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White blood cells (leukocytes) are a very important component of the blood that forms the immune system, which is responsible
for fighting foreign elements. ,e five types of white blood cells include neutrophils, eosinophils, lymphocytes, monocytes, and
basophils, where each type constitutes a different proportion and performs specific functions. Being able to classify and, therefore,
count these different constituents is critical for assessing the health of patients and infection risks. Generally, laboratory ex-
periments are used for determining the type of a white blood cell. ,e staining process and manual evaluation of acquired images
under the microscope are tedious and subject to human errors. Moreover, a major challenge is the unavailability of training data
that cover the morphological variations of white blood cells so that trained classifiers can generalize well. As such, this paper
investigates image transformation operations and generative adversarial networks (GAN) for data augmentation and state-of-the-
art deep neural networks (i.e., VGG-16, ResNet, and DenseNet) for the classification of white blood cells into the five types.
Furthermore, we explore initializing the DNNs’ weights randomly or using weights pretrained on the CIFAR-100 dataset. In
contrast to other works that require advanced image preprocessing and manual feature extraction before classification, our
method works directly with the acquired images. ,e results of extensive experiments show that the proposed method can
successfully classify white blood cells. ,e best DNNmodel, DenseNet-169, yields a validation accuracy of 98.8%. Particularly, we
find that the proposed approach outperforms other methods that rely on sophisticated image processing and manual
feature engineering.

1. Introduction

Blood is vital for life, and many functionalities of the body
organs rely on healthy blood.,e healthiness of blood can be
assessed by analysing the blood constituents (i.e., cells).
Generally, the blood contains cells and a liquid portion
known as the plasma [1]. ,e blood cells constitute about
45% of the blood volume, while the plasma constitutes the
remaining 55% [2, 3]. ,e blood cells are of three types that
include the red blood cells (erythrocytes), white blood cells
(leukocytes), and Platelets (thrombocytes) [4]. ,e red blood
cells make up 40–45% of the blood, while the white blood
cells make up about 1% of the blood [3, 5, 6]. ,e three
different blood cells have different functions for the body
organs. However, the white blood cells are produced in the

bone marrow and are a very important constituent of the
blood. White blood cells are primarily responsible for the
body’s immune system that serves as a defence mechanism
against foreign elements in the body, especially disease-
causing elements.

White blood cells are of five different types, which
include neutrophils, eosinophils, lymphocytes, monocytes,
and basophils; see Figure 1. ,ese blood cells can be further
divided into two broad groups, granulocytes and agranu-
locytes (nongranulocytes) [7]; see Figure 2. Granulocytes
are the white blood cell types that possess visible granules,
while agranulocytes are the types with no visible granules
when observed under a microscope [7]. Neutrophils, eo-
sinophils, and basophils belong to the granulocytes class,
while monocytes and lymphocytes belong to the
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agranulocytes class. We note that the percentages of
neutrophils, eosinophils, lymphocytes, monocytes. and
basophils are 40–60%, 1–4%, 20–40%, 2–8%, and 0.5–1% in
the blood, respectively [5]; see Figure 3. ,e five types of
white blood cells have different functionalities and reflect
different conditions about the health of patients (subjects).
As such, identifying the different white blood cells is often
of interest. Particularly, correct identification results in the
possibility of counting the different white blood cells to
assess their presence in the correct or expected proportions.
Furthermore, different white blood cells upon identifica-
tion can be isolated for detailed examination for abnor-
malities. ,e quantitative and qualitative examination of
white blood cells reveal a lot about the health of patients.
For example, it is possible to assess patients for health
conditions including leukaemia, immune system disorders,
and cancerous cells [8]. Conventionally, the identification
requires a laboratory setting where acquired images of
blood cells are stained using special chemicals (i.e., re-
agents) and, afterwards, examined under a microscope by a
specialist. However, this process is delicate and requires
that there is no (or minimal) examination error by the
human specialist. Unfortunately, specialists can often be-
come fatigued after several hours of examination and make
inaccurate identification of the different white blood cells.

,is paper investigates the automatic classification of white
blood cells using data augmentation techniques andDNNs that
are fast, accurate, and cost-effective as an alternative approach
to the laboratory setting. ,e data augmentation techniques
employed are image transformation operations and GAN
image generation. Namely, we explore the state-of-art DNNs
such as VGG [9], ResNet [10], and DenseNet [11] that are
pretrained on the CIFAR-100 dataset [12] for classifying white
blood cells into one of the following: neutrophils, eosinophils,
lymphocytes, monocytes, or basophils.

A major advantage over existing methods is that our
proposal requires no specialized image preprocessing and
feature engineering for robust classification. Our main
contributions in this paper are as follows.

(1) Propose DNNs that are trainable end-to-end for the
automatic classification of white blood cells into the
five different types of white blood cells, which include
neutrophils, eosinophils, lymphocytes, monocytes, or
basophils.

(2) Explore several DNN architectures, including those
initialized using pretrained weights to boost classifi-
cation performance on such an importantmedical task.

(3) Investigate data augmentation techniques such as
transformation operations and GAN-generated in-
stances to further improve the classification per-
formance of the DNNs.

(4) Demonstrate that the proposed system directly works
well with acquired images and outperforms the
methods that employ painstaking image preprocessing
and feature engineering. ,e experimental results re-
ported reflect the state-of-the-art results.

,e remaining sections in this paper are divided as
follows. Related works are discussed in Section 2. Section 3
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Figure 1: ,e five types of white blood cells.
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Figure 3: Proportion of the five different types of white blood cells
in the blood [5].
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presents the proposed framework for the classification of
white blood cells. Extensive experiments using different
model architectures and training settings, along with the
discussion of results, are given in Section 4. ,e method and
findings in this paper are summarized as the conclusion in
Section 5.

2. Related Works

,e classification of blood cells has been a subject of interest in
the last few decades. ,is interest seems to have been con-
siderably influenced by the general growth of machine and
deep learning for unconventional tasks such as classifying chest
X-rays [13–15], red blood cell [16, 17], segmenting medical
images [18–21], breast cancer determination [22, 23], and
Alzheimer’s disease [24, 25]. For instance, the work [26]
proposed the identification of the red blood cell, white blood
cell, and platelet using the popular YOLO object detection
algorithm and deep neural networks for classification with
interesting results.

,e automatic classification of blood cells is commonly
achieved using advanced image preprocessing and feature
extraction. In [27], image preprocessing techniques such as
contrast stretching, opening, edge detection, dilation, filling,
cropping, and minimum intensity homogenization were ap-
plied as preprocessing steps for images of white blood cells.

Subsequently, the work [27] extracted features including
the area, perimeter, convex area, solidity, major axis length,
orientation, filled area, eccentricity, rectangularity, circu-
larity, the number of lobes, and mean gray-level intensity of
the cytoplasm; a total of 23 features were extracted for
describing the different cells. Afterwards, feature selection
was carried out to reduce the number of extracted features
from 23 to 3. Finally, classifiers such as k-nearest neigh-
bours, a feedforward neural network, a radial basis function
neural network, and a parallel ensemble of feed forward
neural networks were trained for discriminating the dif-
ferent white blood cell types. In another work [28], the
acquired grayscale images of white blood cells are pre-
processed using median filtering, cell localization via
thresholding operations, and edge detection. From the
preprocessed white blood cells, 10 different features were
extracted for training, which resulted in a classification
accuracy of about 90%. ,e work [29] proposed the clas-
sification of white blood cells including lymphocytes,
monocytes, and neutrophils; eosinophils and basophils were
not considered. Again, [29] relied on image preprocessing

such as grayscale conversion, histogram equalization,
erosion, reconstruction, and dilation. ,e resulting images
were segmented via thresholding operations. Finally, clas-
sification was performed using 5 or 6 different features
extracted from the segmented images. Although good re-
sults were reported, the number of test samples was ex-
tremely small. ,ere were 34, 12, and 29 test samples
for lymphocytes, monocytes, and neutrophils, respectively.

In [7], the acquired digitized scans of white blood cells
were segmented using the active contour technique. Some
features were extracted from the segmented images and then
classified using the Näıve Bayes model with Laplacian
correction. ,e work [31] employed k-means clustering for
segmenting white blood cells from the acquired images and
performed feature extraction, feature selection via Principal
Component Analysis (PCA), and classification using an
artificial neural network. In [32], the Fast Relevance Vector
Machine (F-RVM) was proposed for the segmentation and
classification of white blood cells. ,ey posit that F-RVM is
easier to train and requires a small time for inference than
the Extreme Learning Machine (ELM) and standard RVM.
Otsu’s thresholding method was used in [30] for segmenting
white blood cells, after which mathematical morphological
operations were applied to eliminate all elements that have
no resemblance with white blood cells. Following the seg-
mentation results, features were extracted from the cell
nucleus for training a Näıve Bayes classifier. Although
promising results were reported in the aforementioned
related works, a major problem is the extremely small size of
the dataset used for training and testing. Many of the works
relied on 20–40 images per class for training and testing the
proposed models. In real-life, the diversity of the acquired
images of white blood cells can render models trained on
small datasets ineffective.

,e comparison of the approach proposed in this paper
with earlier works is summarized in Table 1.

3. Proposed Classification of White Blood Cells

In this section, we present the proposed framework for the
classification of white blood cells into the five different
classes. ,e proposed framework is shown in Figure 4. ,e
main components of the proposed system include (i) white
blood cell segmentation and resizing, (ii) the data aug-
mentation process via transformation operations or GAN
generation, and (iii) DNN training. ,ese components are
discussed in succession as follows.

Table 1: Comparison of the proposed approach with other works.

Method Description of the approach

(Bikhet et al.) [28] Image preprocessing, feature extraction, and classification
(Piuri and Scotti) [27] Features extracted, feature selection, and classification
(Hiremath et al.) [29] Advanced image processing, feature extraction, and classification
(Mathur et al.) [7] Image processing, feature extraction, and classification
(Gautam et al.) [30] Feature extraction and Naı̈ve Bayes classifier
(Rawat et al.) [31] Feature extraction and selection via PCA and classification
(Ours—GAN and
DCNN)

No image processing. Automatic feature extraction. Data augmentation and classification via GAN and DNN,
respectively
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Figure 4: Proposed framework for the improved classification of the white blood cell type. Training path 1: GAN data augmentation flow for
training a DNN classifier. Training path 2: transformation operations data augmentation flow for training a DNN classifier.
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Figure 5: Segmentation of white blood cells. (a): original images of different blood cells. (b): segmentation masks for the white blood cells.
(c): segmented white blood cells from the original images.
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3.1. White Blood Cell Segmentation. ,e LISC blood cells
dataset [33] is used in this paper. ,e original images contain
white blood cells along with other background elements that
are irrelevant for classifying the different types of white blood
cells. ,e irrelevant background elements occupy a large
portion of the images (i.e., Figure 1), and thus, the images for
training the DNN classifiers have low signal to noise ratios that
can negatively affect the classification performance.

Consequently, we segment the portion of the images con-
taining thewhite blood cells using themasks given in the dataset;
the bounding box coordinates that capture the nonzero pixels in
the given masks are used to crop out (i.e., segment) the white
blood cells in the images. Lastly, the segmented white blood cells
are resized to fit as the input of the constructed DNN models.
Samples of the white blood cells and their corresponding masks
are shown in Figure 5.

3.2. Data Augmentation to Improve the DNN Classification
Performance. A major challenge for developing accurate
classification systems for white blood cells is insufficient data
for training; data instances that cover the morphological
variations of the different cells are usually unavailable. Small
number of data instances from a class typically creates class
imbalance that biases learning; models learned from imbal-
anced data typically perform poorly during testing [34]. ,e
following sections discuss the different approaches that are
explored for generating additional data, which can be used to
improve the classification accuracy of the DNN classifiers.

3.2.1. Additional Data via Data Transformation Operations.
Herein, image transformation operations are employed for
generating additional data instances from the original data.
Specifically, the image transformation operations applied
include random rotations in the angle range of 0–360°,
random shearing in the angle range of 0–20° counter-
clockwise, random horizontal flips, and random height and
width shift of up to 20% of the image height and width. ,e
aforementioned transformation operations are applied to
generate the desired number of data instances.

3.2.2. Additional Data Using the Generative Adversarial
Network (GAN). ,e GAN is a generative model that can be
used to generate novel data points from a distribution that is
similar to the training data.,eGAN is essentially based on the
min-max game theory [35], where the discriminator and
generator work in opposition to outperform each other. ,e
generator is tasked to generate fake (i.e., synthetic) novel data
instances that look real, while the discriminator works to
identify the fake instances; see Figure 6. ,e detailed operation
and training objective of the GAN are in [35, 36].

,e aim is that the generator via this game learns to generate
data instances that are similar to the real data instances. As such,
we propose to generate novel data points by training a GAN on
the original data. ,e data points generated from the trained
GAN are different instances of the original data instances and
can indeed contribute to learning features that generalize to
unseen data instances during testing. Specifically, we consider

the conventional GAN [35] for generating novel data points as
addition data. ,e training details of the GAN are given in
Section 4.2.1.

3.2.3. Additional Data Using Both Data Transformation
Operations and a Trained GAN. For this approach of
generating additional data for training, the data instances
obtained from transformation operations are combined with
the novel instances generated from the trained GAN. ,ese
new data are then used for training the different DNN
models. Specifically, we are interested in observing if such
data combination can improve the performance of the
trained DNN models.

3.3.DeepNeuralNetworks forWhiteBloodCellsClassification.
For the classifier, different state-of-the-art DNNs including
VGG, ResNet, and DenseNet are trained on the prepared
datasets. Figures 7–9 show the basic model architecture of
the VGG-19, ResNet-18, and DenseNet, respectively. Note
that the actual number of layers in the different models can
vary.,eVGGmodel uses a single path for information flow
from the input layer to the output layer.,e ResNet uses skip
connections that permits the additional of the outputs from
lower layers to the outputs of higher layers to improve model
training; see [10] for details on the operation of the ResNet.
,e DenseNet employs skip connections that permit the
concatenation of the outputs of lower layers to the outputs of
higher layers. For the DenseNet, the output of every layer is
concatenated to the outputs of all the preceding layers in the
model; the detailed operation of the DenseNet is in [11].
Furthermore, we consider three major training settings that
can impact the performance of the DNNs, especially in the
absence of abundant training data. ,ese settings are dis-
cussed as follows.

3.3.1. Random Initialization of the DNN. ,e DNN weights
are initialized randomly and trained from scratch using
popular initialization schemes such as [38, 39]. For random
initialization, the objective is to break the symmetry in the
weights space at the start of training such that the DNN can
explore various parts of the solution space. ,at is, random
initialization discourages the DNN optimization from being
stuck in a particular basin of attraction, which may be quite
suboptimal in the solution space.

3.3.2. DNNWeights Initialization fromWeights Trained on a
Large Dataset. DNNweights are initialized from the weights
trained on the CIFAR-100 classification dataset, which
contain 50,000 natural training images that belong to 100
different classes [12]. Initializing the weights of DNNs from
weights trained on large datasets has been shown to improve
model generalization, especially when the available training
data are not abundant [40, 41].,emain concept behind this
success is that DNNs typically contain several millions of
parameters and, thus, have the propensity to overfit in the
absence of large training data.
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Interestingly, it is known that the weights in the early layers
of DNNs trained on very large datasets resemble generic features
and hence, can be employed for feature extraction in other tasks
[42]. Generally, after initializing the DNN using the weights
trained on the CIFAR-100 dataset, the specific layer weights to
be updated (i.e., trained) using the current dataset are heuris-
tically determined via experiments; this process is termed “fine-
tuning” [43]. Common approaches for fine-tuningDNNs are (i)
updating the weights of all layers and (ii) updating the weights of
specific layers and freezing (fixing) the weights of other layers.
,e weights of the softmax (i.e., output) layer is usually ini-
tialized randomly and trained from scratch. By experimenting
with the different aforementioned methods of initializing the
weights of the DNNs, we can observe the advantage of one
method over the other based on the performance.

3.3.3. Deep Convolutional Neural Network Depth. ,e depth
(i.e., the number of parameterized layers) of DNNs is a
critical factor for their performance [44]; deeper DNNs

usually generalize better than shallow ones [10, 44, 45]. As
such, given the aforementioned DNNs that are considered in
this paper, we observe the impact of depth on their per-
formance for the classification of the different types of white
blood cells. For the VGGmodel, architectures with 16 and 19
layers are considered; for the ResNet, architectures with 18
and 50 layers are considered; for the DenseNet, architectures
with 121 and 169 layers are considered.

4. Experiments

In this section, the details of the dataset and experiments
performed are presented, along with the specific settings, re-
sults and discussion. All experiments are performed using a
workstation with a 32GB of Random Access Memory (RAM),
an Intel core-i7 processor, Nvidia GTX1080Ti GPU (Graphics
Processing Unit), and running Windows 10 operating system.
All implementations employ the Keras deep learning frame-
work with Tensorflow backend.
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Figure 7: VGG-19 model architecture [37].
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4.1. Original Dataset. For demonstrating that the proposed
framework improves the classification ofwhite blood cells, we use
the LISC dataset [33], which covers all the five different types of
white blood cells. Altogether, the dataset has 242 data instances.
,e number of data instances per class in the original dataset is
given in Table 2.

4.2. Training Settings for Models. ,is section presents the
details of the different training settings and data augmentation
schemes. For all the given tables, “instances” is abbreviated as
“inst.” for brevity.

4.2.1. GAN Training Settings. ,e data given in Table 2 are
used to train a GANwith two convolutional layers and one fully
connected layer for both the generative and discriminative

networks. Following the work [35], the GAN is trained for 60
epochs using a learning rate of 0.01 and amomentum rate of 0.5.

4.2.2. DNN Classifier Training and Evaluation Settings.
,e different DNNs are trained using the minibatch gradient
descent method. A batch size of 128 is used for all the
models. All the DNN models with randomly initialized
weights are trained using an initial learning rate of 0.1 for
300 epochs. All the DNN models initialized using the
weights trained on the CIFAR-100 dataset [12] are trained
using an initial learning rate of 0.005 for 150 epochs. A
momentum rate of 0.9 is used for all models, and the initial
learning rate is reduced by a factor of 0.1 every time the
training loss did not reduce by 0.001 for 5 consecutive
epochs. A weight decay value of 1× 10−4 is used for regu-
larizing all the DNN models. ,e segmented white blood
cells images are resized to 32× 32 pixels for input to all the
DNN models.

For evaluating the performance of the trained DNNs,
we employ a 10-fold cross-validation scheme, given the
size of the dataset. Essentially, we partition the data into
10 segments, train the DNN models on 9 different data
folds, and validate on the remaining data fold. ,is process is

Table 2: Original LISC dataset details.

White blood cell type Number of inst.

Neutrophils 50
Eosinophils 39
Lymphocytes 52
Monocytes 48
Basophils 53

Input
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Figure 9: DenseNet model architecture [11].
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repeated 10 times using different 9 data folds for training and 1
different data fold for testing. ,e average validation accuracy
over the 10 different data folds is reported.

4.3. Data Augmentation Methods

4.3.1. Transformation Operations for Data Augmentation.
Herein, we apply the aforementioned data transformation
operations given in Section 3.2.1 to the data instances in the
different classes to augment the original dataset. We gen-
erate three new datasets referred to as Trans_aug1,
Trans_aug2, and Trans_aug3 that now have 100 data in-
stances/class, 150 data instances/class, and 200 data in-
stances/class, respectively. Each of the aforementioned
different datasets is used to train and validate the different
DNN models.

4.3.2. GAN Method for Data Augmentation. From the
trained GAN in Section 3.2.2 and Section 4.2.1, we generate
three different datasets referred to as GAN_aug1, GAN_aug2,
and GAN_aug3 that have 100 data instances/class, 150 data
instances/class, and 200 data instances/class, respectively.
Some of the data instances generated from the trained GAN
are shown in Figure 10.

4.4. Results and Discussion. ,e results of the DNN models
trained and tested on segmented white blood cells are in
given in Tables 3–10. Table 3 shows the results of the DNNs
trained on the original data (i.e., without data augmentation)
using randomly initialized weights. Table 4 shows results
similar to Table 3, except that the DNN weights were pre-
trained on the CIFAR-100 dataset. Table 5 shows the results
of the DNN models that were initialized randomly and
trained using Trans_aug1, Trans_aug2, and Trans_aug3.

Table 6 reports the results of the DNN models that were
initialized with the pretrained weights using Trans_aug1,
Trans_aug2, and Trans_aug3 datasets. In Table 7, the results
of the DNN models initialized with random weights and
trained using GAN_aug1, GAN_aug2, and GAN_aug3
datasets are given. Table 8 gives the results of the DNN
models trained with pretrained weights on GAN_aug1,
GAN_aug2, and GAN_aug3 datasets.

We perform additional experiments by combining the data
instances obtained from translation operations and the trained
GAN. As such, we obtain three different datasets referred to
as Trans_aug1+GAN_aug1, Trans_aug2+GAN_aug2, and
Trans_aug3+GAN_aug3 that have 200 data instances/class,
400 data instances/class, and 600 data instances/class, re-
spectively. In Table 9, the results of the DNNmodels initialized
with random weights on Trans_aug1+GAN_aug1, Trans_-
aug2+GAN_aug2, and Trans_aug3+GAN_aug3 datasets are
reported. ,e results of the DNN models initialized with the
pretrained weights and trained on Trans_aug1+GAN_aug1,
Trans_aug2+GAN_aug2, and Trans_aug3+GAN_aug3 are
given in Table 10. ,e overall observations based on experi-
mental results are as follows.

Table 4: 10-fold cross-validation accuracy of the DNN models
initialized using pretrained weights.

Model Original data (no aug.) (%)

VGG-16 90.9
VGG-19 92.4
ResNet-18 91.5
ResNet-50 93.3
DenseNet-121 94.5
DenseNet-169 95.2

Table 3: 10-fold cross-validation accuracy of the DNN models
initialized using random weights.

Model Original data (no aug.) (%)

VGG-16 90.6
VGG-19 91.8
ResNet-18 91.1
ResNet-50 92.7
DenseNet-121 93.9
DenseNet-169 94.4

NeutrophilBasophil MonocyteLymphocyteEosinophil

Figure 10: Samples of data instances generated from the trained GAN for data augmentation.
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We observe that the DNN models that employed pre-
trained weights consistently outperform the same DNN
models trained on a similar dataset, but with randomly
initialized weights.

It is seen fromTables 3 to 10 that the ResNet and DenseNet
models, which have several parameterized layers and use skip
connections, outperform the VGG models. Furthermore, it is
observed that data augmentation improves the performance of

Table 9: 10-fold cross-validation accuracy of the DNN models initialized using random weights.

Model
Tran_aug1 +GAN_aug1 (200 inst./

class) (%)
Tran_aug2 +GAN_aug2 (300 inst./

class) (%)
Tran_aug3 +GAN_aug3 (400 inst./

class) (%)

VGG-16 92.5 93.2 93.9
VGG-19 93.3 93.7 94.4
ResNet-18 93.2 94.5 95.1
ResNet-50 94.2 95.2 95.6
DenseNet-
121

95.5 96.1 97.3

DenseNet-
169

95.9 96.3 97.3

Table 8: 10-fold cross-validation accuracy of the DNN models initialized using pretrained weights.

Model GAN_aug1 (100 inst./class) (%) GAN_aug2 (150 inst./class) (%) GAN_aug3 (200 inst./class) (%)

VGG-16 92.3 93.0 94.1
VGG-19 93.3 93.7 95.0
ResNet-18 92.9 93.7 94.2
ResNet-50 94.7 95.5 95.8
DenseNet-121 95.4 96.2 97.2
DenseNet-169 96.1 96.9 97.2

Table 7: 10-fold cross-validation accuracy of the DNN models initialized using random weights.

Model GAN_aug1 (100 inst./class) (%) GAN_aug2 (150 inst./class) (%) GAN_aug3 (200 inst./class) (%)

VGG-16 91.9 92.6 93.4
VGG-19 92.6 93.1 93.5
ResNet-18 92.7 94.0 94.6
ResNet-50 93.8 94.5 94.9
DenseNet-121 95.0 95.6 95.7
DenseNet-169 95.3 95.4 95.8

Table 6: 10-fold cross-validation accuracy of the DNN models initialized using pretrained weights.

Model Trans_aug1 (100 inst./class) (%) Trans_aug2 (150 inst./class) (%) Trans_aug3 (200 inst./class) (%)

VGG-16 91.4 91.8 92.5
VGG-19 92.9 93.6 94.4
ResNet-18 91.2 92.2 92.8
ResNet-50 94.1 94.8 95.5
DenseNet-121 95.2 95.7 96.4
DenseNet-169 95.8 96.4 96.9

Table 5: 10-fold cross-validation accuracy of the DNN models initialized using random weights.

Model Trans_aug1 (100 inst./class) (%) Trans_aug2 (150 inst./class) (%) Trans_aug3 (200 inst./class) (%)

VGG-16 91.5 92.1 92.9
VGG-19 92.3 92.8 93.4
ResNet-18 91.4 92.6 93.2
ResNet-50 93.5 94.0 94.7
DenseNet-121 94.4 94.8 95.4
DenseNet-169 94.9 95.4 95.8
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all themodels; compare Table 3 with Tables 4 to 10. Specifically,
using similar number of data instances/class, the augmented
datasets obtained from the trained GAN lead to better DNN
performances as compared to the augmented datasets obtained
from image transformation operations. Interestingly,
combining the data instances obtained from the trained GAN
with the data instances obtained from the image transfor-
mation operations results in further improvement in results as

compared to using the augmented data obtained from either
the trained GAN or the image transformation operations.

From the computational perspective, Figure 11 shows
the time required by the different DNN models to perform
inference using the validation data from the 10-fold cross-
validation training scheme. It is seen that the best models,
ResNet-50, DenseNet-121, and DenseNet-169, incur the
largest inference times.,is is not surprising, given that they

Table 11: 10-fold cross-validation results comparison with other works.

Model Train: test setting Dataset Acc. (%)

ResNet-50 (Tran_aug3 +GAN_aug3) 10-Fold CV LISC 97.4
DenseNet-121 (Tran_aug3 +GAN_aug3) 10-Fold CV LISC 98.3
DenseNet-169 (Tran_aug3 +GAN_aug3) 10-Fold CV LISC 98.8
Linear discriminant analysis (LDA) [46] 10-Fold CV Private 93.9
Neural network + PCA [47] 75%: 25% Kanbilim 95.0
W-net [48] 10-Fold CV Private 97.0
W-net [48] 10-Fold CV LISC+ private 96.0
Linear SVM [49] 10-Fold CV CellaVision 85.0
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Figure 11: Time for the DNN models to perform inference on the validation data. ,e original data without data augmentation given in
Table 2 is used for this experiment.

Table 10: 10-fold cross-validation accuracy of the DNN models initialized using pretrained weights.

Model
Tran_aug1 +GAN_aug1 (200 inst./

class) (%)
Tran_aug2 +GAN_aug2 (300 inst./

class) (%)
Tran_aug3 +GAN_aug3 (400 inst./

class) (%)

VGG-16 94.3 94.9 95.7
VGG-19 94.8 95.4 95.9
ResNet-18 94.1 95.2 95.4
ResNet-50 95.8 96.7 97.4
DenseNet-
121

96.3 97.4 98.3

DenseNet-
169

96.9 98.1 98.8
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have several parameterized layers and, thus, require more
time for computing their final outputs.

Table 11 reports the results comparison with earlier
works; the best results in this paper are given in bold.
Particularly, we consider, for comparison, earlier works that
perform the classification of the 5 different types of white
blood cells. We note that the DNN models proposed in this
paper outperform the models from earlier works, which
employed 10-fold CV.

5. Conclusions

,e analysis of the constituents of the white blood cells of
patients can reflect their health conditions. ,e different
constituents are normally present in different proportions and
play different roles for the well-being of patients. However, the
laboratory preparation and manual inspection of microscopic
images of white blood cells can be too delicate and erroneous.
Subsequently, inaccurate assessment of patients’ conditions can
occur. In using machine learning models for classification,
insufficient training data to cover the morphological variations
of the different white blood cells is a major challenge. As such,
this paper investigates data augmentation techniques and the
deep neural network for the automatic classification of white
blood cells into the five types that include neutrophils,
eosinophils, lymphocytes, monocytes, or basophils. In contrast
to earlier methods that rely on elaborate image preprocessing
and manual feature engineering, the proposed approach re-
quires no such preprocessing and feature handcrafting stage for
classification. On top of this, the proposedmethod achieves the
state-of-the-art results.
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