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METHODOLOGY

Improved classi�cation accuracy 
of powdery mildew infection levels 
of wine grapes by spatial-spectral analysis 
of hyperspectral images
Uwe Knauer1* , Andrea Matros2, Tijana Petrovic3, Timothy Zanker3, Eileen S. Scott3 and Udo Seiffert1

Abstract 

Background: Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition 

status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise pro-

cessing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. 

Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the 

spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selec-

tion and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for 

the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels 

(disease severity) of intact Chardonnay grape bunches shortly before veraison.

Results: Instead of calculating texture features (spatial features) for the huge number of spectral bands indepen-

dently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few 

descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective 

extraction of texture parameters from the integral image representation of the image bands generated. Dimension-

ality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up 

to 0.998 ± 0.003 for detached berries used as a reference sample (training dataset). Our approach was validated by 

predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of 

decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was 

achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visu-

ally healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or 

sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR.

Conclusions: An advanced approach to hyperspectral image classification based on combined spatial and spectral 

image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and 

validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-

spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data 

analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for 

fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyp-

ing of grapevine and additional crops.
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Background
Hyperspectral imaging

Hyperspectral imaging is a remote sensing technology 

that is becoming widely used in plant breeding, smart 

farming, material sorting, and quality control in food 

production [1], as well as identification of grapevine 

varieties from the air, detection and diagnosis of stresses 

caused by disease or nutrient imbalances and other 

applications in viticulture [2]. �e generic behavior of 

the material to reflect, absorb, or transmit light is used 

to characterize its identity and even molecular composi-

tion. A hyperspectral camera records a narrowly sampled 

spectrum of reflected or transmitted light in a certain 

wavelength range and produces a high-dimensional pat-

tern of highly correlated spectral bands per image pixel. 

Often, the direct relationship between this pattern and 

the target value, for example a nutritional or infection 

value, is unknown. In the simple case, exact spectral 

bands are known to correlate with the presence of certain 

chemical compounds. If such direct knowledge is una-

vailable, machine learning algorithms are used to learn 

a classification or regression task from labeled reference 

data [3].

Current sensor technology enables hyperspectral imag-

ing at different scales. For imaging of small objects such 

as leaf lesions or seeds, frame-based hyperspectral cam-

eras can be mounted on a microscope or line-scanning 

cameras can be equipped with macro lenses [4]. A com-

mon set-up for monitoring plants in the laboratory is a 

hyperspectral camera mounted to the side or above a 

conveyor belt or a translation stage [5]. While these set-

ups have been partially adapted for outdoor measure-

ments, for hyperspectral imaging of field trials, typically, 

vehicle-mounted hyperspectral cameras are used, for 

example on unmanned aerial vehicles (UAVs) [6]. �e 

current limitations of this approach relate to the availabil-

ity of lightweight sensors and loss of spectral and spatial 

resolution. Airborne and spaceborne hyperspectral imag-

ing are options for the monitoring of production areas 

and large scale assessment of vegetation parameters.

Approaches for analysis of hyperspectral data

Typically, the extraction of relevant information from 

hyperspectral datasets consists of the following steps. 

First, the hyperspectral data is normalized with respect 

to sensor parameters and illumination. Second, map-

ping between image pixels and known object positions is 

established, either by annotation of the acquired images 

or by automatically assigning coordinates (e.g. GPS 

measurements) to the image pixels. �ird, preprocess-

ing of images ensures extraction of meaningful entities 

by segmentation of objects (e.g. individual plants, leaves, 

fruits). As it is not possible to reliably detect individual 

objects in all cases, preprocessing can be restricted to 

suppression of the background information (e.g. soil sur-

face). Low spatial-resolution of the hyperspectral dataset 

may require additional steps such as separation of the 

spectral information into components which character-

ize the mixture of different materials within the same 

pixel. In the remote sensing literature, this is known as 

spectral unmixing or endmember extraction [7].

Finally, the hyperspectral data (or derived measures 

such as indices) of a certain object or pixel is mapped to 

a target category/value provided by experts or laboratory 

analysis. Common indices such as Normalized Differ-

ence Vegetation Index (NDVI), Photochemical Reflec-

tion Index (PRI), Anthocyanin Reflectance Index (ARI) 

and others are sensitive [8, 9] but are not specific for 

plant diseases, which has necessitated the development 

of spectral disease indices (SDI) [10]. Disease indices are 

developed for specific host-pathogen combinations based 

on clearly defined reference data, but typically utilize a 

limited number of wavelengths and normalized wave-

length differences. For example, in [10] a Powdery Mil-

dew Index (PMI) for sugar beet has been proposed as 

PMI =
R520−R584
R520+R584

+ R724 where the Rxxx denote normal-

ized reflectances for certain wavelengths. Indices may fail 

due to changes in the properties of the biochemical back-

ground matrix.

Spectral Angle Mapping (SAM, [11]) takes all wave-

length bands into account and is capable of discrimi-

nating between healthy tissue and tissue with powdery 

mildew disease symptoms at the microscopic scale. How-

ever, differentiation between sparse and dense mycelium 

remains difficult. As SAM does not weight the different 

wavelengths, the spectral angle is also sensitive to all 

changes in appearance even if they are unrelated to the 

symptoms (background matrix). In addition, large data-

sets for the dynamics of the pathogenesis of powdery 

mildew on barley have been investigated with data min-

ing techniques [4]. Simplex volume maximization has 

been effectively used to automatically extract traces of 

the hyperspectral signatures that differ significantly for 

inoculated and healthy barley genotypes. While manual 

annotation of hyperspectral data by experts, as used in 

our study, provides accurate reference data, the approach 

of Kuska [4] effectively addresses the problem of large, 

automatically recorded hyperspectral datasets in time 

series analysis.

Spatial-spectral segmentation with random forest 

classi�ers

�is paper addresses common challenges for the analysis 

of hyperspectral imaging data by investigating the classi-

fication performance of a novel approach to hyperspec-

tral image segmentation. It is based on the tight coupling 
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of Random Forest classifiers [12] with the integral image 

representation [13] of a dimensionality-reduced hyper-

spectral image.

�ere are two reasons for this approach. First, Random 

Forest classifiers are well established and combine fast 

and robust classification. Second, dimensionality reduc-

tion can bridge the gap between traditional pixel-wise 

classification of spectral information and texture-based 

image processing approaches for single band and color 

image segmentation which takes neighboring pixels into 

account and typically increases the accuracy of the image 

segmentation.

In general, image segmentation approaches can 

be roughly divided into pixel- [14] and region-based 

approaches [15]. Numerous approaches have been pre-

sented which treat image segmentation as a classifica-

tion problem using different strong classifiers [16–19]. 

Other methodologies have been biologically motivated 

by principles of the human visual system [20, 21]. How-

ever, classification in high-dimensional feature spaces 

with the most sophisticated classification algorithms may 

not be an option for some approaches. For example, for 

many real-time image segmentation problems (online 

processing), either the number of features used must be 

limited to a few that are meaningful [22], a rather weak 

classification technique must be used, or both limitations 

are accepted in combination to meet the processing time 

constraints [23, 24]. Even if online processing of the data 

is not required, often the analysis results must be pro-

vided within a certain period to enable decision making 

in precision farming, disease control, nutrition manage-

ment, and other applications.

Tree-based image segmentation has been reported [25], 

but for several years application seems to have been lim-

ited to certain fields, such as the segmentation of aerial 

or satellite imagery to identify land use. In recent years, 

Random Forest classifiers have been identified as a valu-

able tool in these fields as well as for related fields such as 

object detection [26]. New and demanding applications 

have led to several modifications and improvements of 

the original Random Forest approach to further improve 

the method and to match the application requirements. 

For example, Rotation Forest classifiers have been pro-

posed as a method for improved classification of hyper-

spectral data [27] by adding transformations of the input 

feature space and hence contributing to the diversity of 

ensemble decisions. Also, semi-supervised sampling has 

been reported to improve the segmentation performance 

of conventional Random Forest classifiers [28].

Feature relevance

Identification of relevant features for classification is 

a crucial task for effective processing as well as for a 

better understanding of the problems and their solutions. 

In [29] the performance of different feature selection 

approaches and classifiers for tree species classification 

from hyperspectral data obtained at different locations 

and with different sensors was reported. �e authors 

conclude that the selection of 15–20 bands provides the 

best classification results and that the location of the 

selected bands strongly depends on the classification 

method. However, best classification results for all data-

sets have been obtained with Minimum Noise Fraction 

(MNF) transformation and selection of the first 10–20 

principal components of MNF as input features for clas-

sification. In [30] the input feature space is extended by 

parallel extraction of spectral and spatial features. �en, 

a so-called hybrid feature vector is created and used for 

training of a Random Forest classifier. Finally, results 

are improved by imposing a label constraint which is 

based on majority voting. Other recent developments in 

hyperspectral image classification are reviewed in [31]. 

�e authors present a Statistical Learning �eory (SLT) 

based framework for analysis of hyperspectral data. 

�ey highlight the ability of SLT to identify relevant 

feature subspaces to enable the application of more effi-

cient algorithms. �e review categorizes existing spa-

tial-spectral classification approaches into spatial filters 

extraction, spatial-spectral segmentation, and advanced 

spatial-spectral classification.

Scope of the spatial-spectral segmentation approach

In this paper we present an improved texture-based 

spatial-spectral approach to hyperspectral image classifi-

cation which can potentially be applied to images from 

all available scales. �is approach addresses the prob-

lem that pixel-wise processing of spectral data, even of 

derived information such as SDI, does not incorporate 

information about the spatial variation of the spectral 

properties of healthy and diseased material. Hence, tak-

ing this variation into account aims to improve classifica-

tion accuracies for prediction of disease severity.

As a model system we selected the classification of 

powdery mildew infection levels of Chardonnay grape 

bunches, because the current approach of visual assess-

ment of infection levels (% of surface area affected of a 

bunch) is subjective. Many Australian wineries use a 

rejection threshold of 3–5% surface area affected by 

powdery mildew based on visual assessment [32]. �us, 

objective assessment of disease-affected bunches and 

quantification of pathogen (Erysiphe necator) biomass 

are required. Hyperspectral imaging was investigated as a 

means of detecting powdery mildew-affected bunches at 

the beginning of bunch closure, after routine assessment 

of disease in the field. Powdery mildew is more read-

ily assessed by visual inspection at this stage than later 
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in bunch development, providing a proof of concept for 

subsequent investigation of the disease on bunches closer 

to harvest.

We acquired hyperspectral images from powdery 

mildew affected and non-affected Chardonnay grape 

bunches. After preprocessing, the data sets were reduced 

in dimensionality by means of Linear Discriminant Anal-

ysis (LDA) to retain only a few highly descriptive image 

bands. Subsequent application of Random Forest classi-

fiers and selective extraction of texture parameters led to 

improved classification accuracies for powdery mildew 

infection levels and, hence, disease severity level predic-

tion (SLP) of wine grapes.

Methods
Plant material and fungal biomass

Grapes from a non-commercial vineyard (Waite Cam-

pus, University of Adelaide, South Australia) (E 138° 38′ 

3.844″, S 34° 58′ 3.111″) were used in this study. In-field 

assessment of powdery mildew on vines was conducted 

according to [33]. Subsequently, 10 visually healthy and 

20 bunches naturally infected by Erysiphe necator with 

no signs of other diseases and/or abiotic/biotic damage, 

were selected from Chardonnay vines (Vitis vinifera L., 

clone I10V1). Bunches were collected at the lag phase of 

berry development (i.e. when berry growth is halted and 

the seed embryos grow rapidly), otherwise described as 

growth stage E-L 30-33 (beginning of bunch closure) [34] 

when total soluble solids had reached 5° Brix (December 

4, 2014).

Bunches were assessed in laboratory conditions using a 

magnifying lamp and assigned to three categories: visu-

ally healthy, infected, and severely diseased. Bunches des-

ignated severely diseased were considered likely to have 

been infected at E-L 23-26 when grape clusters are highly 

susceptible to the pathogen. Berries on those bunches 

were significantly lighter (0.53 ± 0.045 g, p = 0.03) and 

slightly smaller (9.92 ± 0.34 mm) than berries on healthy 

bunches (weight 0.75 ± 0.045 g; diameter 11.20 ± 0.34 

mm). However, morphology of all bunches was similar, 

regardless of powdery mildew status. After hyperspectral 

imaging of the upper and lower surface of each bunch, 

bunches were stored at −20
◦
C. Each surface of the fro-

zen bunch was matched with the corresponding anno-

tated reference image (Fig. 10) and berries were detached 

and grouped according to bunch and surface (30 bunches 

× 2 surfaces). �e 60 samples were homogenized sepa-

rately, then DNA was extracted using a Macherey-Nagel 

NucleoSpin® Plant II Kit and quantified using a Quanti-

Fluor® dsDNA System. A modified duplex quantitative 

polymerase chain reaction(qPCR) assay using a TaqMan® 

MGB probe (FAMTM dye-labelled) was used to quantify 

E. necator biomass [35]. Reaction efficiency was assessed 

by generating a standard curve for E. necator and abso-

lute quantification of E. necator biomass was achieved 

using the standard curve. �e number of copies of the 

amplified E. necator DNA fragment per conidium was 

calculated based on the DNA extracted from a known 

number of E. necator conidia. Consequently, the num-

ber of copies of the E. necator DNA fragment obtained 

for the DNA extracted from 100 mg of berry tissue was 

expressed as number of E. necator conidia and then cor-

rected for the average weight of berries for each bunch. 

Log-transformed data is presented (Fig. 4).

Hyperspectral imaging

Figure 1 provides an overview of the measurement set-up 

and the experimental design. For the hyperspectral image 

acquisition, samples of grapes were positioned along with 

a standard optical PTFE (polytetrafluoroethylene) cali-

bration pad on a translation table. Spectra were acquired 

either from the visible and near-infrared range (VNIR) 

of 400–1000 nm at 3.7 nm resolution or from the short-

wave infra-red range (SWIR) of 970–2500  nm at 6  nm 

resolution yielding a 160 dimensional or 256 dimensional 

spectral vector per pixel, respectively. Hyperspectral 

images were recorded using HySpex VNIR 1600 (VNIR 

camera) and HySpex SWIR-320m-e (SWIR camera) line 

cameras (Norsk Elektro Optikk A/S). �e VNIR cam-

era line has 1600 spatial pixels. Spectral data along this 

line can be recorded with a maximum frame rate of 

135  frames per second (fps). �e SWIR camera line has 

320 spatial pixels. Spectral data can be recorded with a 

maximum frame rate of 100 fps. Radiometric calibration 

was performed using the vendor’s software package and 

the PTFE reflectance measure.

As part of the controlled environment, artificial broad-

band illumination was used as the only light source. 

Before the recordings started, two custom made lamps 

were adjusted to focus the light to a line overlapping the 

fields of view (FOV) of the hyperspectral cameras.

Two hyperspectral images containing either only visu-

ally healthy or only severely diseased detached berries, 

manually dissected from two bunches, were recorded. 

�ose images alone were used for SLP model devel-

opment. Next, 60 images of two sides of 30 complete 

bunches were recorded, comprising 10 visually healthy 

bunches, 10 powdery mildew infected bunches, and 10 

severely diseased bunches. �ese images were used to 

assess the accuracy of the SLP method under realistic 

conditions. Results of qPCR analysis of berries detached 

from all bunches served as reference values. Figure 2 illus-

trates the scanning result. It shows the hyperspectral data 

cube with two spatial and the spectral dimension. Each 

horizontal slice corresponds to a single wavelength image. 

�e 1000 nm band of the VNIR camera is plotted on top.
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Development of disease severity level prediction models

Figure  3 summarizes the approach for the development 

of models for SLP based on pixel-wise powdery mildew 

detection. For the development of prediction models and 

initial tests of parameters, only the small subset of images 

obtained from detached berries was used. First, this facil-

itates the generation of class information as the image 

contains either severely diseased or healthy berries. 

Second, the derived models can later be tested with the 

Fig. 1 Overview of the measurement set-up and the experimental design. The measurement set-up consists of two hyperspectral line scanning 

cameras for VNIR (a) and SWIR (b) wavelength range, artificial broadband illumination (c), and translation stage with stepper motor (d). Hyperspec-

tral images of PTFE reference plate (e) and 30 bunches (f), visually assigned to three categories (visually healthy, infected and severely diseased, blue 

shading represents powdery mildew), were recorded in laboratory conditions. Berries of two bunches were detached to be used as reference data 

for classifier training

Fig. 2 Hyperspectral image. Visualization of a hyperspectral image 

cube with grape bunch, PTFE reference plate, and background 

materials. The hyperspectral image consists of different layers which 

directly correspond to the reflection of narrow wavelength bands. 

The PTFE reference plate is calibrated and used for data normalization

Fig. 3 Systematic approach and development of powdery mildew 

detection models. Based on hyperspectral images of visually healthy 

and severely diseased detached berries a dataset containing spectra 

of both classes is generated. Two different feature spaces are investi-

gated for classification of spectral data; first, dimensionality reduction 

with subsequent spatial-spectral feature extraction and second, 

classification of complete spectral signatures. The path on the right 

corresponds to the first row of Table 1, whereas the left hand side cor-

responds to the remaining rows
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complete set of hyperspectral images. �is ensures inde-

pendent samples for validation of the approach. Preproc-

essing of the spectral data was undertaken to compensate 

for the specific contributions of the sensor as well as the 

illumination to the measured signal.

Image preprocessing

�e preprocessing of hyperspectral images consists of the 

following steps:

1. Conversion from raw images (photon count, digital 

numbers) to radiance (at sensor)

2. Conversion from radiance (at sensor) to reflectance 

(at surface)

3. L2-normalization (spectra are treated as vectors and 

normalized to have equal length)

4. Dimensionality reduction

Dimensionality reduction aims to achieve the following 

goals:

1. Reduction of computational costs

2. Avoid problems inherent in dimensionality (known 

as the curse of dimensionality [36] and particularly 

Hughes phenomenon [37] in machine learning and 

computational intelligence)

We implemented different options for dimensionality 

reduction:

1. Canonical band selection (inspired by human per-

ception and bands of other existing imaging sensors),

2. Relevance-based band selection based on importance 

histograms,

3. Synthesis of orthogonal bands based on Principal 

Component Analysis (PCA),

4. Target class specific synthesis based on adapted data 

sampling before PCA,

5. Synthesis of orthogonal bands based on LDA.

Depending on the classification task at hand, each option 

provides a different trade-off between transformation speed 

and discriminative power of the original spectral data.

For canonical band selection the image bands used by 

the software PARGE (ReSe Software) were selected. For 

VNIR cameras such as NEO HySpex VNIR 1600, the red-

channel of the resulting RGB-image was mapped to the 

651 nm band, the green-channel to 549 nm, and the blue-

channel to 440 nm. Another option for canonical band 

selection is close infrared (CIR), where the three channels 

were mapped to the 811, 640, and 498 nm bands, respec-

tively. In the short-wave infrared, the following mapping 

was used: (1081, 1652, 2253 nm).

�e relevance-based band selection was based on 

supervised pixel-wise classification of spectral informa-

tion with Random Forest classifiers. During the construc-

tion of a decision tree, many different optimizations (with 

respect to a measure of information gain) take place for 

feature selection. Hence for each classification, the tree 

nodes visited were checked for which feature (band) was 

used to create a histogram of band importance. Finally, 

the three highest ranked bands were selected.

PCA was used to derive a new orthogonal base of the 

original feature space. �e resulting bands represent lin-

ear combinations of all original bands. Random subsets 

of spectra were used to calculate the projection matrices. 

For target class-specific PCA the input spectra were sam-

pled from predefined pixels only. Closely related is the 

application of LDA for deriving a task-specific projection.

Spatial-spectral classi�cation

Our approach for texture-based classification (spa-

tial component) relies on the data structure of integral 

images [13]. �is representation enables a cache-like fast 

look-up of feature values for arbitrary rectangular image 

regions of a single image band. �ree base features are 

used, which require calculation of three integral images 

per image band:

1. Mean intensity

2. Standard deviation

3. Homogeneity

�e choice of the base features is motivated by their 

known support for the integral image representation [13, 

38].

�ese base features are calculated for 25 differently 

sized squared image blocks centered on the current pixel 

and all image channels (of the dimensionality reduced 

hyperspectral image) separately. Here, a 225-dimensional 

(3 × 3 × 25) feature vector is used per pixel. Even if the 

dimension of the feature vector is approximately the 

same as for the spectral data, each feature now consists 

of a spatial (mean, standard deviation or homogeneity of 

rectangular image area) and a spectral component (from 

PCA, LDA or band selection).

In the training phase, feature vectors were selected at 

random locations within the image. Class labels were 

assigned based on given reference data. Next, a modified 

Random Forest classifier was trained. In contrast to the 

default Random Forest classifier, each tree node holds 

additional information which is needed to quickly access 

the tested feature from the set of integral images. Hence, 

there is no need to calculate a full feature vector in the 

application phase of the model. For each pixel only a sub-

set of dimensions of the feature space must be calculated. 
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�is speeds up the classification process. A significant 

reduction in the time needed for calculation of features 

can be obtained for single decision trees (in the order of 

log2N , where N is the total number of considered fea-

tures) and Random Forests with a small number of trees. 

A related investigation of the trade-off between classifi-

cation accuracies, ensemble size, and number of features 

used for different hyperspectral classification tasks can 

be found in [39].

Cross-validation procedure

N-fold cross-validation was used to calculate an estimate 

for the classification accuracy (N = 10 was used for all 

experiments). �e training data was randomly parti-

tioned into 10 groups (folds) of equal size. �is means 

that each feature vector was assigned to only one of the 

folds. While N − 1 folds were used to train a classifica-

tion model, the remaining fold was used to test the accu-

racy of the resulting model. �is was repeated N times. 

�e average accuracy and the standard deviation of the N 

classification models were then compared.

Results
Fungal biomass

�e differentiation between visually healthy, infected 

and severely diseased bunches proved to be accurate for 

the majority of bunches (75%) based on fungal biomass 

(via qPCR) as reference (Fig.  4). Of the visually healthy 

bunches, four were negative in the qPCR assay so the 

fungus was not detected on either side of the bunch. 

However, the fungal biomass among the remaining six 

visually healthy bunches varied considerably. Fungal 

biomass from infected and severely diseased bunches 

showed less variation. Maximum fungal biomass for 

visually healthy and infected bunches overlapped with 

biomass for infected and severely diseased bunches, 

respectively (Fig. 4). Overlap in fungal biomass was more 

evident for visually healthy and infected bunches than for 

infected and severely diseased bunches. �is indicates 

that bunches visually assessed to be healthy had colo-

nized berries hidden within the bunch, sparse mycelial 

growth missed under the magnifying lamp or that air-

borne conidia had landed on the berry surface. Uneven 

distribution and density of E. necator mycelium and con-

idiophores on berries in infected bunches is likely to have 

caused the overlap in fungal biomass between infected 

and severely diseased bunches (Fig. 4).

Dataset

�e dataset consists of 60 hyperspectral images cor-

responding to two scans (top and bottom view) of 30 

bunches (see Fig.  1). From two of these bunches, 128 

visually healthy and 136 severely diseased berries were 

selected and detached for recording of an additional data-

set for classifier training and initial validation. Detached 

berries were arranged in Petri dishes and two additional 

hyperspectral images were recorded which contained 

either severely diseased or healthy berries. Furthermore, 

the small time gap between the two recordings ensured 

constant conditions for the measurements. Figure  5 

shows the mean spectra as well as the standard devia-

tions obtained from these reference images for healthy 

and severely diseased detached berries. Here, the spectral 

signatures of each image pixel have been normalized with 

respect to the reflectance of the PTFE calibration pad.

For validation of the proposed spatial-spectral 

approach these spectral signatures have been used to 

train a reference Random Forest classifier. Figure 6 shows 

the relevance profile derived for individual wavelengths 

within the classification process. For the dimensional-

ity reduction step in spatial-spectral segmentation, one 

option is to select the most relevant bands from this 

result. Additionally, a number of low-dimensional repre-

sentations of the hyperspectral images have been derived 

to investigate the classification performance of the spa-

tial-spectral image segmentation approach in different 

feature spaces.

Classi�cation models

In order to maintain speed of the proposed segmentation 

algorithm, dimensionality reduction is the first process-

ing step. �e fastest and simplest approach is focusing 

Fig. 4 Quantitation of Erysiphe necator biomass in Chardonnay grape 

bunches. Boxplot of E. necator biomass as measured by an E. necator-

specific qPCR assay of bunches assigned to three visual categories 

(visually healthy, infected, and severely diseased). Four bunches or 

40% of scanned bunch profiles of visually healthy bunches were 

confirmed to be pathogen-free according to qPCR
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on a few (typically three) predefined image bands and 

skipping processing of all the others. Several such selec-

tions, for both VNIR and SWIR wavelength ranges, are 

compared to the more sophisticated reduction methods 

in Table 1. �e mean accuracy values and their standard 

deviations are given for 10-fold cross-validation experi-

ments for random sets of 4000 pixels from two training 

images (containing healthy and infected grapes). Results 

indicate that successful classification is possible in both 

wavelength ranges. However, with an accuracy of 0.98, 

pixel-wise spectral classification in VNIR performs sig-

nificantly better than in SWIR (accuracy 0.85). �e 

introduction of texture features by the spatial-spectral 

classification approach can nearly compensate for the 

effects of dimensionality reduction for all variants and 

improve classification accuracy to 0.99 (especially in 

the SWIR region this is a significant improvement). �e 

transformations investigated for reduction of dimension-

ality (PCA, LDA, adaptive PCA) incorporate all image 

bands, potentially minimizing the loss of information 

inherent in dimensionality reduction, while band selec-

tions (Custom, RGB, CIR, SWIR) have been tested to 

exploit the potential of less expensive standard (RGB, 

SWIR, CIR) or customized (Custom) camera systems. 

�e customized band selection was based on the analysis 

of the relevance of individual bands for a Random Forest 

classifier. To obtain a measure of relevance, during clas-

sification all nodes visited in the decision trees within 

the Random Forest voted for the corresponding feature. 

�ree local maxima of the relevance curve were then 

Fig. 5 Illustration of reflectance spectra. Spectral signatures of 

healthy detached berries and detached berries with severe powdery 

mildew infection (a) and the differences between mean spectra 

of healthy and diseased berries (b). The standard deviations of the 

spectral signatures are shown as error bars in a. Spectrally localized 

differences are observed in the green peak region (550 nm) of the 

spectra and just above the red edge region (680–730 nm). Throughout 

the shortwave infrared region a shift between the mean spectral 

signatures occurs due to higher reflectance of the diseased berries

Fig. 6 Relevance spectrum. Relevance of the individual spectral bands was derived from the structure of the Random Forest classifiers. More 

relevant wavelength features are used more often and hence contribute more to the final decision. The images of the two hyperspectral cam-

eras have been processed independently and result in the blue and the red relevance profile, respectively. For each camera a number of highly 

relevant bands are found. Three local maxima in the relevance profiles are highlighted. Limiting classification to only the three highlighted relevant 

wavelengths yields mean accuracies of 0.98 (VNIR camera) and 0.99 (SWIR camera) for detached berries and in combination with textural features 

extracted from these image bands
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selected. A threshold ensures a minimum distance of 20 

bands between selected local maxima.

Table 2 shows the investigation of block size (of spatial-

spectral features) vs classification accuracy. LDA-based 

reduction and two predefined band selections (denoted 

as RGB and SWIR) have been compared. �e results, 

especially for SWIR, indicate that good performance 

is already achieved with small maximum block sizes. 

�e baseline accuracy for individual pixel classification 

(block size 1 pixel) is 0.78 for the VNIR camera and 0.94 

for SWIR camera. �is result shows the value of using 

disease-specific LDA based projection to constitute a 

low-dimensional representation for further processing. 

Classification accuracies for a representation by three 

default bands from the VNIR camera (RGB) or SWIR 

camera are 0.76 and 0.62 (block size 1 pixel), respec-

tively. By increasing the maximum block size, additional 

features (mean, standard deviation, and homogeneity of 

intensity distribution) are taken into account which are 

not defined for a single pixel. For a maximum block size 

of 100  ×  100 pixels in the VNIR camera image, which 

corresponds to the approximate size of a single berry, 

an accuracy of 0.99 is achieved. For image blocks of 

20 × 20 pixels of the SWIR camera, accuracy of 0.99 was 

achieved also. As the sample in this experiment consists 

of detached berries which are covered by mycelium, the 

block size and classification performance can be further 

increased. However, in practice early detection of a pow-

dery mildew-affected surface requires the use of small 

block sizes (to detect small infection spots).

Classification results correspond to the mean spectra 

plotted in Fig. 5 and with results from the literature [10]. 

Especially, in the SWIR domain the mycelium leads to 

a shift of the spectral signatures due to a higher reflec-

tance over the complete wavelength range between 1000 

and 2500 nm. While such a shift has been reported for 

powdery mildew-affected sugar beet in VNIR, the mean 

spectra show a different performance for grapes. We 

observed a reduced reflectance at the green peak region 

(550 nm) as well as in the plateau region after the red 

edge (750–900 nm). �is is due to the high reflectance 

of healthy grapes compared to the reflectance of healthy 

leaves, which has been the subject investigated in previ-

ous studies [10, 11].

Severity level prediction

Having an automated inspection system either in quality 

control or in plant phenotyping in mind, it is not feasible 

to scan detached berries and the scanning of complete 

bunches is much more challenging. An automated 

inspection system would deliver a score corresponding 

to the severity level or surface area affected by powdery 

mildew. Despite the promising results of cross-validation 

experiments within the training datasets (detached ber-

ries), the spatial-spectral classification of the complete 

bunch images yields different results. �eir 3D structure 

Table 1 Classi�cation accuracy using di�erent dimension-

ality reduction methods

Principal Component Analysis (PCA) and standard band selections (RGB, CIR, 

SWIR) are compared to adaptive reduction methods. Adaptive PCA is based 

on strati�ed sampling based on class labels, custom band selection is based 

on relevance pro�les and uses only three most relevant individual bands, 

while Linear Discriminant Analysis (LDA) is used to �nd an optimal subspace 

projection of the data

* Pixel-based segmentation of normalized spectra as reference, all other are 

spatial-spectral-based

Feature space Bands VNIR SWIR

Normalized spectral* All 0.980 ± 0.006 0.853 ± 0.027

PCA All 0.968 ± 0.008 0.999 ± 0.002

Adaptive PCA All 0.969 ± 0.007 0.996 ± 0.004

Custom 3 0.981 ± 0.008 0.997 ± 0.003

RGB 3 0.972 ± 0.009 –

CIR 3 0.971 ± 0.009 –

SWIR 3 – 0.999 ± 0.003

LDA All 0.998 ± 0.003 0.998 ± 0.005

Table 2 Classi�cation accuracy versus maximum block size for spatial feature extraction

With increasing maximum block size (from left to right) a gain in accuracy was achieved by introducing additional spatial-spectral features. Due to the di�erent 

resolution of the cameras for the VNIR and SWIR domains, 100 × 100 pixels in the VNIR camera image match 20 × 20 pixels in the SWIR camera image of the same 

bunch. These two block sizes correspond to the approximate size of a single berry in the measurement set-up used. The rows RGB and SWIR refer to spatial features 

derived from selected bands, while rows LDA VNIR and LDA SWIR refer to texture features derived from projected images. For the VNIR wavelength range the spatial 

component contributes most to the accuracy gain, while in the SWIR wavelength range classi�cation of spatial features from projected images outperformed 

classi�cation based on spatial features from selected bands. Even by introducing only a few spatial features (maximum block size 5 pixels), a signi�cant gain in 

classi�cation accuracy was observed. Due to the di�erent spatial resolution of VNIR and SWIR images, which is related to the di�erent number of pixels and pixel sizes, 

the increase of the block size was limited to the approximate size of a single Chardonnay berry (VNIR 100 × 100, SWIR 20 × 20 pixels)

1 5 20 50 100

RGB 0.767 ± 0.013 0.938 ± 0.014 0.952 ± 0.011 0.964 ± 0.01 0.972 ± 0.009

LDA VNIR 0.782 ± 0.016 0.865 ± 0.016 0.951 ± 0.015 0.984 ± 0.007 0.998 ± 0.003

SWIR 0.617 ± 0.027 0.729 ± 0.047 0.872 ± 0.019

LDA SWIR 0.948 ± 0.017 0.986 ± 0.009 0.993 ± 0.006
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imposes some additional problems with shadow and the 

focal plane compared to the recording of selected indi-

vidual berries which were used for model generation. So 

far, in the SWIR wavelength range successful classifica-

tion was not possible using the independently generated 

models for detached berries. Obviously, the observed 

shift in the hyperspectral signatures (Fig. 5) is the domi-

nating discriminating feature and is impossible to detect 

in the presence of the aforementioned factors.

Figure  7 shows the results of severity level prediction 

for the VNIR camera. �e severity level is estimated by 

the surface area which is classified as powdery mildew-

affected. �e results are presented from the aforemen-

tioned application perspective. �e most relevant 3 cases 

are shown. First, segmentation results solely based on 

pixel-wise classification of the hyperspectral data are 

shown. In practice, this represents the default approach 

to hyperspectral image segmentation. �e images have 

been grouped according to the expert’s decision about 

the infection level. For each of the groups of healthy, 

infected, and severely diseased grapes a boxplot of auto-

matically estimated infection level is given in the upper 

diagram (A). While severely diseased biological material 

can be detected, detection of low infection states is not 

possible at a statistically significant level. Surprisingly, 

a Random Forest classifier cannot reliably handle the 

detection of healthy material as indicated by the mean 

offset for the estimated infection level if only normal-

ized spectral data is used as feature vector. However, 

this is also related to the chosen training strategy. Train-

ing data comprised a sample from an independent set of 

two images from selected infected and healthy grapes. 

By recording the complete bunches, occlusions, shadows 

and blurring of image regions occur.

Given the same set of hyperspectral images, the pro-

posed spatial-spectral segmentation of a projected hyper-

spectral image performs much better. Using LDA, a 

projection can be found which keeps the most relevant 

spectral information for the detection of powdery mil-

dew infection. By calculating spatial features of the pro-

jected images a better discrimination between healthy 

bunches and bunches with only a few infected grapes is 

possible (middle diagram, B). Fig. 7c shows the improve-

ments made by increasing the ensemble size to 50 ran-

dom decision trees. Separation between healthy and 

infected bunches was further improved.

Figure  8 shows a different visualization of the clas-

sification performance for the complete dataset of 60 

grape bunch images. Receiver Operating Characteris-

tic (ROC) curves [40] are used to highlight the different 

trade-offs between true positive and false positive rates 

that exist for different threshold values. �resholds are 

applied to the calculated fraction of diseased pixels to 

differentiate between healthy, infected, and severely dis-

eased bunches. As the dataset contains two images of 

each bunch (top and bottom view), the mean of the two 

scores was calculated prior to application of thresholds. 

ROC curves and derived index values are often used for 

comparison of diagnostic tests [41] and can be used for 

optimal selection of operating points [42]. Diagrams 

ROC-1 correspond to the classification performances for 

Fig. 7 Classification accuracy of intact bunches depending on 

random forest classifier complexity. Boxplot of the predicted surface 

area affected for the three main categories of the experiment based 

on pixel-wise segmentation of LDA projected hyperspectral images 

(VNIR only). a Pixel-wise pure spectral classification with Random For-

est, b texture-based spatial-spectral segmentation with 10 trees ver-

sus c Random Forest with 50 trees. Severely diseased bunches can be 

detected with high accuracy, while discrimination between healthy 

and infected is challenging in a few cases. Classification accuracy 

increases with the complexity (number of decision trees) of the Ran-

dom Forest classifier. Results of the analysis of hyperspectral images 

are comparable and correspond well to qPCR results (see Fig. 4)
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the detection of healthy bunches versus overall infected 

(infected and severely diseased) based on spectral fea-

tures (top row) and spatial-spectral features (bottom 

row), respectively. For each threshold the fraction of cor-

rectly classified healthy bunches is plotted against the 

false positive rate for the same threshold. For example, 

using spatial-spectral features a successfull detection 

of >80% of all healthy bunches (true positive rate >0.8) 

was achieved with a lower misclassification of infected 

bunches compared to using spectral features. �is mis-

classification (error) directly corresponds to the contami-

nation level when used for sorting a tranche of bunches. 

Diagrams in column ROC-2 show the inverse problem 

to separate any infected bunch (infected + severely dis-

eased) from the group of healthy bunches. Obviously, 

in ROC-1 and ROC-2 diagrams the axes are exchanged. 

�is illustrates the trade-off for the threshold-based deci-

sion, because the false positive rate now corresponds 

to the loss of healthy bunches (e.g. when the classifier 

is used in a sorting-machine). ROC-3 diagrams show 

the easier detection of severely diseased versus healthy 

and infected bunches. Both ROC-3 curves show that 

a higher fraction of severely diseased bunches can be 

detected with lower error compared to ROC-1 (healthy) 

and ROC-2 (overall infected). �e last column shows the 

color coded classification accuracies as a 2-dimensional 

function of the thresholds for separating between the 

three classes (healthy, infected, severely diseased). �e 

gain in classification accuracy for detection of infected 

bunches by using spatial-spectral features is clearly visi-

ble in diagrams ROC-1 and ROC-2, where the area under 

curve (AUC), which is related to classification accu-

racy, is increased. �ese improvements led to a signifi-

cant gain in the overall classification accuracy from 0.76 

(using only spectral data) to 0.86 (using spatial-spectral 

features). A detailed analysis of the performance gain is 

given in Fig. 9. �e spatial-spectral approach significantly 

improves the ability to separate the three classes, espe-

cially for the difficult detection of infected bunches with 

little fungal biomass.

Fig. 8 Receiver operating characteric curves and dependence of classification accuracy on selected thresholds. ROC curves visualize the trade-off 

between successful detection of healthy versus infected and severely diseased (ROC-1), infected and severely diseased versus healthy (ROC-2), and 

severely diseased versus all other bunches (ROC-3) and the corresponding error rates. ROC curves are calculated for the complete dataset of 60 

images. Class decision for each bunch is based on the average fraction of diseased pixels of two images (top and bottom view of the bunch). This 

combined score was calculated for each bunch prior to application of a threshold. The top row shows the results for classification based on spectral 

features, while the bottom row shows the results for spatial-spectral features with Random Forest classifiers (50 trees each). A true positive rate of 

1 means that all bunches of the corresponding class have been successfully assigned to the correct class. This is achieved at the price of a certain 

false positive rate, which denotes the fraction of bunches of the other classes falsely assigned to the same class. ROC-1 and ROC-2 are significantly 

improved by using spatial-spectral features. As two thresholds are needed to separate the 3 classes, the last column visualizes the accuracy as a 

function of the selected thresholds A and B. The optimal combination of thresholds is highlighted for both feature spaces and shows a significant 

gain in overall classification accuracy for our spatial-spectral approach
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Figure  10 illustrates the general segmentation perfor-

mance of the proposed method. �e comparison with the 

manually annotated reference image highlights the capa-

bility of the Random Forest based segmentation approach 

to successfully detect powdery mildew affected grapes 

in VNIR hyperspectral images. Results for both spectral 

and spatial-spectral segmentation contain a number of 

pixels classified as false positive. As these pixels repre-

sent mainly background pixels which were not present in 

the original training dataset (detached berries only), the 

effect on the calculation of fractions of diseased/healthy 

pixels is comparable for all bunches of grapes. For this 

reason, we improved the approach by adding random 

samples from typical background regions (PTFE-plate, 

translation stage surface, paper labels, stem) of three 

additional hyperspectral grape bunch images to the train-

ing dataset. �e pixels detected were then excluded from 

the count of diseased pixels. �e accuracy values pre-

sented are based on the classification with background 

regions suppressed.

Discussion
Hyperspectral imaging and data analysis based on spec-

tral as well as spatial-spectral features have been applied 

here to test automated detection of powdery mildew 

infection of Chardonnay grape bunches within 12 h of 

routine in-field disease assessment. Hyperspectral imag-

ing has already been used to develop spectral indices 

for detection of plant diseases [10], quantification of the 

spatial proportions within leaf lesions [43] and quantifi-

cation of the intensity of sporulation and leaf coloniza-

tion [9]. Several host-pathogen model systems, such as 

sugar beet and barley powdery mildew and grapevine 

leaf downy mildew, have been studied previously and, 

Fig. 9 Classification results. Confusion matrices for thresholds corresponding to the operating points with maximum accuracy (see Fig. 8) of 

spectral (left) and spatial-spectral classification (right). For spatial-spectral classification, thresholds are found which allow perfect detection of 

healthy and severely diseased grape bunches. Also, the false detections of infected bunches as healthy and as severely infected are reduced by the 

spatial-spectral approach. The best automatically obtained decisions differ from visual assessment by experts only for 4 of the 10 infected bunches, 

with 3 classified as healthy and 1 classified as severely diseased. In addition, operating points can be adjusted according to application demands to 

provide a lower total accuracy but higher specificity/sensitivity for a certain class as needed

Fig. 10 Visual representation of the results from the various data analysis approaches. Images of a representative scanned Chardonnay grape 

bunch: a example of a manually annotated grape bunch with visually identified infection sites shown as red dots, b disease specific visualization of 

VNIR hyperspectral image based on LDA coefficients, c powdery mildew detection results based on spatial-spectral approach (Table 1, row 8), d 

detection results based on classification of hyperspectral signatures (Table 1, row 1)
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to our knowledge, we are first to report results for pow-

dery mildew on grape bunches and individual berries 

in a controlled environment (Fig.  1). �e approach pre-

sented in [10] requires exhaustive testing of the possible 

combinations of two wavelengths to find the best dis-

ease-specific index. �ose indices (e.g. PSSR, PRI) along 

with a change of reflectance in particular spectral range 

are useful as they may indicate the degree of reaction of 

the disease-affected cells in the resistant and susceptible 

genotypes [44]. However, the use of only two wavelengths 

can be a major drawback and the incorporation of more 

wavelengths would drastically increase the amount of 

time required to find a solution. In our spatial-spectral 

approach, a disease-specific projection based on LDA 

is used instead. �is approach can be easily transferred 

to any other model system. �e main advantage is that 

the resulting projection is a linear combination of all 

wavelengths.

However, often the motivation for incorporating fewer 

wavelengths is to enable the application of simpler and 

cheaper sensor systems. For this it is important to iden-

tify the most relevant wavelengths from the hyperspec-

tral dataset. In [10] the RELIEF-F algorithm is used prior 

to exhaustive testing to constrain the search space for the 

final solution for computational reasons. We have shown 

that similar information can be derived from the struc-

ture of the Random Forest classifier. We also showed for 

an adapted selection of three relevant wavelengths that a 

gain in classification accuracy (for detached berries) can 

be achieved when used in combination with textural fea-

tures of image blocks instead of single pixels (Table  2). 

An alternative approach for identifying most relevant 

spectral features was reported in [45]. Here, Support 

Vector Machines (SVM) and Random Forest classifiers 

were coupled for classification of pine trees. An impor-

tant aspect of this work was the utilization of Random 

Forest variable importance to identify the most relevant 

wavelength bands. Importance is based on ‘out-of-bag’ 

error and measures the average loss of accuracy when a 

single variable is not used. Experiments reported in [46] 

also include dimensionality reduction of hyperspectral 

data. �e authors concluded that identifying the most 

relevant wavelength bands prior to classification yielded 

results similar to classification based on the complete 

spectral data. �ese findings showed that feature reduc-

tion was possible without significant loss of accuracy. An 

alternative approach to incorporate feature relevance into 

the training of Random Forest classifiers was proposed in 

[47]. Here, the randomness was induced in a guided way 

by selecting features based on a learned non-uniform 

distribution.

�e promising results for intact bunches in the VNIR 

wavelength range and from cross-validation experiments 

within the training datasets (detached berries), in either 

the VNIR or SWIR domain, warrant further testing in a 

controlled environment and an industry setting to cor-

roborate these findings. Results showed that a Random 

Forest with 50 random decision trees can be used to esti-

mate infection and discriminate healthy bunches from 

infected. However, variation of hidden E. necator bio-

mass and/or airborne conidia on the surface of berries 

in the visually healthy bunches indicates the need to set 

thresholds for characterization of healthy bunches.

�e proposed algorithm for predicting powdery mil-

dew severity needs to be validated in controlled condi-

tions similar to those described by [48] for grape berries 

and bunches with intact conidia and during the latent 

period of E. necator development (i.e. between germi-

nation of the conidium and sporulation of the colony). 

�is algorithm also needs to be validated using intact 

bunches harvested by hand at maturity, such as may be 

used for premium quality wines, small wineries, organic 

or biodynamic wines and dried products (e.g. raisins). 

Such validation will determine the sensitivity and preci-

sion of hyperspectral imaging under different conditions 

to assess its usefulness as a method to improve objective 

assessment of powdery mildew severity.

�e proposed algorithm was developed for Chardon-

nay from a single vineyard at the beginning of bunch 

closure (E-L 30-33), when visually healthy and infected 

berries as well as the fungus differ in biochemical com-

position from that at harvest (E-L 38). Also, at harvest, 

skin and berry defects may be present due to biotic (e.g. 

other diseases and pests) and abiotic damage. It has been 

shown that LDA using data collected for berry color with 

an automated in-field phenotyping device (PHENObot) 

could not predict red and rose berries if RGB values were 

used [49]. Consequently, it can be expected that addi-

tional adjustments, such as using grape bunches collected 

at harvest from a range of white and black grape varieties 

and growing regions, bunches with diverse compactness 

and those affected by other economically important dis-

eases such as botrytis bunch rot [50], and validation in 

uniform light conditions, will improve the accuracy of 

hyperspectral imaging and prediction of powdery mildew 

severity on intact bunches. �is approach may expand 

the application of hyperspectral discrimination of healthy 

and infected hand-harvested bunches in an industry set-

ting. Implementation of hyperspectral imaging for sort-

ing healthy and infected hand-harvested bunches in a 

single layer on a conveyor belt may be feasible.

Hyperspectral imaging has potential for real time 

assessment. However, substantial modification would be 

required to take into account differences between hand- 

and machine-harvested grapes. Machine-harvested 

grapes delivered to wineries comprise mainly individual 
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detached and damaged berries plus material other than 

grapes (e.g. leaves, fragments of canes and vine bark). 

�ese detached berries can be either completely or par-

tially covered with juice [51]. �e presence of juice con-

taining E. necator mycelia and conidia that are washed 

from the surface of infected berries during machine-

harvesting might confound assessment due to reflec-

tion/scattering/shadow and the focal plane might differ 

from the recording of selected berries used for model 

generation. �erefore, classification models would need 

to be developed using detached berries covered with 

juice. High spatial resolution and variability within the 

juice-berry matrix make it necessary to define the most 

important characteristics of berry skin, where E. neca-

tor resides, to increase the reliability and sensitivity of 

the analysis. Consequently, sensitivity and accuracy of 

hyperspectral imaging will need to be tested in these 

conditions.

�e qPCR results showed a need to establish thresh-

olds for fungal biomass in visually healthy bunches and 

the same approach applies for hyperspectral imaging of 

those bunches. In the future, fungal biomass thresholds 

might be tentatively proposed for white and black vari-

eties from different regions and validated through the 

perception of specific sensory characters in the resulting 

wine [32, 52].

Conclusions
In this paper an approach to fast image segmentation has 

been adapted for segmentation of hyperspectral image 

data. Especially for automated plant phenotyping facili-

ties, fast and robust algorithms are crucial for the analysis 

of imaging data from high-throughput experiments. Dif-

ferent dimensionality reduction methods have been tested 

to study the performance of spatial-spectral segmentation 

using Random Forest classifiers. �e experimental results 

for the estimation of various powdery mildew infection 

levels on intact grape bunches show that the proposed 

spatial-spectral segmentation approach outperforms tra-

ditional pixel-wise classification of normalized spectral 

data by Random Forests. �e use of a multiple classifier 

system, namely Random Forest, enables easy improve-

ments in classification accuracy by increasing the ensem-

ble size, fast feature extraction by calculating only the 

required features, as well as efficiency by parallel com-

putation of the trees within the ensemble. Altogether, 

the application of the proposed image processing work-

flow has the potential to improve speed and accuracy in 

disease detection and monitoring in plant phenotyping 

applications. Also, it is applicable to all scales and, thus, 

will broaden the scope for the application of hyperspectral 

imaging technologies for the assessment of diseases, plant 

vitality, stress parameters, and nutrition status.
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