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The accuracy of a capacitive proximity sensor is affected by various factors, including the geometry and composition of the nearby
object. The quantitative regression models that are used to seek out the relationship between the measured capacitances and
distances to objects are highly dependent on the geometrical properties of the objects. Consequently, the application of
capacitive proximity sensors has been mainly limited to detection of objects rather than estimation of distances to them. This
paper presents a capacitive proximity sensing system for the detection of metallic objects with improved accuracy based on
target profile estimation. The presented approach alleviates large errors in distance estimation by implementing a classifier to
recognize the surface profiles before using a suitable regression model to estimate the distance. The sensing system features an
electrode matrix that is configured to sweep a series of inner-connection patterns and produce features for profile classification.
The performance of the sensing modalities is experimentally assessed with an industrial robot. Two-term exponential regression
models provide a high degree of fittings for an object whose shape is known. Recognizing the shape of the object improved the
regression models and reduced the close-distance measurement error by a factor of five compared to methods that did not take
the geometry into account. The breakthroughs made through this work will make capacitive sensing a viable low-cost alternative

to existing technologies for proximity detection in robotics and other fields.

1. Introduction

The demand for industrial robots has accelerated consider-
ably due to the ongoing trend toward automation and con-
tinued innovative technical improvements in industrial
robots within the past decade. Despite significant advances
in the field of automation, human intelligence is superior in
terms of reasoning, comprehension, vision, and ingenuity.
Robots and humans present complementary features for the
development of manufacturing processes; therefore, the close
cooperation of human and machine is highly demanded [1].
A great deal of attention has been paid to the human workers’
safety as collisions between the worker and the robotic
manipulators can be extremely dangerous. The data on
industrial robot-related fatalities indicate that safety remains
a major concern, especially because the human operators are
by necessity physically close to mechanical arms or vehicles
[2]. One highlighted approach that modifies the robot’s

trajectory based on safety zones or separation distances has
shown its superiority in practical applications. In this tech-
nique, nonintrusive sensors for distance measurement and
localization are critical.

Among the different types of available proximity sensors,
the capacitive sensors are appealing for industrial human-
robot interaction applications due to their capability of
detecting the presence of most obstacles with large coverage
and accurately measuring small gaps with fast response [3].
Sensors used for safety applications should have a long detec-
tion range and high accuracy in order to secure proper
response before colliding with nearby objects. A capacitive
warning system developed in [4] can apply the brake and
turn off the chainsaw to avoid the harmful effects at a dis-
tance up to 15 cm. The electrode field sensing method is also
used in [5] to provide a sense of “pretouch” for a grasping
system. In this work, multiple capacitive sensors were used
so that the robotic hand could be guided from a distance up
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to about 12 cm. However, these systems are not able to pro-
vide an accurate distance estimation; thus, a more intelligent
control of the robot cannot be achieved.

Alternatively, some passive capacitive sensing systems
were designed for estimating the human’s location. Platypus,
proposed in [6], was claimed as the first system to localize
and identify people remotely and passively. By using a
6-sensor array covering an area of 2 m by 2.5 m, their system
demonstrated a localization error of 16 cm and identification
accuracy of 75% for 30 users. Another passive human posi-
tioning system described in [7] was based on measuring the
capacitance between multiple floor tiles and a receiving elec-
trode. It can locate a standing person with 15cm accuracy
and track a walking human with 41 cm accuracy. Though
with a large detection range and high accuracy, the large
electrode areas and low speed limit the application of these
systems in human-robot interaction fields.

A major challenge for capacitive sensors is the nonlin-
ear response that makes the extraction of useful information
from measurements a difficult computational problem. More-
over, the geometrical parameters of an approaching object
and the environmental interferences will add additional
unknown contributions to the capacitive responses.

Models that determine continuous properties are physi-
cally motivated. An approach for continuous 3D finger and
hand localization problems with capacitive sensors was
explained in [8]. Random decision forests were used in their
system for regression. However, their device suffered from
environmental interferences and limited detection range.
In addition, the applications of proximity sensors always
involve more than one detected state, so classifiers are fre-
quently used. A Support Vector Machine (SVM) is one of
the most frequently used methodologies for extracting infor-
mation from sensing data as it can handle both linear tasks
and more complex problems [9]. Laput et al. used SVM for
touch recognition of uninstrumented, electrical, and electro-
mechanical objects [10]. Across the 24 classes, SVM achieved
an overall accuracy of 97.9% and 18 out of 24 tested objects
reached the accuracy of 100%. SVM was also used in capaci-
tive fingerprinting for user differentiation [11]. For single fin-
ger touches, the SVM yielded an all-pair average accuracy of
97.3%, while in distinguishing between users performing a
variety of gestures, the achieved average accuracy was 97.8%.

Explorations on the design of a tri-mode capacitive
proximity sensor have been demonstrated previously in
[12]. This work is aimed at improving the accuracy of dis-
tance measurements by alleviating the issue of ambiguity
due to an object profile. The focus of this work is on the
detection of a nearby metallic object which is a common sit-
uation in various human-robot interaction domains. This is
particularly important on factory floors where such sensors
are needed to improve worker safety. The proposed capaci-
tive proximity sensing system inherently involves inferring
information from measured data, either continuously (i.e.,
for estimating the human’s position) or discretely (i.e., for
recognizing the shape of the object). We employ a classifier
to identify the shape of an approaching object in conjunc-
tion with a library of regression models to improve the
distance measurement accuracy.
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2. Materials and Methods

The general term electric field sensing is used to refer to a
family of noncontact measurements that can be made with
slowly varying electric fields [13]. Some of these measure-
ments are lumped together under the rubric “capacitive
sensing,” in which a low-frequency voltage signal is applied
to the transmit electrode. A displacement current flows from
the transmitter to receivers through the mutual capacitors
between them. Optimal hardware design and sensing config-
urations rely on a good understanding of fundamental prin-
ciples and trade-offs.

A two-electrode measurement setup, as depicted in
Figure 1(a), is adopted as the basic architecture of this
work. It is a three-terminal measurement where neither
the transmitter nor the receiver is in contact with the
object [14]. If the electric field distribution is mapped
using N-independent electrodes, there will be N(N -1)
measurements resulting in (1/2)N(N - 1)-independent
mutual capacitance values due to the symmetrical capaci-
tance matrix. Moreover, single electrode-pair measurements
can be combined with multiplexing methods allowing paral-
lel access to multiple transmitters/receivers at the same time.
In the context of the applications where the designed sensor
should be fitted onto a piece of a working garment, the elec-
trode matrix area is restricted to 6.5cmx6.5cm. A 4x4
electrode matrix yielding 16 independent electrodes (see
Figure 1(b)) is used as it meets the functional requirements
with an acceptable complexity. In addition, a grounded
backplane is placed underneath the sensor substrate to
avoid the undesired detection from the backside. A 4 x4
electrode array is added between the ground and the top
electrodes. These electrodes, whose individual dimensions
are slightly larger than those on the top surface and are
centred below them, are driven with the same drive signal
(after a buffer) that is applied to the sense electrodes. This
active shield will push the electric field from the sense
electrodes to the space above them, significantly improving
the detection range of the sensor [12].

In order to implement different electrode configurations
and extract the capacitive responses, the proximity sensing
system composes five building blocks as depicted in
Figure 1(b). The 4 x4 electrode matrix together with its
active shielding electrode array and the grounded backplane
constitute the core sensing section. Two analog switch
arrays are used for physical connections within sensing
and active shielding matrices. A digital controlling module
is mapped on a field programmable gate array (FPGA) to
create the required signals to program the switch arrays.
A capacitance-to-digital converter measures the capacitive
responses and digitizes the data. Finally, a personal com-
puter (PC) is used to collect and process the data.

The designed sensor has 16 independent electrodes,
providing many possible configurations to generate the
fringing electric fields so that multiple functionalities can
be realized with the same sensing platform. The performance
of the array-structured proximity sensor typically depends
on the number and arrangement of electrodes that form the
transmitter and receiver. In our previous work, three
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FIGURE 1: (a) Detection of an object that interferes with electric field distribution between electrodes and (b) block diagram of the sensing
system.
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FIGURE 2: Electrode configuration for distance measurement. “I”: transmitter; “R”
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(®)

: receiver. (a) Four central electrodes are shorted to

each other to form the transmitter, and all the rest electrodes are connected to work as the receiver. The generated capacitor is C,,.
(b) Cross-section view of the electric field formed by the electrode matrix. The larger the spatial wavelength (A), the farther the electric
field penetrates to the space and the longer the detection range can be achieved.
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FIGURE 3: Sweeping pattern I that scans eight mutual capacitors C, to Cg. Electrode fields are generated between two adjacent columns/rows
(C,-C) as well as diagonal electrodes (C, and Cg). “G”: grounded connection.

electrode-connecting types that result in comb-structure,
adjacent two-rectangular configuration, and two-edge
patterns have been investigated [12]. According to Ye et al.,
electrodes with a spiral shape perform well in terms of
dynamic range and sensitivity distribution homogeneity
compared to those with the other shapes [15]. In this work,
electrodes are connected as a symmetric structure, depicted
in Figure 2(a), to mimic the spiral shape. Each letter in
Figure 2(a) represents the electrical destination of the elec-
trode, i.e., “T” for transmitter, “R” for receiver, and “G” for
grounded connections. Electrodes labeled by the same letter
are shorted to each other.

For distance measurement, the excitation signal is
applied to the transmitters, i.e., the middle four electrodes,
resulting in the mutual capacitance C,. The generated electric
field is demonstrated in Figure 2(b). Penetration depth is a
parameter that indicates how quickly the electrical field
weakens with the distance [16]. A greater penetration depth
will lead to a longer detection range. The depth that the elec-
tric field penetrates to the space is roughly proportional to the
spatial wavelength A, which is defined as the distance
between two consecutive electrodes of the same polarity
[17]. This electrode configuration provides two different spa-
tial wavelengths, and the capacitive response is correlated
with the distance.

One challenge of using capacitive sensors is that they are
susceptible to shape and size of the object: a small object that
is close to the sensor might result in the same response as a
larger object at a further distance [18]. This confusion makes

it difficult to infer high-resolution information from the
measured capacitances. Therefore, surface profile recognition
is required to improve the accuracy in distance evaluation.

For the purpose of distinguishing different object shapes,
more detailed information is required. The electrode matrix
is programmed to form different distributed proximity sen-
sors so that the nearby surroundings can be monitored by
sweeping these electrode configurations.

The acquired capacitance values constitute the inputs
of classification tools for profile recognition. Management
of electrode sweeping modes plays an essential role in
determining the shape information. The key point in recon-
structing the desired obstacles is to distinguish the differences
in terms of sensor responses among different circumstances.
Two different sweeping approaches to mesh the close sur-
roundings are proposed and examined in this work.

The first approach scans eight mutual capacitors C, to Cq
as described in Figure 3. The electric fields between adjacent
columns and adjacent rows are generated by selecting one
column/row of electrodes as the transmitter and a neigh-
bouring column/row of electrodes as the receiver. That
results in the first six matrices in Figure 3. Six individual
capacitors are formed, and the nearby space can be well
meshed along the X-Y plane. Moreover, to reduce the obscu-
rity brought by objects with symmetrical appearance, two
more capacitors between diagonal electrodes (ie., C, and
C, in Figure 3) are also measured. In this attempt, every sin-
gle sweeping cycle of the sensor measures eight independent
capacitors or features.
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FIGURE 4: Sweeping pattern II that measures nine mutual capacitors C; to C. The generated electrode fields emit from the four neighbouring
electrodes (connected as the transmitter) in every direction and fall to all the rest electrodes (collected as the receiver).

The inspiration for the second approach comes from the
spiral-shaped connection structure: the electric field propa-
gates from four neighbouring electrodes in every direction
and terminates on the rest electrodes. The environment
around the sensor can be meshed comprehensively when
employing this mode to the whole sensing matrix as demon-
strated in Figure 4. Each of the nine connection patterns gen-
erates multiple electric fields resulting in different spatial
wavelengths and different penetration depths. By combining
the capacitive responses (C; to C;y) from each sweeping cycle
and using proper classifiers, the surface profile of the nearby
object can be estimated.

2.1. Operation Flow. Distance estimation, the primary task
for this work, is quantitative. The desired results take on
numerical values making it a regression problem. The
method is to build a regression model, which is a prediction
equation that enables predicting response for given inputs
with small errors [19]. A series of experiments are conducted
in order to gather the required data to create regression
models for objects with specific shapes. The actual shape of
an object is approximated by a simple geometric shape that
is easier to process. A plate, sphere, and cylinder are selected
as representatives for the most frequently encountered
shapes in an industrial working space. The experimental
process is moving the selected object continuously from
1 cm to 20 cm away from the sensor and recording the values
of the capacitor C,. The regression model is then built by
using the measured capacitances as inputs and the corre-
sponding distances as outputs. Consequently, a library that
contains three prediction equations corresponding to the
selected geometries is created.

Regression provides an effective way to deduce the dis-
tance information from measured capacitances. However,
picking the proper regression model depends on the percep-
tion of the object’s shape. The task of profile recognition is
qualitative: the variables being predicted (i.e., different
shapes) are discrete rather than continuous. Therefore,
classification tools are used to take over this job. In order to
provide enough information for shape recognition, the
inputs of the classifiers are the combinations of the capaci-
tances obtained from electrode configuration sweeping.
These inputs are experimentally acquired by placing the
objects at different locations within the detectable range
and collecting capacitive responses generated by the sweep-
ing patterns in Figures 3 and 4. The classifier output is a best
estimate for the shape of the object (i.e., plate, sphere, or
cylinder). The data is used for supervised training of the
classifiers with the raw inputs and preknown targets.

The previous two steps, namely, building the regression
model library and training the classifier, are completed off-
line before using the sensing system in real applications. In
practice, when an object enters the detection range, the sensor
is programmed to work in the scanning mode to deter-
mine the most probable shape information. Then, the sensor
is switched to the spiral-shaped electrode connection to mea-
sure the capacitive responses caused by the approaching
object. Lastly, the distance is calculated by selecting the proper
regression model according to the object’s profile. The
operation flow of the presented sensing system is demon-
strated in Figure 5.

2.2. Data Processing. The goal of data processing is to obtain
desired information from raw measurement results. Such a
process is inherently interactive and iterative [20]. Preparing
input data and selecting the most suitable classifiers are car-
ried out with attention to the problem domain.

Data from capacitive proximity sensors is suseptible to
internal and external parasitics, environmental interferences,
noise, and potentially other error sources. Therefore, pre-
processing of the data, including cleaning, normalization,
and integration, is the foremost step before running the
analysis [21].

The environmental interferences add both high-
frequency noise and low-frequency random walks to the
capacitive response. The data cleaning process is to
remove noise and correct for drift in the “dirty” raw data-
set. More specifically, a DC notch filter (to eliminate slow
environmental changes such as humidity and temperature
variations) together with a low-pass averaging filter with
the cut-off frequency of 20Hz (to reduce high-frequency
noise and interference) was used to compensate these non-
ideal effects. Additional details and implementation can be
found in [12].

One intermediate step between collecting raw measured
capacitive values and applying the statistical learning tools
is scaling the data. This step is important and almost required
for most learning algorithms because scaling can avoid attri-
butes in greater numeric ranges dominating those in smaller
numeric ranges. In addition, it can also avoid numerical dif-
ficulties during the calculation. The applied method is line-
arly rescaling the range of all the input data to the range of
[-1,+1]. Given the maximum capacitive value C,,. and the
lower bound C,;,, a normalized value is calculated from
CN = ((2 X (C_ Cmin))/(cmax - Cmin)) - L

The final step for preparing the input datasets is
data integration that merges data from multiple mea-
surements. Every scanned capacitor has its contribution
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FIGURE 5: Operation flow for improved distance measurement.
First, create separate regression models for all the objects with
experimental data (total capacitance is shown at the top, but
several sweeping patterns are generated per measurement). When
an object appears, use a classifier to recognize its surface profile
based on one of the two sweeping patterns. Lastly, select the
proper regression model depending on the classification result for
advanced distance estimation.

to reconstructing the profile of a nearby object, so all the
capacitances acquired by one complete sweeping cycle are
combined together as one single input which can be referred
to as a “feature vector.” For the first approach that measures
eight mutual capacitors as depicted in Figure 3, the generated
feature vectors are eight-dimensional (i.e., {C,, C,, ..., Cg}),
whereas the second scanning method, as explained in
Figure 4, results in nine-dimensional feature vectors
(ie, {Cp Cppp +-vr Cixh)-

Interpreting the experimental results requires the analy-
sis of complex, multivariate, and multidimensional data.
One approach that has grown popularity is the use of
machine learning algorithms to train classifiers to decode
behaviors and information of interest from the experimental
data [22]. Thanks to the efficient pattern recognition perfor-
mance for the nonlinear multiclass scenarios, Support Vector
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Machines (SVM), a kernel-based learning method, are
adopted in this work [23].

Originally developed for binary classification problems,
SVM uses maximal margin hyperplanes to define decision
boundaries separating data points of different classes. The
equation of a linear decision surface is

wix+by=0, (1)

where x is the input feature vector and wy, and b, are the opti-
mal weight vector and bias, respectively. The discriminant
function is expressed as

9(x) =wyx + by, (2)

and provides an algebraic measure of the geometric distance
from any x to the optimal hyperplane [24]. The input x can
be described through

w
X=X+, (3)
|[wol |

where x,, is the normal projection of x onto the optimal hyper-
plane and r is the algebraic distance such that r is positive
when x; belongs to the class of +1 and negative otherwise.

Given the dataset (x, [) where [ is the target class, param-
eters (wy, b,) must satisfy the following constraints:

wix, +by=0, forl=+1,

' (4)
wyx, +b,<0, forl;=-1.

The particular training data points for which one of the
constraints is satisfied with the equality sign are the “support
vectors.” Maximizing the margin of separation between clas-
ses is equivalent to minimizing the Euclidean norm of the
weight vector w. This distinct property makes the SVM an
effective tool in pattern recognition applications. The previ-
ous equations describe the foundation of SVM that classifies
a binary problem which can be linearly separated. For more
complex tasks, Gaussian kernel [25] is a reasonable first
choice. This kernel function nonlinearly maps samples
into a higher dimensional space allowing it to handle the
cases where the relationship between class labels and
inputs is nonlinear. The linear function is a special case
of the Gaussian kernel.

The problem in this study requires the discrimination for
more than two categories. So SVM is extended so that it can
be suitable for more general cases where an arbitrary number
of classes is important. Among all the proposals for modify-
ing the SVM to the K-class case, the two most popular
approaches are the “one versus one” (1V1) and “one versus
rest” (1VR) [26]. The 1V1 approach is a pairwise decomposi-
tion. It evaluates all possible pairwise classes and therefore
constructs K(K — 1)/2 individual binary classifiers. Applying
each classifier to a test sample will generate one vote to the
winning class. The data point will be assigned to the class
with the most votes. By contrast, the I VR approach only con-
structs K separate binary classifiers for the K-class problem.
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Each time, one class is compared to all the remaining classes
as a whole. The i" classifier is trained using the data from the
i™ class as positive examples and all the other data as negative
samples. During testing, the class label is determined by the
classifier that results in the maximum output value. It is note-
worthy that there is no clear evidence that the 1V1 method
can achieve higher accuracy compared to alternative multi-
class SVM methods, but Hsu and Lin argue that 1V1 is more
practical due to its faster training process [27].

The core structure of the presented sensing system
together with the complementary electronics is fabricated
on a four-layer printed circuit board (PCB). The top three
layers of the PCB serve as carriers for the 4 x4 electrode
matrix, active shielding matrix, and backplane shielding.
The analog switch array chips (AD75019 from Analog
Devices) and required electronic components including
bypass capacitors and resistors are fabricated on the bottom
side. The FPGA board adopted in this work is the Terasic
DE1 board featuring the ALTERA Cyclone II 2C20 FPGA
device. In addition, an AD7746 CDC chipset is acquired to
measure the capacitors, quantize the capacitances, and
exhibit results in terms of both capacitive values and digital
strings via a standard communication interface. The sam-
pling rate it can achieve is 90.9 Hz.

The performance and behavior of the designed capacitive
sensing system were investigated with an industrial robot
KUKA LBR iiwa. The robot is a lightweight robot with a
7-axis jointed arm. All drive units and current-carrying cables
are installed inside the robot so that it can autonomously
move and transport objects. It has the capability of orienting
itself independently in its surroundings and moving into posi-
tions for automation tasks with millimeter precision [28].

Ideally, the test objects would be electrically grounded
during the system operation. However, to better resemble
the actual working conditions during the experiments, the
objects were isolated electrically from the robot or the
circuitry (i.e., electrically floating).

3. Results and Discussion

To verify the distance measurement capability and the shape
classification feature, a series of prototypical experiments are
conducted. The established apparatus and the experimental
setup are illustrated in Figure 6. The robot is programmed
to perform predefined movements on the attached object,
and the value d which represents the distance from the object
to the sensor can be controlled with high accuracy. Three
metallic objects, namely, a plate, a ball, and a cylinder, are
used as actual instances of the three shapes of interest. The
size of the plate is 16 cm x 13 cm, the diameter of the ball is
6.5cm, and the radius and the length of the cylinder are
1.5cm and 10 cm, respectively. During the experiments, the
plate was brought towards the electrode at different inclina-
tion angels. The ball and cylinder were positioned at different
lateral and vertical positions above the electrode array. The
cylinder was brought in at different in-plane angles (parallel
to the electrode array). With all these variations in position-
ing and relative angles, the objective was to improve the accu-
racy of distance estimation from the electrode array to the
closest point on the object by taking into account the object
geometry regardless of approaching angles or lateral position
of the object relative to the electrode array.

3.1. Shape Recognition. The shape recognition is achieved by
performing a series of dynamic experiments and using SVM
as the classifier [29]. The classification accuracy is examined
with respect to the electrode sweeping pattern.

The dynamic experiment is about automatically sweep-
ing the inner electrode configurations while moving one of
the objects to nine different locations. At each location, the
object is held by the robot for a short period of time allowing
100 times of the complete sweeping cycle. For the first scan
pattern, each sweeping cycle measures eight mutual capaci-
tors as described in Figure 3, and the capacitive responses
from one complete cycle can be fused to one eight-



TaBLE 1: SVM testing accuracy with a grid search for cost parameter
and gamma (%).

14
B 0.5 1 2 3 4 5

Dataset I: inputs are 8-dimensional based on sweeping mode I
(Figure 3)

0.5 66.67 66.67 66.67 66.67 82.33 96.22
1 66.67 66.67 82.33 100 100 100
2 66.67 82.33 100 100 100 100
3 66.67 100 100 100 100 100
4 82.33 100 100 100 100 100
5 82.33 100 100 100 100 100

Dataset II: inputs are 9-dimensional based on sweeping mode II
(Figure 4)

0.5 66.67 66.67 66.67 66.67 66.67 69.67
1 66.67 66.67 66.67 75.56 82.67 82.67
2 66.67 66.67 82.67 82.67 82.67 82.67
3 66.67 75.56 82.67 82.67 82.67 82.89
4 66.67 82.67 82.67 82.67 82.67 82.67
5 69.67 82.67 82.67 82.89 82.67 82.67

dimensional feature vector {C,, C,, ..., Cg}. Similarly, the sec-
ond sweeping method results in nine-dimensional feature
vectors {C;, Cyy, ..., Cx} as shown in Figure 4. Consequently,
two datasets, each containing 27 x 100 feature vectors, are
acquired for classification. Dataset I, obtained with the first
scan pattern, is composed of eight-dimensional feature vec-
tors. Whereas the feature vectors in Dataset II are nine-
dimensional. Each dataset is further split into two parts:
one contains 18 x 100 feature vectors to train the SVM clas-
sifier and the rest 9 x 100 feature vectors are used for testing.

The test accuracy is determined by two kernel function
parameters: cost parameter () and gamma (p). It is not
known beforehand which combination of the two parameters
will lead to the best result for a specific problem. Conse-
quently, a parameter search procedure is done separately on
both datasets. Growing sequences of 3 and y are tried for
training the model, and the identified most efficient parame-
ter pair is the one that leads to the highest testing accuracy.
The involved values of 3 and y for the grid search are the
same: 0.5, 1, 2, 3, 4, and 5. The classification accuracies with
respect to the cost parameter and gamma are summarized
in Table 1. For both datasets, the testing accuracy starts from
66.67% when 8 and y are both small. With the increase in the
parameters, Dataset I shows its superiority: the classification
accuracy reaches 100% when the value of either 8 or y
extends 2. That indicates for this specific task, and using
Dataset I as the input for SVM is able to classify the capacitive
responses to desired shape categories. After performing this
classification step, the determined shape information is used
for selecting the proper regression model.

3.2. Distance Estimation. The distance is measured with
respect to the three objects so that the regression model
library can be built. The distance range of interest in this
work is 1 cm to 20 cm.
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The implementation of the measurement can be divided
into three steps: Configure the inner connection of the elec-
trode matrix to be spiral-shaped by programming the FPGA
board. Then, the robot moves one of the objects from 1 cm to
20cm away from the surface of the sensor at a constant
speed. The capacitive responses are recorded at the same
time. Lastly, the acquired capacitances and their correspond-
ing distance values are used to generate the desired regression
model. This procedure is repeated for the other two objects so
that three regression models are created.

The raw experimental capacitive samples for the three
objects are plotted with black dots in Figures 7(a)-7(c). Note
that the capacitance measured between the electrode groups
decreases as the objects approached the electrode array. This
is due to the fact that at closer distances some of the current
from the driven electrodes will flow to the grounded metal
object that was used. Fitted curves that stand for the mathe-
matical formulas describing the relationship between a
capacitance and its corresponding distance are denoted by
the red lines. In this case, two-term exponential regression
models are adopted to provide a high degree of fittings. “High
degree” indicates the model has a small random error com-
ponent and takes as much proportion of variance into
account so that it is more useful for prediction. From the sta-
tistical point of view, the sum of squared errors of prediction
(SSE) that measures the total deviation of the response values
from fit values should be close to 0 and the coeflicient of
determination (R-squared or R?) be close to 1 [30]. The
regression model expressions together with corresponding
coefficients and goodness indices (i.e., SSE and R?) are also
denoted in the figures.

Based on the analysis of the regression models, they can
provide predictions on the distance with high confidence
under the condition that the shape of the approaching object
is preknown. However, when comparing the data acquired by
different objects, it can be discovered that both the absolute
capacitive values and the changing rates are different. To
eliminate the error caused by drift, an offset cancelling proce-
dure is performed: the plate’s asymptotic capacitance, mea-
sured when the plate is put infinitely far from the sensor
(50 cm in this work as the capacitances stop changing), is
taken as a reference. Then, shift the capacitance vs. distance
curves of the other two objects to the same ending point by
adding or subtracting a constant. The experimental capaci-
tances after offset cancelling as functions of distances for
the three objects are summarized in Figure 7(d). From which,
it can be observed that the same capacitance value can result
in very different distance values without knowledge of the
object’s shape. This fact will lead to a decreased distance eval-
uation accuracy or even a wrong detection.

A more precise analysis of the distance errors e(d) is
demonstrated in Figure 7(d). Use the capacitive responses
measured with the plate as references, and feed the capaci-
tances to the three regression models to predict the distances
d' (P) for the plate, d'(Sp) for the sphere, and d' (Cy) for the
cylinder. At a certain distance, the estimation of the distance
error e(d) can be calculated as the absolute difference
between the predicted distance d’ and the actual distance d.
To get a clearer vision on how the distance error would affect
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responses for the three objects. An example of the calculation of the absolute and relative errors caused by using the wrong regression

model is demonstrated.

the measurement accuracy, the relative error with respect to
the distance e(d)/d is also calculated. The relative errors at
few different discrete distances are plotted with the bars in
Figure 8, and the numerical absolute errors in millimeters
are also provided. For the plate, the proper regression model
has been selected so that the estimation errors are small: e(d)
is less than 1cm when the distance is below 10cm. The

increase in error with the distance is due to the worsening
of the signal-to-noise ratio for the measurements and is lim-
ited to 25%. However, the same model would result in signif-
icantly larger errors when applied to the other objects,
especially in short distances (i.e., less than 5cm) such that
the uncertainty in the measurements is comparable to the
actual distances (i.e., the relative errors are around 100%).
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However, at short ranges, a higher detection accuracy is in
fact needed in most applications, hence necessitating profile
recognition.

4. Conclusions

In this paper, a capacitive proximity sensing system with
improved distance measurement accuracy is presented.
Shunt detecting mode is used in combination with the 4 x 4
electrode matrix to provide more informative and flexible
measurements. Statistical tools are employed for interpreting
the experimental capacitive responses: quantitative regres-
sion models are built to seek out relationships between capac-
itances and distances while the SVM classifier is trained to
recognize the surface profile of the approaching object. Dif-
ferent electrode sweeping patterns are implemented and
compared in terms of classification accuracy.

The performance of the sensing modalities is experimen-
tally assessed with an industrial robot and three objects with
different shapes. The relative distance estimation error is lim-
ited to 25% under the condition that the proper regression
model is selected. Otherwise, the errors can be competitive
to the actual distance. The SVM classifier recognized the
shape of an object with high accuracy. The classification
result is used to choose the most suitable regression model
with high confidence. The next step will be involving more
objects to enrich the regression model library and collecting
data with random locations to generalize the training dataset.

It is possible to expand the capabilities of the system so
that one may obtain additional information regarding the
nearby objects. For instance, if impedances over a range of
frequencies are measured instead of capacitance values at a
single frequency, it will be possible to deduce permittivity
and conductance information for a nearby object. This addi-
tional information, however, would require new hardware
with phase-sensitive measurements at different frequencies
and collection of suitable training data from different objects
and materials.

The sensor system operated robustly against slow envi-
ronmental disturbances with tests producing reliable results
over a span of several weeks after the collection of training
data. This was in part done through removal of the contribu-
tions of slow changes by filtering out near DC signals. How-
ever, if the operating environment is significantly different
from the test setup (e.g., all objects are grounded), the system
can be retrained using data collected from the environment.
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