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Abstract—An improved Central Force Optimization (CFO) algo-
rithm for antenna optimization is presented. CFO locates the global
extrema an objective function to be maximized, in this case antenna
directivity, by flying “probes” through the decision space (DS). The
new implementation includes variable initial probe distribution and
decision space adaptation. CFO’s performance is assessed against a
recognized antenna benchmark problem specifically designed to evalu-
ate optimization evolutionary algorithms for antenna applications. In
addition, summary results also are presented for a standard twenty-
three function suite of analytic benchmarks. The improved CFO im-
plementation exhibits excellent performance.

1. INTRODUCTION

Central Force Optimization (CFO) [1–4] is a nature-inspired, gradient-
like, gravity-based metaheuristic (algorithmic framework) for a
multidimensional search and optimization evolutionary algorithm (EA)
that locates the extrema of an objective function to be maximized.
The objective function is defined on a “decision space” (DS) of
unknown topology that is searched by the EA. CFO comprises two
simple “equations of motion” drawn from its metaphor of gravitational
kinematics. Gravity is deterministic, and so too is CFO because it
embraces Newton’s mathematically precise laws of gravity and motion.

CFO’s deterministic nature is a significant distinction from the
many natureinspired EAs that are fundamentally stochastic, Particle
Swarm Optimization (PSO) and genetic algorithm (GA) being good
examples. PSO and GA, respectively, search DS by analogizing the
random swarming behavior of fish and the random processes in genetic
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selection in natural evolution. As a result of this inherent randomness,
each PSO and GA run with the same setup produces a different
outcome. By contrast, every CFO run with the same setup produces
exactly the same results step-by-step throughout the entire run.

The Central Force Optimization EA creates a metaphorical “CFO
space” that is analogous to physical space through which “probes”
are flown along trajectories computed from the equations of motion.
The value of the objective function to be maximized (its “fitness”), in
this case antenna directivity, is computed step-by-step at each probe’s
location, and then input to a user-defined function that becomes CFO’s
“mass.” Mass in CFO space is analogous to real mass in the Universe
moving under Newton’s laws.

The first CFO paper applied new the algorithm to two problems in
applied electromagnetics (EM): Equalizer design for the canonical Fano
load and synthesis of a linear dipole array. It also included a sampling
of analytic benchmarks. More recently CFO has been applied to linear
and circular array synthesis [5, 6].

This paper presents an improved CFO implementation for antenna
optimization and provides detailed results for a recognized numerical
antenna benchmark problem and summary results for a suite of
analytic EA benchmarks. The improved implementation includes the
use of a variable initial probe distribution to better sample the DS
topology and an adaptive strategy that periodically shrinks DS around
the probe with the best fitness to improve convergence rate.

2. CFO RESULTS FOR VARIABLE LENGTH
CENTER-FED DIPOLE

The numerical antenna benchmark suite developed by Pantoja,
Bretones, and Martin [7] (“PBM”) is designed to objectively evaluate
the performance of EAs used to solve complex EM problems,
representative examples being: PSO-based array synthesis [8];
swarm intelligence optimization of layered media [9]; GA antenna
modeling [10]; array design using GAs, and mimetic and tabu
search algorithms [11]; crack detection using a finite-difference
frequency domain/PSO methodology [12]; Vee-dipole optimization
using a bacteria foraging algorithm [13]; and GA-optimized MRI coil
design [14].

EAs solve these problems by “evolving” solutions that are
unavailable analytically or numerically. The plethora of nature-
inspired EAs makes comparing the algorithms difficult, if not
impossible, without a standardized set of benchmarks for testing. The
PBM suite, which is based on the Numerical Electromagnetics Code
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(NEC), addresses this need for EAs that are applied to optimized
antenna design. It therefore is a useful tool for evaluating CFO in
the context of antenna optimization.

The PBM suite comprises five antenna problems designed to test
an EA’s effectiveness (actually locating the global maximum) and
efficiency (how many function evaluations are required). Table 1

Table 1. Properties of the PBM benchmark problems.

PBM

Benchmark #

Problem Characteristics

(in each case objective is to maximize directivity)

1
Variable length center-fed dipole. 2D, unimodal,

single global maximum, strong local maxima.

2

Uniform 10-element array of center-fed λ
2 -dipoles.

2D, added Gaussian noise, single global maximum,

multiple strong local maxima

3
8-element circular array of center-fed λ

2 -dipoles.

2D, highly multimodal, four global maxima.

4
Vee Dipole. 2D, unimodal,

single global maximum, “smooth” landscape.

5
Collinear Nel-element array of center-fed λ

2 -dipoles.

(Nel − 1)D, unimodal, single global maximum.

Table 2. PBM #1 run parameters and results.

Run # γ # Steps Neval Dmax

1 0.000 95 384 1.80301774

2 0.100 92 372 3.24339617

3 0.200 87 352 3.25836701

4 0.300 60 244 3.25836701

5 0.400 72 292 3.25836701

6 0.500 91 368 3.25836701

7 0.600 60 244 3.22849412

8 0.700 67 272 3.01995172

9 0.800 174 700 2.39883292

10 0.900 92 372 3.24339617

11 1.000 193 776 2.34422882
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lists their properties. In each case, the objective is to maximize
the antenna’s directivity (“fitness”). Four of the problems are two-
dimensional (2D), while the fifth is (Nel − 1)D, Nel being the number
of dipole elements in a collinear array. Of the five problems, the first is
by far the most difficult based on the PBM testing data reported in [7].
Problems #1 and #4 are unimodal with a single global maximum. The
first problem is “lumpy” with strong local maxima, whereas the fourth
is “smooth.” Problem #2 is “noisy” in a complex landscape with
large amplitude nearby local maxima. The third problem’s topology
is multimodal with four global maxima. Problem #5 is a unimodal
high-dimensionality problem that optimizes the element spacing of an
Nel-element collinear dipole array.

The PBM paper examines four algorithms: GA-FPC, µGA, GA-
RC, and PSO (see [7] for details). The first three are GA variants, while
the fourth is a particle swarm. Because these algorithms are stochastic,
each one was run twenty times to develop statistics. The “mean hit
time” in Table 2 in [7] is the average generation number at which the
global maximum was located, so that the average number of function
evaluations is the product of mean hit time and the population size.
Because each of these algorithms is fundamentally stochastic, assessing
their performance necessarily requires this type of statistical analysis.
CFO, by contrast, is deterministic, so that every run with the same
set-up parameters returns precisely the same results. All CFO data
consequently are based on a single run.

Because the focus of this paper is the new CFO implementation,
not an exhaustive study of its performance, CFOs performance is tested
against the most difficult of the five problems, PBM benchmark #1.
The four EAs tested in [7] achieved success rates, that is, actually
locating the global maximum, of only 10–70% on PBM #1. None of the

Figure 1. Dipole.
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Figure 2. Landscape of 2D PBM benchmark #1.

algorithms was completely successful in locating the global maximum.
The antenna geometry for PBM #1 is shown in Fig. 1. The

objective is to maximize a center-fed dipole’s directivity, D(L, θ), as a
function of its total length, L, and the polar angle, θ. In other words,
determine the “best fitness” of the “objective function” D(·) over the
decision space (DS) domain 0.5λ ≤ L ≤ 3λ, 0 ≤ θ ≤ π

2 . A perspective
view of the two-dimensional (2D) DS topology or “landscape” appears
in Fig. 2. The topology is smoothly varying with a single global
maximum and two local maxima of similar amplitude.

The PBM problems do not have analytic solutions and
consequently are solved numerically using NEC. The first step in
evaluating CFO is validation of the published PBM results. PBM #1
therefore was modeled using the most recent available version of NEC,
Version 4.1 Double Precision (“NEC4”) [15] (note that this is not the
same version of NEC cited in [7]). The same wire segmentation was
used, approximately 100 segments per wavelength (λ), but the wire
radius was decreased to 0.00001λ to improve agreement. PBM reports
a global maximum directivity of 3.32 at (L, θ) = (2.58λ, 0.63). NEC4’s
computed directivity at those coordinates is slightly less at 3.2509.

The improved CFO algorithm described in §3 returned a
maximum directivity of Dmax = 3.2584 at (L, θ) = (2.5815λ, 0.60697).
CFO appears to have located the global maximum (100% success rate)
with a value slightly higher than the value computed by NEC4 at the
PBM coordinates. CFO’s length coordinate agrees with the value in [7],
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but the polar angle is slightly different. For comparison, a conventional
CFO run was made with Nt = 100, Np = 4 and initial probes
located symmetrically in the (L, θ)-plane at (1.333λ, π

4 ), ((2.167λ, π
4 ),

(1.75λ, π
6 ), (1.75λ, π

3 ). The best fitness value was 3.02691 at (L, θ) =
(2.23044λ, 1.07992). Thus, the conventional CFO implementation did
not perform nearly as well as the improved version described below.

Figure 3 plots the evolution of CFO’s best fitness, while Fig. 4 the
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Figure 3. PBM #1 best fitness.

<
D

>
/L

 d
ia

g

Time step

Figure 4. PBM #1 Davg curve.
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plots CFO’s “Davg curve.” Davg is the normalized average distance
between the probe with the best fitness and all other probes at

each time step, viz., Davg = 1
L·(Np−1)

Np
∑

p=1

√

Nd
∑

i=1
(xp,j

i − xp∗,j
i ) 2 where

p∗ is the number of the probe with the best fitness, and L =
√

Nd
∑

i=1
(xmax

i − xmin
i )2 is the length of DS’s principal diagonal (see

Appendix for definitions).
The directivity initially increases very quickly, plateauing just

before step #10 followed by a slight increase at step #41. The rapid
initial increase in fitness appears to be characteristic of how CFO
converges on maxima. The Davg curve exhibits three distinct quasi-
oscillatory regions (steps #10-25, 30-40, and 48-60), after which all four
probes have fully converged on the global maximum (Davg = 0.0008403
starting at step #60). These results clearly show that CFO effectively
locates the PBM #1 global maximum, and it does so deterministically
with a total of only 4,376 function evaluations (see Table 2, §3).

3. IMPROVED CFO ALGORITHM

This paper introduces two new elements to how CFO is imple-
mented: (1) Variable initial probe distribution, and (2) DS adaptation
that periodically shrinks the DS around the location of the best fit-
ness. The variable initial probe distribution provides CFO with more
information about the DS landscape so that trapping is less likely, and
DS adaptation takes advantage of CFO’s tendency to converge quickly

Figure 5. Typical variable 2-D initial probe distribution.
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to improve convergence rate.
Like most EAs, CFO contains several user-specified parameters

(see Appendix for detailed parameter descriptions). The most
important ones (determined empirically) appear to be the initial probe
distribution (total number of probes, Np, and their deployment in
the decision space) and the “repositioning factor,” 0 ≤ Frep ≤ 1.
The initial probe distribution determines how well the decision space
topology is sampled at the beginning of a run, while Frep is important
in avoiding local trapping (a common problem in deterministic
algorithms, but there may be an analytical approach to mitigation
as discussed below).

Figure 5 provides a 2D schematic representation of the variable
initial probe distribution comprising in this case an orthogonal array

(a)

(b)

Figure 6. (a) PBM #1 initial probes, γ = 0.1. (b) PBM #1 initial
probes, γ = 0.7.
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of Np/Nd probes per axis deployed uniformly on lines parallel to the
coordinate axes that intersect at a point along DS’s principal diagonal,
Nd being the DS dimensionality (in this case 2). The DS domain is
xmin

i ≤ xi ≤ xmax
i , 1 ≤ i ≤ Nd, where xi are the “decision variables”

and i the coordinate number.
For illustrative purposes, the diagram shows nine probes on each

of two lines parallel to the x1 and x2 axes whose intersection point

is marked by position vector ~D = ~Xmin + γ( ~Xmax − ~Xmin) where

~Xmin =
Nd
∑

i=1
xmin

i êi and ~Xmax =
Nd
∑

i=1
xmax

i êi are the diagonal’s endpoint

vectors. Parameter 0 ≤ γ ≤ 1 determines where along the diagonal the
orthogonal probe array is placed. Different numbers of probes per axis
can be used if, for example, equal probe spacing were desired in a space
with unequal boundaries or if overlapping probes were to be excluded.
Of course, many other variable initial probe distributions could be used
as well. As an example of the distribution used here, Fig. 6 shows the
initial probes for γ = 0.1 and γ = 0.7 used for benchmark PBM #1 (2
probes/axis).

Figure 7 provides a 2D illustration of how the DS size is adaptively
reduced every 20th step around the probe’s location with the then

best fitness, ~Rbest. DS’s boundary coordinates are reduced by one-
half the distance from the best probe’s position to the boundary on a

Figure 7. Schematic 2-D decision space adaptation (with constant

best ~Rbest).
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coordinate-by-coordinate basis. Thus, x′min
i = xmin

i +
~Rbest·êi−xmin

i

2 and

x′max
i = xmax

i −
xmax

i −~Rbest·êi

2 , where the primed coordinate is the new
decision space boundary and the dot denotes vector inner product.

For clarity Fig. 7 shows ~Rbest as fixed, whereas generally it varies
throughout a run. Changing DS’s boundary every twenty steps as
opposed to some other interval was chosen arbitrarily (another, and
likely better approach, would be some sort of reactive adaptation
based on performance measures such as convergence speed or fitness
saturation). Of course, the 2D schemes illustrated in Figs. 5 and
7 are generalized to the Nd-dimensional DS in an actual CFO
implementation (the 2D case is used only to provide visualization of
the new methodology).

For start=  to stop  by : 

(a.1) Compute initial probe distribution. 

(a.2) Compute initial fitness matrix. 

(a.3) Assign initial probe accelerations. 
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(d) Compute fitness matrix for current probe distribution. 

(e) Compute accelerations using current probe 

distribution and fitnesses [Eq. (1)]. 
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Figure 8. Pseudocode for CFO with variable initial probes and DS
adaptation.
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Pseudocode for the improved CFO implementation appears in
Fig. 8 (see Appendix for equations). The following parameter values
were used for all runs reported in this paper: α = 2, β = 2, G = 2,
∆t = 1, initial acceleration of zero, initial Frep = 0.5, ∆Frep = 0.05,
and γstart = 0, γstop = 1 with ∆γ = 0.1 (eleven runs). A run was
terminated early if the average best fitness over 50 steps (including the
current step) and the current best fitness differed by less than 10−6.
For functions PBM #1 and f1–f13 (Table 3 below) two probes per axis
were used, while four per axis were used for f14–f23. A probe may
“fly” outside DS, and if so it is retrieved using the scheme in Fig. 8
step (c). The probe is repositioned a fraction ∆Frep ≤ Frep ≤ 1 of the
distance between its starting point inside DS and the boundary point
that is exceeded on a coordinate-by-coordinate basis.

Table 2 lists the CFO run parameters with variable γ and the
returned maximum directivity Dmax for benchmark PBM #1. Each
run was set up initially with 250 steps, but for every value of γ fewer
iterations were needed to meet the early termination criterion. For
γ values between 0.2 and 0.5, CFO returned the same Dmax, which
is the global maximum, using between 60 and 91 iterations. The
corresponding number of function evaluations per run is between 244
and 368, and the total number of evaluations over all runs is 4,376.

Figure 9 plots trajectories of the best four probes for PBM
#1 (note that the probe number of the best probe generally varies
throughout a run). This plot is typical of how 2D best probe
trajectories appear across a wide range of test functions, visually
chaotic with no clear indication of how the probes converge on the
objective function’s maxima. But this seemingly random motion masks
what often is a mathematically precise relationship in the group of
probes.

Figure 9. Best probe trajectories for PBM #1.
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An example is provided by the 2D Step function f(x) =

−
Nd
∑

i=1
(⌊xi − xi

o + 0.5⌋)
2
, Nd = 2, x1

o = 75, x2
o = 35, −100 ≤ xi ≤ 100,

which, like PBM #1, is unimodal with a global maximum of zero
at the point (75, 35). CFO’s best 10 probe trajectories for the
Step are plotted in Fig. 10(a), while Fig. 10(b) plots the individual

(a)

(b)

Figure 10. (a) 2D step best probe trajectories. (b) Step individual
probe trajectories.
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probe trajectories for probes #1 through #16 [note that this run
was made without DS adaptation using 18 probes/axis and fixed
instead of variable Frep, γ, both 0.5]. As with PBM #1, they
are visually chaotic. But, even though there is no obvious sign
of regularity, they actually are characterized by a mathematically
precise oscillation in the Davg curve that is plotted in Fig. 11. The
oscillation starting at step 257 continues thereafter with the repeating
sequence: 0.6000747, 0.5884655, 0.6085178, 0.5926851, 0.5988160,
0.5965264, 0.6002386, 0.5995855, 0.5967055, 0.5981010, 0.6016253,
0.5947017. This observation is quite significant because it establishes
what appears to be a strong connection between CFO and the theory
of gravitationally trapped Near Earth Objects (NEOs).

Oscillation (or quasi-oscillation) in CFO’s Davg curve appears to
be a reliable harbinger of trapping. In many cases, the trapping is
local, that is, at a maximum that is not a global maximum. But in
some cases the oscillation sets in at a global maximum, as is the case
with the 2D step with its maximum offset to (75, 35). The NEO-
CFO connection is based on the NEO behavior shown in Fig. 12,
which reproduces with permission Fig. 2 in [16]. In many cases CFO’s
oscillatory Davg curves bear a striking resemblance to the typical NEO
∆V plot in Fig. 12, which is based on the theory of gravitationally
trapped NEOs developed in [17] (curve computed by Professors Andrea
Carusi and Andrea Milani, private communication, Astronaut “Rusty”
Schweickart).
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Figure 11. CFO’s Davg for 2D step function.
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Figure 12. Reproduction of Schweickart’s Fig. 2 for asteroid apophis.

Figure 11 exhibits several oscillatory plateaus connected by jumps
in Davg , much in the same way that asteroid Apophis’ ∆V curve
does. The visual similarity is self-evident and compelling. It seems
implausible that this structural similarity is entirely coincidental. NEO
trajectories are based on real gravity, while CFO’s Davg curves are
based on an analogous “gravity” in metaphorical CFO space. That
different curves based on analogous phenomena have very similar
appearances not only seems reasonable, but highly probable. The
striking similarity between NEO and CFO plots appears to be a
convincing validation of the CFO metaphor. More importantly,
it arguably points to an analytical framework that may provide a
deterministic solution to the local trapping problem [18]. Perhaps
the theory of gravitational resonant returns [17] can be applied to
CFO, directly or with modification or extension, so that a completely
deterministic solution to local trapping can be formulated. It is the
author’s hope that this possibility will be investigated by researchers
motivated by these observations, hopefully leading to still more robust
CFO implementations.

4. ANALYTICAL BENCHMARKS

The PBM benchmark suite was developed specifically because the
usual analytical benchmark suites rely on problems that may not
be representative of the types of problems encountered in antenna
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Table 3. Comparative results for 23 benchmark functions (Nd =
Function Dimension, fmax = Known Global Maximum).

-- - - - - - - - - CFO - - - - - - -  - - - Test 

Functi

on
*

dN maxf * <Best 

Fitness>/ 

Other 

Algorithm 
Best 

Fitness best
Best 

Run 

evalN

Total

evalN

Unimodal Functions (other algorithms: average of 1000 runs) 

f1
30 0 −3.6927×10−37

/ PSO 

−2..6592×10−2 0.5 6,960 108,660 

f2
30 0 −2.9168×10−24

/ PSO 

−4×10−8 0.5 5,040 161,640

f3
30 0 −1.1979×10−3 / 

PSO 

−6×10−8 0.5 10,260 239,340

f4
30 0 −0.1078 / 

GSO 

−4.2×10−7 0.5 5,160 59,160

f5
30 0 −37.3582 / 

PSO −2.17187×10
−2

0.2 21,600 164,160

f6
30 0 −1.6000×10−2 / 

GSO 

0 0 4,980 73,620

f7
30 0 −9.9024×10−3 / 

PSO −3.55996×10
−3

0.3 6,060 66,660 

Multimodal Functions, Many Local Maxima (other algorithms: avg 1000 runs) 

f8
30 12,569.5 12,569.4882 / 

GSO 

12,569.4852 0.8 7,980 69,720 

f9
30 0 −0.6509 / GA −3.52×10−6 1.0 6,840 117,120 

f10
30 0 −2.6548×10-5 / 

GSO 

−1.5×10−7 0.5 5,100 111,660 

f11
30 0 −3.0792×10−2 / 

GSO 

−2.00124 1.0 13,980 160,680 

f12
30 0 −2.7648×10−11

/ GSO 

−0.105859 1.0 11,760 68,220

f13
30 0 −4.6948×10−5 / 

GSO 

−6.5966×10−2 0.5 11,100 103,320

Multimodal Functions, Few Local Maxima (other algorithms: avg 50 runs) 

f14
2 −1 −0.9980 / 

GSO 

−1.005284 0.3 920 12,824 

f15
4 

− 0.0003075 

−3.7713x10
−4

 / GSO −2.41631×10
−3

0.5 1,584 19,920 

f16
2 1.0316285 1.031628 /

GSO

1.031607 0.1 896 9,256 

f17
2 −0.398 −0.3979 / 

GSO 

−0.398 0.6 616 8,824 

f18
2 −3 −3 / GSO −3 0 2,776 15,784 

f19
3 3.86 3.8628 /

GSO

3.86157 0.4 924 12,612 

f20
6 3.32 3.2697 / 

GSO 

3.31976 0.2 3,000 52,128 

f21
4 10 7.5439 / 

PSO 
10.1466 0.6 4,368 25,376 

f22
4 10 8.3553 / 

PSO 
10.4028 0.4 4,672 29,168

f23
4 10 8.9439 / 

PSO 

10.5362 0.4 2,256 24,784 

γ

* Note: Negative of the functions in [19] are computed by CFO
because it searches for maxima instead of minima.
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optimization or other problems in applied EM. Nevertheless, analytical
benchmarks serve the purpose of comparing EAs across a wide range
of functions of varying dimensionality with known maxima, thereby
providing a another measure of EA effectiveness. The improved CFO
algorithm was tested against the twenty-three function benchmark
suite in [19] and the results compared to the other algorithms’ results
in that paper. The benchmarks, their DSes, and the other algorithms
(“GA”, “PSO”, “GSO”) are discussed in detail in [19].

GSO (Group Search Optimizer) is a novel Nature-inspired
metaheuristic that mimics animal searching behavior based on a
“producer-scrounger” model. The version of PSO implemented in [19]
was “PSOt,” a MATLAB-based toolbox that includes standard and
variant PSO algorithms. Similarly, the genetic algorithm in [19] was
implemented using GAOT (genetic algorithm optimization toolbox).
Recommended default parameter values were used for the PSOt and
GA algorithms as described in [19]. This section provides a detailed
comparison of CFOs results to these other widely used and highly
developed algorithms by displaying the improved CFO’s results side-
by-side those reported in [19].

Tables 3 and 4 summarize CFO’s results using the same numbering
as [19]. fmax is the known global maximum (note that the negative of
each benchmark in [19] is used because, unlike the other algorithms,
CFO locates maxima, not minima). < · > denotes average value.
Because GA, PSO, and GSO are inherently stochastic, evaluating their
performance requires a statistical assessment. Data in the tables for
those algorithms are reproduced from [19].

CFO’s results are repeatable over runs with the same parameters
because it is deterministic but see [20] for a discussion of
“pseudorandomness” in CFO. The CFO data correspond to the best
fitness returned by the single best run in the set of runs with variable
γ. As described above, a total of eleven runs were made with 0 ≤ γ ≤ 1
in increments of 0.1. The γ value corresponding to the best fitness is
γbest. Neval is the total number of function evaluations for the single
best run and for the group of eleven runs used to determine γbest.

CFO’s results are quite good. It returned the best fitness (bold
font) on twelve of the twenty three functions, equal fitness on one
(f18), and essentially the same fitness on another (f8). CFO returned
very similar best fitnesses on three benchmarks (f14, f16, and f19).
On seventeen benchmarks CFO performed better than or essentially
as well as the best of the algorithms GSO, GA and PSO. On the
remaining six, CFO’s performance was mixed. But CFO required
far fewer function evaluations than the other algorithms in all cases
because it is deterministic (see [19] for details).
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Table 4. Results for six 300-dimensional multimodal benchmark
functions.

Test

Function
fmax

<Best Fitness>/

Other Algorithm

- - - - - CFO - - - - -

Best Fitness γ

f8 125,694.7 125,351.2 / GSO 125,691.261 0.8

f9 0 −98.9 / GSO −3.491 × 10−5 1.0

f10 0 −3.9540 × 10−6 / PSO −5 × 10−8 0.5

f11 0 −1.8239 × 10−7 / GSO −37.20625 1.0

f12 0 −8.2582 × 10−8/ GSO −0.018772 0.6

f13 0 −2.0175 × 10−7 / GSO −12.23783 0.5

Scalability is another issue in optimization, that is, how well an
EA performs as the DS dimensionality changes. In [19] the tested
algorithms were evaluated for scalability using benchmarks f8–f13 in
300D. CFO was tested in the same way using γ = γbest from the
Nd = 30 runs, except for f12 where the second best 30D γ value was
used (of course, there is no way of knowing what value of γ is the best
choice without making 300D variable-γ runs which are prohibitively
long). In order to avoid excessive runtime, each run was manually (and
therefore subjectively) terminated when fitness saturation seemed to
set in. The scalability results appear in Table 4. In three cases (f8, f9,
f10) CFO returned the best fitness. CFO also performed well against
f12, but compared to GSO it did not perform well on f11 and f13.
Nevertheless, the data presented in [19, Table XI] arguably support the
conclusion that CFO scales as well as the other algorithms described
in that report.

5. CONCLUSION

This paper presents an improved implementation of Central Force
Optimization for use in antenna optimization. The improved algorithm
implements a variable initial probe distribution to provide better
sampling of the DS landscape and shrinks the decision space around
the location of the best fitness in order to speed convergence. These
enhancements are suggested by experience with CFO and consequently
are inherently empirical. This note also suggests what appears to be a
compelling argument that the theory of gravitationally trapped NEOs
may be applicable to CFO for the purpose of developing a deterministic
methodology for mitigating or eliminating local trapping. Testing
CFO against antenna benchmark problem PBM #1 and a suite of
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twenty-three analytic benchmarks shows that the improved algorithm
performs quite well. Future efforts might explore alternative variable
initial probe distributions, including looping over the number of probes
in addition to their placement, and reactive DS adaptation to achieve
still better performance.

APPENDIX A. CFO THEORY

CFO locates the global maxima of an objective function f(x1, x2, . . .,
xNd

) defined on decision space DS: xmin
i ≤ xi ≤ xmax

i , 1 ≤ i ≤
Nd, where xi are the decision variables, i the coordinate number,
and Nd DS’s dimensionality. The value of f(~x) at ~x is its fitness.
f(~x)’s topology is unknown, and there is no a priori information
about its maxima. CFO searches by flying “probes” through DS at
discrete “time” steps (iterations). Each probe’s location is specified
by its position vector computed from equations of motion that are
analogous to their real-world counterparts for material objects moving
through physical space under the influence of gravity without energy
dissipation.

~Rp
j =

Nd
∑

k=1

xp,j
k êk is probe p’s position vector at step j. xp,j

k are

its coordinates and êk the unit vector along the xk-axis. Indices p,
1 ≤ p ≤ Np, and j, 0 ≤ j ≤ Nt, respectively, are the probe number
and iteration number. Np and Nt are the corresponding total number
of probes and total number of time steps.

Each probe experiences an acceleration created by the “gravita-
tional pull” of “masses” in the decision space. Probe p’s acceleration
at step j − 1 is given by

~ap
j−1 =G

Np
∑

k=1
k 6=p

U
(

Mk
j−1−Mp

j−1

)

·
(

Mk
j−1−Mp

j−1

)α

×

(

~Rk
j−1−

~Rp
j−1

)

∥

∥

∥

~Rk
j−1−

~Rp
j−1

∥

∥

∥

β
.

(A1)

Mp
j−1 = f(xp,j−1

1 , xp,j−1
2 , . . . , xp,j−1

Nd
) is the objective function’s fitness

at probep’s location at time step j − 1. Each of the other probes at
that iteration has associated with it fitness Mk

j−1, k = 1, . . . , p− 1, p+

1, . . . , Np. G is CFO’s “gravitational constant.” U(·) is the Unit Step

function, U(z) =

{

1, z ≥ 0
0, otherwise

}

.

The acceleration ~ap
j−1 causes probe p to move from position ~Rp

j−1
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at step j − 1 to ~Rp
j at step j according to the trajectory equation

~Rp
j = ~Rp

j−1 +
1

2
~ap

j−1 ∆t2, j ≥ 1. (A2)

Equations (A1) and (A2) collectively are the equations of motion
in CFO space. They combine to compute a new probe distribution
at each time step using the CFO “masses” discovered by the probe
distribution at the previous step. ∆t is the “time” interval between
steps during which the acceleration is constant. This terminology has
no significance beyond reflecting CFO’s kinematic roots, as does the
factor one-half in Eq. (A2). G and ∆t are analogous to parameters in
the equations of motion for real masses moving under real gravity.
By contrast, the exponents α and β have no analogs in Nature.
They are included to provide added flexibility to the user, because
in metaphorical “CFO space” the algorithm designer is free to change
how CFO “gravity” varies with distance or mass or both if doing so
results in better performance.

The concept of “mass” in CFO space is very important because,
unlike real mass, it is a positive-definite user-defined function of the
objective function’s fitness, not (necessarily) the fitness itself. In the
CFO implementation described here, for example, mass is defined as
MASSCFO = U(Mk

j−1 −Mp
j−1) · (M

k
j−1 −Mp

j−1)
α [difference in fitness

values raised to the α power multiplied by the Unit Step]. Some
other function can be used instead if it provides better results. In
this particular case, the Unit Step is critical to the definition, because
without it CFO mass could be negative depending on which fitness is
greater. Mass always is positive in the real world, and as a consequence
gravity always attractive. In metaphorical CFO space, where mass
can be positive or negative depending on how it is defined, undesirable
effects can result from the wrong definition. For example, negative
mass creates a repulsive gravitational force that flies probes away from
maxima instead of toward them, which defeats the very purpose of the
algorithm.

Because probes may fly outside space DS into regions of
unallowable solutions, a question arises as what to do. While many
schemes are possible, a simple, empirically determined one is used
here. On a coordinate-by-coordinate basis, probes flying out of
the decision space are placed a fraction ∆Frep ≤ Frep ≤ 1 of the
distance between the probe’s starting coordinate and the corresponding
boundary coordinate. Frep is the variable “repositioning factor”
introduced in [2]. Its value, as well as those of all the CFO parameters,
were determined empirically.
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