11)

where M0 is the exact-symmetry value, Eq. (9), and �π
α has

been introduced as a radial-mismatch factor

�π
α = (

1 − rπ
α

)
. (12)

Recalling that δC2 is defined as |MF |2 = |M0|2(1 − δC2), we
obtain

δC2 
 2

M0

∑
π,α

|〈f |a†
α|π〉|2�π

α (13)

to first order in small quantities. A large contribution to
δC2 therefore requires a large spectroscopic amplitude and
a significant departure of the radial integral from unity.

There is an opportunity here to take guidance from
experiment. The square of each spectroscopic amplitude,
|〈f |a†

α|π〉|2, is related to the spectroscopic factor measured
in neutron pickup direct reactions. The exact relation, after
inserting the isospin angular momentum couplings, is

δC2 

∑
π,α

Tf (Tf + 1) + 3
4 − Tπ (Tπ + 1)

Tf (Tf + 1)
S

Tπ

α,Tf
�π

α , (14)

where S
Tπ

α,Tf
is the spectroscopic factor for pickup of a neutron

in quantum state α from an A-particle state of isospin Tf

to an (A − 1)-particle state of isospin Tπ . On setting Tf = 1

and separately identifying sums to the isospin-lesser states
with Tπ = 1

2 , denoted π<, and the isospin-greater states with
Tπ = 3

2 , denoted π>, we obtain a very revealing formula:

δC2 

∑
π<,α

S<
α �<

α − 1

2

∑
π>,α

S>
α �>

α . (15)

This equation provides the key to the strategy we will use
in calculating δC2. It demonstrates that there is a cancellation
between the contributions of the isospin-lesser states and
the isospin-greater states. Moreover, if the orbital α were
completely full in the initial A-particle wave function, then the
Macfarlane and French sum rules [18] for spectroscopic factors
would require

∑
π< S<

α = 1
2

∑
π> S>

α and the cancellation in
Eq. (15) would be very strong. In fact, the cancellation would
be complete if �<

α = �>
α . As we will discuss further in the next

section, this cancellation is not in general complete because the
radial-mismatch factors for isospin-lesser states are larger than
those for isospin-greater states. Even so, cancellation is always
significant, and it becomes most complete when closed-shell
orbitals are involved. Furthermore, the more deeply bound
the closed-shell orbital, the greater the energy spread in the
spectroscopic strength and the more complete the cancellation.
Thus, although the dominant contributions to δC2 come from
unfilled orbitals, we conclude that closed-shell orbitals must
play a role, albeit one that decreases in importance as the
orbitals become more deeply bound.

Based on these observations, our strategy is to use exper-
iment to guide us in determining which closed-shell orbitals
are important enough to include. Ideally, of course, one would
take the spectroscopic factors determined from experiment
and insert them into Eq. (15), but, especially where delicate
cancellations are involved, the reliability of (40-year-old)
experimental spectroscopic factors is certainly not up to the
task. Our strategy then is to use the shell model to calculate the
spectroscopic amplitudes in Eq. (13) but to limit the sum over
orbitals α just to those for which large spectroscopic factors
have been observed in neutron pickup reactions.

We illustrate the strategy for the case of 46V. The spec-
troscopic factors for neutron pickup from 46Ti have been
measured in the (3He, α) reaction by Borlin [19]. He identified
16 states in 45Ti, and in Table I we record the six states
with the largest spectroscopic factors, i.e., S > 0.5. We note
that the errors on the experimental spectroscopic factors are
quite large, and in two cases the quoted Sα values (column
4) exceed the Macfarlane-French (M-F) sum rule [18] for
pure configurations (column 6). Thus we do not use the
experimental spectroscopic factors explicitly, but take them as
a guide for which orbitals should be included in the shell-model
calculation. In the case of 46V decay, they tell us that orbitals
f7/2, d3/2, and s1/2 should be included. In column 5 of Table I
we give a typical value for the radial mismatch factor �π

α for the
given orbital α and isospin Tπ . Column 7 gives the contribution
to δC2 from this α and isospin Tπ if the Macfarlane-French
sum rule is used for the spectroscopic factor, while columns 8
and 9 show the results of a detailed shell-model calculation.
The results from the Macfarlane-French sum rules and the
shell-model calculation are remarkably similar. The summed
δC2 for the shell-model calculation (the sum of all entries in
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TABLE I. Illustration of the strategy used in calculating δC2 for 46V. The measured spectroscopic factors from the 46Ti(3He, α)45Ti
reaction [19] are shown for the states where they are largest. Two calculations are then given for each state’s contribution to δC2: the first
assumes that the total Macfarlane-French (M-F) sum rule is exhausted in each state, while the second gives the result of a complete shell-model
calculation. Both methods give remarkably similar results.

45Ti Ex (keV) J π ; Tπ α (3He, α) measured [19] Sα �π
α (%) Limiting case Shell model

M-F sum rule Contribution
to δC2(%)

∑
π Sπ

α Contribution
to δC2(%)

0 7
2

−
; 1

2 f7/2 2.7(11) 0.134 3.33 0.45 3.36 0.45

330 3
2

+
; 1

2 d3/2 1.9(8) 0.157 2.67 0.42 2.45 0.39

1566 1
2

+
; 1

2 s1/2 0.7(3) 0.318 1.33 0.42 1.22 0.39

4723 7
2

−
; 3

2 f7/2 3.6(16) 0.085 2.67 −0.11 2.74 −0.12

4810 3
2

+
; 3

2 d3/2 3.6(16) 0.100 5.33 −0.27 4.92 −0.25

5760 1
2

+
; 3

2 s1/2 3.2(12) 0.224 2.67 −0.30 2.47 −0.28

column 9) is 0.58%, nearly a factor of 2 larger than our previous
calculated value, which was published in 2002 [4].

The difference between our calculations arises as follows:
In 2002 our shell-model calculations for 46V were based on
the model space (fp)6, with six valence nucleons occupying
the pf-shell orbitals. In fact, only the f7/2 orbital contributed
importantly to the δC2 calculation, so the result was δC2 =
0.45 − 0.12 = 0.33% (see the two rows for the f7/2 orbital
in Table I). Absent from this 2002 calculation was any
contribution from the core orbitals, d3/2 and s1/2. In our present
calculations, these orbitals are included, with the d3/2 orbital
contributing 0.14% to δC2, and the s1/2 contributing 0.11%.

But why stop there? Why not include the d5/2 and possibly
the p-shell orbitals in the computation? We considered this
question carefully, even though a detailed calculation was
precluded by the size of the extended shell-model configu-
ration space, which exceeded our numerical capabilities. As
a limiting case, we took just one d5/2 state with Tπ = 1

2 and
one with Tπ = 3

2 , each carrying the Macfarlane-French sum
rule for its spectroscopic strength. Then, with an estimate
of its location in the 45Ti spectrum, we could obtain the
contribution to δC2 from these two deep-hole states. Since the
neutron pickup experiment saw little or no evidence for such
core states, it is likely that the actual spectroscopic strength
is highly fragmented and not simply confined to a pair of
states. In that case, the cancellation between isospin-lesser
and isospin-greater states becomes more complete, and their
contribution to δC2 is reduced. Thus, with our simple model
almost certainly giving an over-estimate of the effect, we found
that the possible contribution of deep-hole states to δC2 is less
than our assigned uncertainties.

With this approach, we are now in a position to revise
our earlier results [4] to include the effects of previously
ignored core orbitals. Again using measured spectroscopic
factors from neutron pickup reactions, we determined that
changes were required for the A = 22 and 26 cases, in which
p-shell holes must contribute in addition to the original
sd-shell configurations; similarly, sd-shell holes were required
in addition to the pf-shell particles for A = 46, 50, and 54.
For A = 62, 66, 70, and 74 in the upper pf-shell, there are no

experimental neutron pickup reaction measurements to guide
us. Our previously published calculations for these nuclei
were based on (p3/2, f5/2, p1/2)n model spaces using 56Ni as
a closed-shell core. It seemed prudent now for these cases at
least to include the f7/2 orbital in the calculation of δC2, and we
have made this change. In the cases with A = 18 and 42, we
had previously included some contribution from deeper shells;
we did not need to make any changes in the former but did
add the s1/2 and d5/2 shells to the latter. No additional orbitals
were required for the cases with A = 10, 14, 30, 34, and 38.

2. Radial-mismatch factor �π
α

In considering the radial integrals, we benefit from a very
strong constraint: the asymptotic forms of all radial functions
must match the measured separation energies Sp and Sn, where
Sp is the proton separation energy in the decaying nucleus and
Sn the neutron separation energy in the daughter nucleus. The
basic ingredients of these separation energies are well known
and can be found in any atomic mass table. It is the size of the
difference between Sp and Sn and the presence or absence of
nodes in the radial wave functions that are the principal factors
in determining the magnitude of �π

α .
Our calculations of this mismatch factor follows the same

path as that described in our earlier works [4,20]. We use a
Saxon-Woods potential defined for a nucleus of mass A and
charge Z + 1 as

V (r) = −V0f (r) − Vsg(r) l · σ + VC(r) − Vgg(r) − Vhh(r),

(16)

where

f (r) =
{

1 + exp

(
r − R

a

)}−1

,

g(r) =
(

h̄

mπc

)2 1

asr
exp

(
r − Rs

as

)

×
{

1 + exp

(
r − Rs

as

)}−2

,
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h(r) = a2

(
df

dr

)2

,

VC(r) = Ze2/r, for r�Rc,

= Ze2

2Rc

(
3 − r2

R2
c

)
, for r < Rc, (17)

with R = r0(A − 1)1/3 and Rs = rs(A − 1)1/3. The first three
terms in Eq. (16) are the central, spin-orbit, and Coulomb
terms, respectively. The fourth and fifth terms are additional
surface terms whose role we discuss shortly.

Most of the parameters were fixed at standard values,
Vs = 7 MeV, rs = 1.1 fm, and a = as = 0.65 fm. The radius of
the Coulomb potential was determined from the charge mean
square radius 〈r2〉1/2

ch of the decaying nucleus as determined
from elastic electron scattering; see Eqs. (21) and (22) in
Ref. [4]. The well radius r0 was similarly fixed, by requiring
that the charge density constructed from the square of the
proton wave functions bound in the well should also match
the charge mean square radius. Initially, with Vg and Vh set to
zero, the well depth V0 was adjusted so that the binding energy
of the least-bound orbital matched the experimental separation
energy.

From the shell-model calculation, we obtained the A-
particle wave functions, |i〉 and |f 〉, expanded into products
of (A − 1)-particle wave functions |π〉 and single-particle
functions |α〉. In Eq. (8) and the discussion that followed
it, we noted that the radial integral should depend on the
separation energies relative to the (A − 1) state, |π〉. We
ultimately allowed this to happen, but initially we calculated
the value of δC2 under the assumption that the proton and
neutron radial functions, Rp(r) and Rn(r), have asymptotic
forms for all α that are fixed at the separation energies Sp and
Sn to the ground state of the (A − 1) nucleus. In this case,
the sums over π can be done analytically, and the computed
value of δC2 becomes independent of the shell-model effective
interaction. This result, which we label δI

C2, can be simply
expressed with the help of Eqs. (9) and (13):

δI
C2 
 2�αg

. (18)

Here αg is the shell-model orbital of the transferred neutron in
the pickup reaction from the A-particle state |f 〉 to the ground
state of the (A − 1)-particle nucleus.

We next removed our simplifying assumption and evaluated
the radial integrals with eigenfunctions of the Saxon-Woods
potential whose well depth was adjusted so that each eigen-
function matched the separation energy of the (A − 1) state to
which it corresponds, |π〉. For an (A − 1) state at excitation
energy Ex , the corresponding separation energies are Sp + Ex

and Sn + Ex . We label these results δII
C2 and note that the values

now depend on the spectroscopic amplitudes, and hence on the
shell-model effective interaction, but not strongly.

So far, we have ignored the two surface terms in Eq. (17)
by setting Vg = 0 and Vh = 0. It can be argued, however, that
the central part of the potential, which in principle should be
determined from some Hartree-Fock procedure, should not be
continually adjusted. Instead, any adjustments made to match
separation energies should be to the surface part of the potential
rather than to the depth of the well. Thus, we also calculated

δC2 by fixing V0 separately for protons and neutrons to match
the ground-state parent separation energies Sp and Sn, and then
adjusting the strength of the surface term Vg (keeping Vh = 0)
so that the asymptotic forms matched the separation energies
Sp + Ex and Sn + Ex . These results are labeled δIII

C2.
Finally, our fourth method of calculation was the same as

the third, except that it was the second surface term Vh that was
adjusted to match separation energies, keeping Vg = 0. This
second term h(r) is even more strongly peaked in the surface
than g(r). These results are labeled δIV

C2.
On average, the method III values of δC2 are about 2% lower

than the method II values; and method IV values are about 7%
lower than the method II values for orbitals without any radial
nodes. For orbitals with one or more nodes, there is more of
the radial wave function in the surface region and methods III
and IV produce greater reductions.

3. Shell-model calculations

We now present our results for δC2 based on the extensions
of the shell-model spaces mentioned at the end of Sec. III A1.
In addition to adding the core orbitals mentioned there,
however, in some cases we have also been able to make use of
more recent effective interactions that have become available
since our last work. Specifically, we used the following
interactions in the various mass regions of interest: In the p

shell, we used the Cohen-Kurath interactions [21] and the more
recent PWBT interaction of Warburton and Brown [22]. In the
s, d shell, besides the universal interaction of Wildenthal [23],
we employed two new versions, USD-A and USD-B, of Brown
and Richter [24]. In the pf shell, we used the KB3 interaction
of Kuo-Brown [25] as modified by Poves and Zuker [26],
the FPMI3 interaction of Richter and Brown [27], and the
more recent GXPF1 interaction of Honma et al. [28,29]. For
cross-shell interactions between the major shells, we used the
interaction of Millener and Kurath [30]. Note that in many
cases we found it necessary to introduce some truncations
in the original model space in order to keep the calculations
tractible.

We made calculations for all 20 superallowed transitions
considered in our earlier work [1,4], and for each we calculated
δC2 in the four methods, I–IV, described in Sec. III A2 and
with the several interactions listed in the previous paragraph.
In Table II, we record only one sample result for δI

C2, δ
II
C2, δ

III
C2,

and δIV
C2 for each nucleus listed. However, our “adopted δC2”

values result from our assessment of all multiple-parentage
calculations made for each decay, not just those shown in
the previous three columns. The uncertainty assigned to each
adopted value reflects the uncertainty in the radius of the
Saxon-Woods potential (resulting from an uncertainty in the
nuclear rms radius to which it is adjusted), the spread of
results obtained with different shell-model interactions, and
the spread of results obtained with the different procedures
labeled II, III, and IV in the table.

B. Isospin-mixing correction δC1

The second (and smaller) contribution to δC is the isospin-
mixing correction δC1. For its evaluation, the radial integrals
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TABLE II. Calculations of δC2 with Saxon-Woods radial functions, without parentage expansions
(δI

C2) and with parentage expansions (δII
C2, δ

III
C2, and δIV

C2). Note that only one sample result is shown
in each case for δI

C2, δ
II
C2, δ

III
C2 and δIV

C2, while the adopted δC2 value in column 7 reflects the results
from all multiple-parentage calculations for that case; see text.

Parent 2002 δC2(%) This work
nucleus Ref. [4]

δI
C2(%) δII

C2(%) δIII
C2(%) δIV

C2(%) δC2(%) adopted

Tz = −1:
10C 0.170(15) 0.132 0.163 0.165 0.163 0.165(15)
14O 0.270(15) 0.217 0.274 0.271 0.271 0.275(15)
18Ne 0.390(10) 0.251 0.386 0.387 0.382 0.410(25)
22Mg 0.255(10) 0.207 0.366 0.382 0.375 0.370(20)
26Si 0.330(10) 0.223 0.421 0.407 0.392 0.405(25)
30S 0.740(20) 0.812 0.714 0.710 0.713 0.700(20)
34Ar 0.610(40) 0.351 0.680 0.639 0.579 0.635(55)
38Ca 0.710(50) 0.402 0.840 0.784 0.702 0.745(70)
42Ti 0.555(40) 0.359 0.881 0.849 0.780 0.835(75)
Tz = 0:
26Alm 0.230(10) 0.156 0.292 0.280 0.271 0.280(15)
34Cl 0.530(30) 0.312 0.583 0.561 0.498 0.550(45)
38Km 0.520(40) 0.299 0.623 0.575 0.522 0.550(55)
42Sc 0.430(30) 0.278 0.681 0.648 0.606 0.645(55)
46V 0.330(25) 0.273 0.587 0.543 0.506 0.545(55)
50Mn 0.450(30) 0.315 0.638 0.598 0.594 0.610(50)
54Co 0.570(40) 0.376 0.760 0.688 0.706 0.720(60)
62Ga 1.05(15) 1.31 1.22 1.19 1.14 1.20(20)
66As 1.15(15) 1.32 1.41 1.34 1.24 1.35(40)
70Br 1.00(20) 1.43 1.41 1.31 1.10 1.25(25)
74Rb 1.30(40) 1.68 1.60 1.47 1.12 1.50(30)

are all set to unity, but the spectroscopic amplitudes in Eq. (8)
are not required to satisfy Hermiticity. Calculations of this
correction turn out to be very sensitive to the details of the
shell-model computation. This would be a very unfortunate
property if we were not able to adopt certain strategies that act
to reduce the model dependence considerably.

There are three ways in which we incorporated charge
dependence in our shell-model calculation. First, the single-
particle energies of the proton orbits were shifted relative to
those of the neutrons. The amount of shift was determined from
the spectrum of single-particle states in the closed-shell-plus-
proton versus the closed-shell-plus-neutron nucleus, where
the closed shell was taken to be the nucleus used as a
closed-shell core in the shell-model calculation. We took these
single-particle shifts from experiment and did not adjust them.

Second, we added a two-body Coulomb interaction among
the valence protons and adjusted its strength so that the
measured b coefficient of the isobaric multiplet mass equation
(IMME) was exactly reproduced. Third, we introduced a
charge-dependent nuclear interaction by increasing all the
T = 1 proton-neutron matrix elements by about 2% relative to
the neutron-neutron matrix elements. The precise amount of
this increment was determined by requiring agreement with
the measured c coefficient of the IMME. This strategy of
constraining the charge dependence in the effective interaction
by requiring it to reproduce the coefficients of the IMME was
adopted from the work of Ormand and Brown [31,32].

Experimental data were used in one more way to constrain
our calculations. If isospin were an exact symmetry, then the
parent 0+(T = 1) state would decay exclusively to its analog
state in the daughter nucleus, and β transitions to all other 0+
states in the daughter would be strictly forbidden. But, with
isospin symmetry broken, weak transitions (with branching
ratios measured in parts per million) can occur to these other
0+ states. In this case, we write the Fermi matrix element
squared to the nth non-analog 0+ state as∣∣Mn

F

∣∣2 = 2δn
C1, (19)

and the reduction in the analog transition Fermi matrix element
squared as

|MF |2 = 2(1 − δC1), (20)

neglecting, in this context, the contribution of δC2. If all the 0+
states of a given model space had the same T = 1 isospin
designation, then the effect of isospin-symmetry-breaking
terms in the Hamiltonian would be to deplete the analog-
transition strength by an amount that is exactly matched by
the sum of the strengths to the non-analog states; i.e.,

δC1 

∑

n

δn
C1. (21)

In practice, with large shell-model calculations the 0+ states
in the model space will include some states whose isospin
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TABLE III. Shell-model calculations of the isospin-mixing correction, δC1.

Parent Measured IMME 2002 δC1(%) This work
nucleus coefficients [33] Ref. [4]

Ex(0+) expt Ex(0+)
SM

δC1(%)
unscaled

δC1(%)
scaled

δC1(%)
adoptedb (keV) c (keV)

Tz = −1:
10C −1.546 0.362 0.010(10) 6.18 9.24 0.005 0.011 0.010(10)
14O −2.493 0.337 0.050(20) 6.59 6.64 0.049 0.050 0.055(20)
18Ne −3.045(1) 0.347(1) 0.230(30) 3.71 4.07 0.116 0.140 0.155(30)
22Mg −3.814(1) 0.315(1) 0.010(10) 6.24 6.21 0.010 0.010 0.010(10)
26Si −4.535(2) 0.302(2) 0.040(10) 3.59 3.86 0.022 0.026 0.030(10)
30S −5.185(2) 0.275(2) 0.195(30) 3.79 3.80 0.137 0.138 0.155(20)
34Ar −5.777(2) 0.286(2) 0.030(10) 3.92 3.97 0.023 0.023 0.030(10)
38Ca −6.328(3) 0.284(3) 0.020(10) 3.38 3.21 0.026 0.023 0.020(10)
42Ti −6.712(3) 0.287(3) 0.220(100) 1.84 3.16 0.038 0.114 0.100(20)
Tz = 0:
26Alm −4.535(2) 0.302(2) 0.040(10) 3.59 3.86 0.025 0.028 0.030(10)
34Cl −5.777(2) 0.286(2) 0.105(20) 3.92 3.97 0.091 0.093 0.100(10)
38Km −6.328(3) 0.284(3) 0.100(20) 3.38 3.21 0.099 0.089 0.105(20)
42Sc −6.712(3) 0.287(3) 0.060(30) 3.30a 5.05 0.007 0.017 0.020(10)
46V −7.327(10) 0.276(11) 0.095(20) 3.57a 4.86 0.040 0.075 0.075(30)
50Mn −7.892(30) 0.259(30) 0.055(20) 3.69 3.62 0.057 0.054 0.045(20)
54Co −8.519(25) 0.276(25) 0.040(15) 2.56 2.26 0.058 0.045 0.050(30)
62Ga −9.463(70) 0.265(25)b 0.330(40) 2.33 2.32 0.221 0.219 0.275(55)
66As −9.95(15) 0.262(25)b 0.250(40) 2.17c 1.89 0.210 0.159 0.205(45)
70Br −10.48(23) 0.260(25)b 0.350(40) 2.01 2.05 0.332 0.346 0.350(40)
74Rb −10.82(25) 0.258(25)b 0.130(60) 0.508 0.523 0.122 0.129 0.130(60)d

aSecond excited 0+ state; shell-model calculations indicate this state takes up most of the depletion from the analog state.
bEstimated: extrapolated from a fit to c coefficients in 0+ states in A = 4n + 2 nuclei, 10 � A � 58; the data were taken
from Ref. [33].
cEstimated: value is the average of the excitation energy of the 0+ states in 62Zn and 70Se.
dNo new calculations were performed for 74Rb.

designation is not T = 1; and then Eq. (21) is not exactly
correct. Nevertheless, it remains approximately true.

Significantly, in many cases the bulk of the analog state
depletion shows up in a single excited 0+ state, usually (but
not always) the first excited one. This allows us once again
to use experiment to constrain and refine our calculation. In
the limit of only two-state mixing, perturbation theory would
indicate that

δC1 ∝ 1

(�E)2
, (22)

where �E is the energy separation of the analog and non-
analog 0+ states. Again, this is not an exact result, but it
does highlight the importance of the shell-model Hamiltonian
producing a good quality spectrum of 0+ states with, in
particular, the first excited non-analog 0+ state calculated to
have an excitation energy close to its experimental value.1 This
is not always possible to achieve in the shell model, especially

1In a few cases, the state calculated to have the largest charge-
dependent admixture was the second excited 0+ state. In these cases,
we optimized the agreement between theory and experiment for the
excitation energy of that state.

near closed shells where excited 0+ states tend to exhibit strong
deformations. We used two strategies to bring the calculation
into line with experimental information. Our first was to adjust
the centroids of the shell-model Hamiltonian matrix elements
specifically to get the excited 0+ state at about the right energy.
Our second was to scale our calculated δC1 value by a factor
of (�E)2

theo/(�E)2
expt, the ratio of the square of the excitation

energy of the first excited 0+ state in the model calculation to
that known experimentally.

We list in Table III the experimental values [33] of the
IMME coefficients b and c and the known excitation energy
Ex(0+) of the first (or second) excited 0+ state in the daughter
nuclei. As explained, all our shell-model calculations were
adjusted to reproduce exactly the values of b and c, and
to match, as closely as possible the excitation energy of
the excited 0+ state. We compensated for any remaining
discrepancies between the calculated and experimental values
of Ex(0+) by scaling the results for δC1. As in Table II, we
give (in columns 6–8) the results from one sample calculation
for each nucleus. Then in column nine we present adopted
δC1 values that result from our assessment of the results of all
calculations made for each decay, not just the ones shown in
columns 6–8; the uncertainties were chosen to encompass the
spread in the results from those calculations and to include the
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TABLE IV. Shell-model calculations of δ1
C1 for Fermi decay to the first

excited 0+ state; see Eq. (19). The results are compared with experimental
measurements where they are known. All values are expressed in %.

Parent 2002 This work Expt
nucleus value [4]

Unscaled Scaled Adopted

Tz = 0:
38Km 0.090(30) 0.068 0.062 0.085(30) <0.28a

42Sc 0.020(20) 0.007 0.027 0.015(15) 0.040(9)b

46V 0.035(15) 0.008 0.024 0.025(20) 0.053(5)a

50Mn 0.045(20) 0.049 0.047 0.040(20) <0.016a

54Co 0.040(20) 0.049 0.038 0.050(20) 0.035(5)a

62Ga 0.085(20) 0.160 0.159 0.120(40) �0.040(15)c

66As 0.020(20) 0.110 0.087 0.050(30)
70Br 0.070(20) 0.226 0.235 0.150(80)
74Rb 0.050(30) 0.045 0.047 0.050(30)d �0.075e

aFrom Hagberg et al. (1994) [34].
bFrom Daehnick and Rosa (1985) [35] averaged with earlier results.
cFrom Hyland et al. (2006) [15].
dNo new calculations were performed for 74Rb.
eFrom Piechaczek et al. (2003) [36].

uncertainty in the IMME b and c coefficients. For comparison,
in column 4 we list the values we adopted for δC1 in 2002 [4].
Our strategies have remained unchanged, but here we have
additionally used some more recent shell-model effective
interactions as listed in Sec. III A3. In nearly all cases, the
new values of δC1 agree with the old values within their stated
uncertainties.

For the heavier nuclei, there are experimental data on
Fermi transitions to the non-analog excited 0+ states. The
measured branching ratios [15,34–36] have been converted
to δ1

C1 values, via Eq. (19), and listed in Table IV. Again,
for each nucleus, we list just one representative calculation
and our adopted value. The assigned error reflects both the
spread among the different calculations and the uncertainties
in the IMME coefficients. Our 2002 adopted values [4] are
also listed. For nuclei 38 � A � 54, with the possible exception
of 50Mn, the agreement between theory and experiment is
entirely satisfactory. But in the upper pf shell, the calculated
value for 62Ga is three times larger than measured in recent
experiments [15]. Shell-model calculations in this region are
complicated by the massive size of the Hamiltonian matrices.
To keep our calculations tractible, we kept the f7/2 shell closed
in these cases, but there is considerable evidence [29] that this
could be a poor assumption.

IV. THE RADIATIVE CORRECTION

A. Prior to 1990

Conventionally, the radiative correction has been separated
into two parts, one that contains the nucleus-dependent
terms, called the “outer” radiative correction, and one that
is independent of the nucleus, the “inner” radiative correction.
Principally due to the work of Marciano and Sirlin (for
example, Refs. [37–39]), the radiative correction applied to

the uncorrected β-decay rate 	0
β was expressed as

	β = 	0
β(1 + δ′

R)
(
1 + �V

R

)
(23)

δ′
R = α

2π
[ ḡ(Em) + δ2 + δ3]

largeEm−→ α

2π

[
3 ln

(
mp

2Em

)
+ 81

10
− 4π2

3
+ δ2 + δ3

]
, (24)

�V
R = α

2π

[
3 ln

mW

mp

+ ln
mW

mA

+ 2C − 4 ln
mW

mZ

+ Ag

]
(25)

= α

2π

[
4 ln

mZ

mp

+ ln
mp

mA

+ 2C + Ag

]
, (26)

where Em is the maximum electron energy in β decay,
and mW,mp,mZ are the masses of the W boson, proton,
and Z boson. The separation into outer and inner terms is
accommodated in δ′

R and �V
R, respectively.

In the outer correction δ′
R , the order-α term contains the

function ḡ(Em): it is the average over the β energy spectrum
of the function g(E,Em), which was defined by Sirlin (see
Eq. (20b) of Ref. [37]) and is not reproduced here. Its large-Em

limit is shown in Eq. (24), indicating that the expression is
dominated by the logarithm ln(mp/(2Em)). The last two terms
in the outer correction, δ2 and δ3, represent corrections to order
Zα2 and Z2α3, respectively. The origin of the ḡ(Em) term—
together with that of the leading term in the inner radiative
correction, 3 ln(mW/mp)—is the γW -box and bremsstrahlung
diagrams, which are taken together to remove the divergence as
the photon energy goes to zero. Both δ2 and δ3 also come from a
standard QED calculation of the γW -box and bremsstrahlung
graphs [40,41], but in their case, the electron was allowed to
interact with the Coulomb field of the nucleus. Care was taken
not to double count with the Fermi function. The calculation
was complete to order Zα2 but only estimated in order Z2α3.

025501-9



I. S. TOWNER AND J. C. HARDY PHYSICAL REVIEW C 77, 025501 (2008)

In the inner correction �V
R , the second and third terms,

ln(mW/mA) + 2C, like the first term, also represent a γW -box
graph, but this time it involves an axial-vector weak interaction.
The evaluation of this graph can be divided into two energy
regimes: the high-energy (or short-distance) part given by the
logarithm, and the low-energy (or long-distance) part denoted
by 2C. The parameter mA, referred to as the low-energy cutoff,
divides these two energy regimes. Marciano and Sirlin [38]
allowed it to take on a range of values, 400 � mA � 1600 MeV
(revised slightly by Sirlin [42] to be ma1/2 � mA � 2ma1 ,
with ma1 being the A1-vector-meson mass). The low-energy
component, 2C, was approximated by its Born contribution

C → CBorn = 3gA(0.266)(µp + µn) = 0.885, (27)

where gA = 1.26 is the axial vector coupling constant accepted
at the time, and (µp + µn) = 0.88 is the nucleon isoscalar
magnetic moment. The factor 0.266 is the value of the loop
integral that was rendered finite by the use of dipole form
factors for the nucleon electromagnetic, γN , and axial-vector,
WN , vertices. The fourth term in Eq. (25), with the logarithm
ln(mW/mZ), arises from ZW -box graphs; while the last term,
Ag , represents a small perturbative QCD correction that was
evaluated by Marciano and Sirlin [39] to be Ag = −0.34.

The value of the outer radiative correction as defined
in Eq. (24), ranges from 1.39% to 1.65% for the known
superallowed emitters (see Ref. [4]). Following Sirlin [40],
the assigned uncertainties are set equal to (α/2π )δ3 as an
estimate of the error made in stopping the calculation at that
order. The value of the inner radiative correction as obtained
from Eq. (26) with C from Eq. (27) is [39,42]

�V
R (old) = 2.40(8)%. (28)

These results provide the essential foundation of the
radiation corrections still used today. However, a number
of improvements have been introduced in the intervening
17 years.

B. A nuclear-structure-dependent term

The low-energy part of the γW -box diagram for an
axial-vector weak interaction, denoted 2C, was approximated
by its Born contribution in Eq. (27), and was evaluated on
a single nucleon. However, in a finite nucleus with many
nucleons present, Jaus and Rasche [43] observed that the two
hadronic-interaction vertices, γN and WN , do not have to
be with the same nucleon. Thus, in finite nuclei, there can
be two types of contributions: those in which γN and WN

vertices are with the same nucleon and those in which they
are not. The evaluation of the former terms yields expressions
[44] that are proportional to τ+, the isospin ladder operator,
and so are also proportional to the Fermi β-decay operator.
Therefore, they produce a universal correction—the same
in all nuclei—with the value CBorn, which is given in Eq.
(27). The remaining terms, those in which the interactions
are with different nucleons, must be evaluated with two-body
operators that depend on the nuclear structure of the states
involved. Thus, the expression for C given in Eq. (27) must be

replaced by

C = CBorn + CNS, (29)

where CNS comprises the nuclear-structure-dependent terms.
Calculations of CNS were first made in 1992 [44,45].

A further modification was introduced in 1994 [46]. In
calculations of CBorn that had been made up to that time, the
axial-vector and electromagnetic coupling constants, gA and
(µp + µn)—see Eq. (27)—had been given their free-nucleon
values. Yet there is ample evidence in nuclear physics that
coupling constants for spin-flip processes are quenched in
the nuclear medium, with the amount of quenching varying
from nucleus to nucleus. Thus, one should really be replacing
Cfree

Born, the value obtained with free-nucleon coupling constants,
with C

quenched
Born . However, to separate the nucleus-dependent and

nucleus-independent parts of the latter, we write

C
quenched
Born = qCfree

Born

= Cfree
Born + (q − 1)Cfree

Born, (30)

where q is the factor by which the product of the weak and
electromagnetic coupling constants is reduced in the medium
relative to its free-nucleon value.

The first term in Eq. (30), which remains universal, is
retained in the inner radiative correction, replacing C in
Eq. (25). The second term becomes part of a separate
nuclear-structure-dependent radiative correction, δNS, which
also includes C

quenched
NS , the value of CNS recalculated with

quenched operators. This correction is written as

δNS = α

π

[
C

quenched
NS + (q − 1)Cfree

Born

]
, (31)

and is incorporated with the other nuclear-structure-dependent
correction term, δC ; see Eq. (5). Calculated values of δNS

[4] range from −0.360% to +0.030%, each generally being
smaller in magnitude than the corresponding value of δC .

We will return to δNS in Sec. IV E.

C. Improvements to �V
R

In 2005, Czarnecki, Marciano, and Sirlin [47] revisited the
O(α2) correction for neutron β decay. They began by trivially
updating the value of Cfree

Born to reflect the current value of the
axial-vector coupling constant, gA = 1.27, to get

Cfree
Born = 0.891, (32)

which replaces the value given in Eq. (27).
They then went on to reevaluate �V

R , focusing particularly
on the leading log corrections. Using an established renormal-
ization group summation [39] for the leading short-distance
logs, S(mp,mZ), they extended the method to the lower energy
region between 2Em and mp to obtain L(2Em,mp). This
resulted in the replacements

1 + 2α

π
ln

mZ

mp

→ S(mp,mZ) = 1.02248, (33)

1 + 3α

2π
ln

mp

2Em

→ L(2Em,mp), (34)
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where

L(2Em,mp) = 1.026725

[
1 − 2α(me)

3π
ln

2Em

me

]9/4

. (35)

The complete radiative correction, RC, including order Zα2

and Z2α3 terms, could then be written [47] as

1 + RC =
{

1 + α

2π

[
ḡ(Em) − 3 ln

mp

2Em

]}

×
{
L(2Em,mp) + α

2π

[
2Cfree

Born + δ2 + δ3
]}

×
{
S(mp,mZ) + α(mp)

2π

[
ln

mp

mA

+ Ag

]
+ NLL

}
,

(36)

where NLL is a next-to-leading log correction that Czarnecki
et al. estimate to be NLL = −0.0001. The coefficient α(m) is
a running QED coupling constant whose value at m = mp is
1/133.986 and at m = me is 1/137.089 [47].

This new result can still be organized to preserve the
separation of nucleus-dependent and nucleus-independent
components. The separation we hereby adopt is

1 + δ′
R =

{
1 + α

2π

[
ḡ(Em) − 3 ln

mp

2Em

]}

×
{
L(2Em,mp) + α

2π
[δ2 + δ3]

}
, (37)

1 + �V
R = 1 + RC

1 + δ′
R

∼= S(mp,mZ) + α

π
Cfree

Born

+ α(mp)

2π

[
ln

mp

mA

+ Ag

]
+ NLL. (38)

We will use this separation here and in our future work on
superallowed β decay. It results in a small change to the values
of δ′

R and �V
R that we used in our recent review [1].

D. Reduced uncertainty for �V
R

In Sec. IV A, we explained that the terms ln(mW/mA) + 2C

in Eq. (25) arose from the γW -box graph for an axial-vector
weak interaction. These two terms came from splitting the
evaluation of this graph into two energy regimes. The division
between the two regimes was chosen to be mA = 1.2 GeV
[42], roughly the mass of the A1 resonance, and its range
of uncertainty was taken to be from mA/2 to 2mA. This
adhoc range determination actually produced the largest
single contributor to the uncertainty in the CKM matrix
element Vud.

To reduce the hadronic uncertainty in the radiative correc-
tion, Marciano and Sirlin [8] looked again at the γW -box graph
for an axial-vector weak interaction. This time they split it into
three energy regimes rather than two, and, where possible, they
drew on independent information to control their results:

(i) Short distances, (1.5 GeV)2 � Q2 < ∞: This is a do-
main where QCD corrections remain perturbative.
Marciano and Sirlin added higher-order terms, noting
that these terms are identical (in the chiral limit) to

QCD corrections to the Bjorken sum rule for polarized
electroproduction and can therefore be obtained from
well-studied calculations for that process.

(ii) Intermediate distances, (0.823 GeV)2 � Q2 <

(1.5 GeV)2: In this region, they used an interpolation
function between low and high energies, motivated by
vector-meson and axial-vector-meson dominance. By
limiting the number of terms to three, they had sufficient
matching conditions to determine the coefficients
uniquely.

(iii) Long distances, 0 � Q2 � (0.823 GeV)2: Integrating the
long-distance amplitudes up to Q2 = (0.823 GeV)2,
where the integrand matches smoothly to the interpo-
lation function, they obtained a smaller value for Cfree

Born,

Cfree
Born = 0.829, (39)

than given in Eq. (32). However this smaller value is
caused entirely by the reduction in the effective upper
limit to the loop integration and is almost completely
compensated for by the consequently higher values
obtained for the graph in the other energy regimes.

In the end, Marciano and Sirlin [8] find that the net effect
of this reevaluation of the γW -box axial graph is a very
small reduction in the radiative correction of 1.4 × 10−4. More
important than this reduction, the new method provides a more
systematic estimate of the hadronic uncertainties. Allowing
for a ±10% uncertainty for the Cfree

Born correction in Eq. (39),
a ±100% uncertainty for the interpolator contribution in the
intermediate region, and ±0.0001 uncertainty from neglected
higher-order effects, Marciano and Sirlin [8] find the total
uncertainty in the radiative correction to be ±0.00038. This
corresponds to more than a factor of 2 reduction in the loop
uncertainty for hadronic effects [cf. Eq. (28)].

E. New values for δ′
R,�V

R , and δNS

We maintain the traditional separation of the radiative
correction into a nucleus-dependent outer correction and a
nucleus-independent inner correction; see Eqs. (37) and (38).
This means that the outer correction δ′

R is slightly redefined
and is now written as

δ′
R = α

2π
[ ḡ(Em) + δ2 + δ3 + δα2 ], (40)

where the new term, δα2 , simply represents the difference
between the definition of δ′

R given in Eq. (37) and that given
in Eq. (24). It is the leading-log extrapolation of the logarithm
ln(mp/2Em), which is contained in the function ḡ(Em). Values
of δα2 and the redefined δ′

R are given in Table V for all the
superallowed transitions of interest.

The new inner correction is defined by Eq. (38), with
Cfree

Born taken from Eq. (39). With its uncertainty obtained from
Marciano and Sirlin [8], the result is

�V
R = (2.361 ± 0.038)%. (41)

It is important to note that with the reevaluation of
Cfree

Born, there is a consequent change in the nuclear-structure-
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TABLE V. Calculated transition-dependent radiative correction
δ′
R in percent units, and the component contributions. In our previous

works (e.g., Ref. [4]) δ′
R was defined as the sum of the contents of

columns 2–4; this result is given in column 5 and labeled “Former
δ′
R .” As explained in the text, we have now redefined δ′

R to include
the additional term in column 6; the new values for δ′

R are given in
the last column.

Parent
nucleus

α

2π
ḡ(Em) α

2π
δ2

α

2π
δ3 Former

δ′
R

α

2π
δα2 Redefined

δ′
R

Tz = −1:
10C 1.468 0.180 0.004 1.652 0.027 1.679(4)
14O 1.286 0.226 0.008 1.520 0.023 1.543(8)
18Ne 1.204 0.268 0.012 1.484 0.022 1.506(12)
22Mg 1.122 0.307 0.017 1.446 0.020 1.466(17)
26Si 1.055 0.342 0.023 1.420 0.019 1.439(23)
30S 1.005 0.371 0.029 1.405 0.018 1.423(29)
34Ar 0.963 0.396 0.035 1.395 0.017 1.412(35)
38Ca 0.929 0.426 0.042 1.397 0.017 1.414(42)
42Ti 0.906 0.456 0.050 1.412 0.016 1.428(50)
Tz = 0:
26Alm 1.110 0.328 0.020 1.458 0.020 1.478(20)
34Cl 1.002 0.390 0.032 1.425 0.018 1.443(32)
38Km 0.964 0.420 0.039 1.423 0.017 1.440(39)
42Sc 0.939 0.451 0.047 1.436 0.017 1.453(47)
46V 0.903 0.472 0.054 1.429 0.016 1.445(54)
50Mn 0.873 0.494 0.062 1.430 0.015 1.445(62)
54Co 0.844 0.513 0.071 1.428 0.015 1.443(71)
62Ga 0.805 0.553 0.087 1.445 0.014 1.459(87)
66As 0.791 0.570 0.095 1.456 0.014 1.470(95)
70Br 0.776 0.591 0.105 1.473 0.013 1.49(11)
74Rb 0.761 0.609 0.115 1.485 0.013 1.50(12)

dependent correction δNS given in Eq. (31). Fortunately, the
change is very small, being

(q − 1)
(
Cnew

Born − Cold
Born

) (α

π

)

 −0.3(−0.062)2.3 × 10−3


 0.004%. (42)

In addition to making this change, we have also taken the
opportunity to reevaluate CNS using the more recently available
shell-model effective interactions described in Sec. III A3. Our
revised δNS values are listed in Table VI. As in Tables II
and III, we give (in columns 3 and 4) the results from one
sample calculation for each nucleus. Then in column 5 we
present adopted δNS values that result from our assesment
of all calculations made for each decay, not just the ones
shown in columns 3 and 4; the uncertainties were chosen to
encompass the spread in the results from those calculations.
For comparison, in column 2 we list the values we adopted for
δNS in 2002 [4]. In all cases, the new values agree with the old
ones within the quoted uncertainties.

V. F t VALUES, Vud, AND CKM UNITARITY

We have calculated improved results for the correction
terms δC1 (see Table III), δC2 (Table II), and δNS (Table VI);
and, based on the work of Marciano and Sirlin, we have
presented revised values for δ′

R (Table V) and �V
R [Eq. (41)].

TABLE VI. Calculated nuclear-structure-dependent radiative
correction, δNS, in percent units, and the component contributions.

Parent 2002 This work
nucleus δNS(%)

Ref. [4] C
quenched
NS (q − 1)Cfree

Born δNS(%)
adopted

Tz = −1:
10C −0.360(35) −1.318 −0.176 −0.345(35)
14O −0.250(50) −0.844 −0.208 −0.245(50)
18Ne −0.290(35) −1.051 −0.198 −0.290(35)
22Mg −0.240(20) −0.750 −0.213 −0.225(20)
26Si −0.230(20) −0.705 −0.227 −0.215(20)
30S −0.190(15) −0.557 −0.242 −0.185(15)
34Ar −0.185(15) −0.520 −0.257 −0.180(15)
38Ca −0.180(15) −0.475 −0.271 −0.175(15)
42Ti −0.240(20) −0.765 −0.241 −0.235(20)
Tz = 0:
26Alm 0.009(20) 0.242 −0.227 0.005(20)
34Cl −0.085(15) −0.118 −0.257 −0.085(15)
38Km −0.100(15) −0.158 −0.271 −0.100(15)
42Sc 0.030(20) 0.391 −0.241 0.035(20)
46V −0.040(7) 0.093 −0.248 −0.035(10)
50Mn −0.042(7) 0.084 −0.254 −0.040(10)
54Co −0.029(7) 0.112 −0.261 −0.035(10)
62Ga −0.040(20) 0.087 −0.272 −0.045(20)
66As −0.050(20) 0.010 −0.278 −0.060(20)
70Br −0.060(20) −0.085 −0.283 −0.085(25)
74Rb −0.065(20) −0.026 −0.288 −0.075(30)

We are now in a position to extract corrected F t values from
the current world data for superallowed 0+ → 0+ transitions.

We use the same data set as that described in Sec. II: it
represents an interim update of our 2005 complete survey [1]
and includes ten additional published measurements [6,7,9–
16]. Results are given in Table VII for the 13 superallowed
transitions whose ft values are known to a precision of 0.3% or
better. The F t values given in column 6 were obtained from
the data in the preceding columns through the application of
Eq. (5). The corrected F t values are also plotted in Fig. 2.

14O 26 mAl 34Cl

38 mK

42Sc

46V

50Mn54Co

10C

5 3025201510 35

3070

3080

3090

3100

3060

22Mg

34Ar

74Rb
62Ga

t
(s

)

Z o f daughter

FIG. 2. Results for the new corrected F t values (from Table VII)
for the 13 best-known superallowed decays. The corresponding
uncorrected ft values appear in the left panel of Fig. 1. The shaded
horizontal band gives one standard deviation around the average
F t value.
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TABLE VII. Corrected F t values for the 13 best-known superallowed decays, obtained with
the new correction terms presented in this work. The experimental ft values were taken from
results in our 2005 survey [1] updated with more recent published data [6,7,9–16]. The average
F t value and the normalized χ 2 of the fit to a constant appear at the bottom.

Parent nucleus ft(s) δ′
R(%) δNS(%) δC(%) F t(s)

Tz = −1:
10C 3039.5(47) 1.679(4) −0.345(35) 0.175(18) 3074.5(49)
14O 3042.5(27) 1.543(8) −0.245(50) 0.330(25) 3071.6(33)
22Mg 3052.2(72) 1.466(17) −0.225(20) 0.380(22) 3078.3(74)
34Ar 3052.5(82) 1.412(35) −0.180(15) 0.665(56) 3069.4(85)
Tz = 0:
26Alm 3037.0(11) 1.478(20) 0.005(20) 0.310(18) 3072.5(15)
34Cl 3050.0(11) 1.443(32) −0.085(15) 0.650(46) 3071.3(21)
38Km 3051.1(10) 1.440(39) −0.100(15) 0.655(59) 3071.7(24)
42Sc 3046.4(14) 1.453(47) 0.035(20) 0.665(56) 3071.2(27)
46V 3049.6(16) 1.445(54) −0.035(10) 0.620(63) 3073.4(30)
50Mn 3044.4(12) 1.445(62) −0.040(10) 0.655(54) 3066.9(28)
54Co 3047.6(15) 1.443(71) −0.035(10) 0.770(67) 3066.7(33)
62Ga 3075.5(14) 1.459(87) −0.045(20) 1.48(21) 3073.0(72)
74Rb 3084.3(80) 1.50(12) −0.075(30) 1.63(31) 3077(13)

Average F t 3071.4(8)
χ 2/ν 0.6

It is clear from the normalized χ2 given on the bottom
line of the table that the statistical agreement among the F t

values remains excellent. Furthermore, it is evident from the
figure that 46V no longer shows any deviation from the overall
average as it did in Fig. 1. However, it is equally evident
that instead the 50Mn and 54Co F t values are now low, and
by amounts that are no less statistically significant than the
amount by which the 46V value was previously high.

Rather than being a negative result, however, this possible
discrepancy offers us the opportunity to use the cases of 50Mn
and 54Co as a valuable test of our improved calculations. The
QEC value for each of them has been measured only twice with
(claimed) high precision [48,49], and one of these references
[48] also included a measurement of the QEC value for 46V,
which Penning-trap measurements have recently shown [6,7]
to be low by 2 keV—more than three times its originally quoted
standard deviation. If, as seems likely, the problem with the 46V
measurement in Ref. [48] is not limited to that measurement
alone, then doubt is certainly cast on the 50Mn and 54Co QEC-
value results quoted in that reference as well. New Penning-
trap measurements of both QEC values are currently in progress
[50], and the question should be settled shortly. If the QEC

values in Ref. [48] prove to have been too low again, then the
new Penning-trap measurements will serve to increase the F t

values for 50Mn and 54Co and could well bring them into close
agreement with the average F t value. If so, this would add
strong support to our new calculations.

The average corrected F t value obtained from our new
analysis, 3071.4(8) s, is more than one standard deviation
lower than the comparable result obtained in our 2005 survey,
3072.7(8) s. If the new measurements do prove to increase
the QEC values for 50Mn and 54Co, then this discrepancy
will decrease slightly, but there is no avoiding the fact that

the inclusion of some core orbitals in the nuclear-structure-
dependent correction terms has increased the correction in a
number of cases, which in turn leads to a reduction in their
F t values. A significant change in the nuclear model has led
to a significant change—but not a revolutionary one—in the
average F t value.

The new average F t value yields a new value for Vud via
the equation

V 2
ud = K

2G2
F

(
1 + �V

R

)
F t

, (43)

where GF is the well-known weak-interaction constant for the
purely leptonic muon decay [17]. It has been our practice when
using the F t value in this context to add 0.85(85) s to its value
to account for possible systematic errors in the treatment of
the radial wave function in the calculation of δC . (This point
is discussed in detail in Sec. III C of Ref. [1].) Continuing
this practice, we obtain the following result for the up-down
element of the CKM matrix:

|Vud| = 0.97418(26). (44)

This result can be compared with the value 0.97380(40), which
was obtained in 2005 [1]. The new value is (just) within the
uncertainty of the previous value and carries an uncertainty
that is one-third smaller.

The final step is to combine this new value of |Vud| with the
other top-row elements of the CKM matrix, |Vus| and |Vub|, to
test the unitarity of the matrix. Taking the values of the latter
two elements from the 2006 Particle Data Group review [17]
we obtain the stunning result

|Vud|2 + |Vus|2 + |Vub|2 = 1.0000 ± 0.0011. (45)

Unitarity is fully satisfied with a precision of 0.1%.
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VI. CONCLUSIONS

We have presented new calculations of the nuclear-
structure-dependent corrections to superallowed 0+ → 0+
nuclear β decay. The calculations incorporate core orbitals
in the shell model in cases where independent experimental
information indicates that they are required. Where possible,
they also make use of effective interactions that have been
published since our previous calculation of these correction
terms [4]. As in that work, we have included 20 transitions in
our calculations: 13 that are by now rather well measured and
7 more that are likely to be accessible to precise measurements
in the future.

The agreement among the corrected F t values for the
13 well-measured cases is very good, although there is a
possible small discrepancy for the cases of 50Mn and 54Co.
A new Penning-trap measurement of the QEC values for these
two transitions is expected in the near future, and its effect
on this discrepancy could serve to test the validity of our
calculations.

With our new corrections, the value of |Vud| is increased by
0.04%, or by one standard deviation of the previous result [1].
With the new value, the sum of squares of the top-row elements
of the CKM matrix is in perfect agreement with unitarity.
However, this should not be regarded as the end of the story.
Although there is excellent agreement with unitarity, it is the
±0.1% uncertainty on the experimental sum that actually sets
the critical limit on possible new physics beyond the standard
model. This uncertainty can still be reduced by new precise
experiments.

The improved calculations presented in this work were in-
spired by the remarkable recent improvements in experimental
precision, particularly in the measurement of the 46V QEC

value. The only way that the calculated corrections can be
tested and improved is by such precise measurements, both
on the currently well-known transitions and on other as-yet-
unstudied superallowed transitions that have larger calculated

corrections. If the calculated correction terms continue to
replace the significant scatter in the measured ft values (see
the left panel in Fig. 1) with a set of self-consistent corrected
F t values, then they can surely be relied upon to produce a
secure value for |Vud| with reduced uncertainties. The present
calculations testify to the value of increased experimental
precision.

Clearly, precise measurements of superallowed transitions
should continue to have high priority. The recent Penning-trap
QEC-value measurements [6,7] that played such an important
role here should be extended to other cases so that ultimately
all superallowed transitions will have been measured this way.
Furthermore, the superallowed decays of Tz = −1 nuclei, such
as 34Ar and 38Ca, have large correction terms and can provide
real validation of the accuracy of the calculations if they can
be measured with uncertainties comparable to the currently
well-known cases; such nuclei will require precise half-lives
and branching ratios as well as QEC values.

From the point of view of theory, it would also be valuable
to have an up-to-date and complete set of nucleus-dependent
correction terms based on some different technique from the
one used here, perhaps along the lines of the Hartree-Fock
calculations employed in the past by Ormand and Brown [5,31,
32]. Even more important, though, is to seek improvements in
the precision of the inner radiative correction �V

R . It continues
to be the dominant contributor to the uncertainty quoted
for Vud.

ACKNOWLEDGMENTS

I.S.T. would like to thank the Cyclotron Institute of Texas
A&M University for its hospitality during annual two-month
summer visits. The work of J.C.H. was supported by the
US Department of Energy under Grant DE-FG03-93ER40773
and by the Robert A. Welch Foundation under Grant
A-1397.

[1] J. C. Hardy and I. S. Towner, Phys. Rev. C 71, 055501 (2005).
[2] J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502

(2005).
[3] J. C. Hardy, arXiv:hep-ph/0703165v1.
[4] I. S. Towner and J. C. Hardy, Phys. Rev. C 66, 035501 (2002).
[5] W. E. Ormand and B. A. Brown, Phys. Rev. C 52, 2455 (1995).
[6] G. Savard, F. Buchinger, J. A. Clark, J. E. Crawford, S. Gulick,

J. C. Hardy, A. A. Hecht, J. K. P. Lee, A. F. Levand, N. D.
Scielzo, H. Sharma, K. S. Sharma, I. Tanihata, A. C. C. Villari,
and Y. Wang, Phys. Rev. Lett. 95, 102501 (2005).

[7] T. Eronen, V. Elomaa, U. Hager, J. Hakala, A. Jokinen,
A. Kankainen, I. Moore, H. Penttilä, S. Rahaman, J. Rissanen,
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