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Abstract

Consensus is one of the most thoroughly studied problems in distributed computing, yet
there are still complexity gaps that have not been bridged for decades. In particular, in the
classical message-passing setting with processes’ crashes, since the seminal works of Bar-Joseph
and Ben-Or [1998] [8] and Aspnes and Waarts [1996, 1998] [6, 5] in the previous century, there
is still a fundamental unresolved question about communication complexity of fast randomized
Consensus against a (strong) adaptive adversary crashing processes arbitrarily online. The best

known upper bound on the number of communication bits is Θ( n3/2
√

logn
) per process, while the

best lower bound is Ω(1). This is in contrast to randomized Consensus against a (weak) oblivious
adversary, for which time-almost-optimal algorithms guarantee amortized O(1) communication
bits per process [21]. We design an algorithm against adaptive adversary that reduces the
communication gap by nearly linear factor to O(

√
n · polylog n) bits per process, while keeping

almost-optimal (up to factor O(log3 n)) time complexity O(
√
n · log5/2 n).

More surprisingly, we show this complexity indeed can be lowered further, but at the expense
of increasing time complexity, i.e., there is a trade-off between communication complexity and
time complexity. More specifically, our main Consensus algorithm allows to reduce communica-
tion complexity per process to any value from polylog n to O(

√
n ·polylog n), as long as Time ×

Communication = O(n · polylog n). Similarly, reducing time complexity requires more random
bits per process, i.e., Time × Randomness = O(n · polylog n).

Our parameterized consensus solutions are based on a few newly developed paradigms and
algorithms for crash-resilient computing, interesting on their own. The first one, called a Fuzzy
Counting, provides for each process a number which is in-between the numbers of alive processes
at the end and in the beginning of the counting. Our deterministic Fuzzy Counting algorithm
works inO(log3 n) rounds and uses only O(polylog n) amortized communication bits per process,
unlike previous solutions to counting that required Ω(n) bits. This improvement is possible due
to a new Fault-tolerant Gossip solution with O(log3 n) rounds using only O(|R| · polylog n)
communication bits per process, where |R| is the length of the rumor binary representation. It
exploits distributed fault-tolerant divide-and-conquer idea, in which processes run a Bipartite
Gossip algorithm for a considered partition of processes. To avoid passing many long messages,
processes use a family of small-degree compact expanders for local signaling to their overlay
neighbors if they are in a compact (large and well-connected) party, and switch to a denser
overlay graph whenever local signalling in the current one is failed. Last but not least, all
algorithms in this paper can be implemented in other distributed models such as the congest
model in which messages are of length O(log n).
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1 Introduction

Fault-tolerant Consensus – when a number of autonomous processes want to agree on a common
value among the initial ones, despite of failures of processes or communication medium – is among
foundation problems in distributed computing. Since its introduction by Pease, Shostak and Lam-
port [29], a large number of algorithms and impossibility results have been developed and analyzed,
applied to solve other problems in distributed computing and systems, and led to a discovery of a
number of new important problems and solutions, c.f., [7]. Despite this persistent effort, we are still
far from obtaining even asymptotically optimal solutions in most of the classical distributed models.

In particular, in the classical message-passing setting with processes’ crashes, since the seminal
works of Bar-Joseph and Ben-Or [8] and Aspnes and Waarts [6, 5] in the previous century, there is
still a fundamental unresolved question about communication complexity of randomized Consensus.
More precisely, in this model, n processes communicate and compute in synchronous rounds, by
sending/receiving messages to/from a subset of processes and performing local computation. Each
process knows set P of IDs of all n processes. Up to f < n processes may crash accidentally
during the computation, which is typically modeled by an abstract adversary that selects which
processes to crash and when, and additionally – which messages sent by the crashed processes could
reach successfully their destinations. An execution of an algorithm against an adversary could be
seen as a game, in which the algorithm wants to minimize its complexity measures (such as time
and communication bits) while the adversary aims at violating this goal by crashing participating
processes. The classical distributed computing focuses on two main types of the adversary: adaptive
and oblivious. Both of them know the algorithm in advance, however the former is stronger as it
can observe the run of the algorithm and decide on crashes online, while the latter has to fix the
schedule of crashes in advance (before the algorithm starts its run). Thus, these adversaries have
different power against randomized algorithms, but same against deterministic ones.

One of the perturbations caused by crashes is that they substantially delay reaching consensus:
no deterministic algorithm can reach consensus in all admissible executions within f rounds, as
proved by Fisher and Lynch [17], and no randomized solution can do it in o(

√

n/ log n) expected
number of rounds against an adaptive adversary, as proved by Bar-Joseph and Ben-Or [8]. Both
these results have been proven (asymptotically) optimal. The situation gets more complicated
if one seeks time-and-communication optimal solutions. The only existing lower bound requires
Ω(n) messages to be sent by any algorithm even in some failure-free executions, which gives Ω(1)
bits per process [4].∗ There exists a deterministic algorithm with a polylogarithmic amortized
number of communication bits [13], however deterministic solutions are at least linearly slow, as
mentioned above [17]. On the other hand, randomized algorithms running against weak adversaries
are both fast and amortized-communication-efficient, both formulas being O(log n) or better, c.f.,
Gilbert and Kowalski [21]. At the same time, the best randomized solutions against an adaptive
adversary considered in this work requires time Θ(

√

n/ log n) but large amortized communication
Θ(n ·

√

n/ log n). In this paper, we show a parameterized algorithm not only improves amortized
communication by nearly a linear factor, but also suggests surprisingly that there is no time-and-
communication optimal algorithm in this setting.

Consensus problem. Consensus is about making a common decision on some of the processes’
input values by every non-crashed process, and is specified by the three requirements:

Validity: Only a value among the initial ones may be decided upon.

∗In this paper we sometimes re-state communication complexity results in terms of the formula amortized per

process, which is the total communication complexity divided by n.
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Agreement: No two processes decide on different values.

Termination: Each process eventually decides on some value, unless it crashes.

All the above requirements must hold with probability 1. We focus on binary consensus, in which
initial values are in {0, 1}.

2 Our Results and New Tools

Our main result is a new consensus algorithm ParameterizedConsensus∗, parameterized by x,
that achieves any asymptotic time complexity between Õ(

√
n)† and Õ(n), while preserving the con-

sensus complexity equation: Time × Amortized Communication = O(n polylog n). This is also the
first algorithm that makes a smooth transition between a class of algorithms with the optimal run-
ning time (c.f., Bar-Joseph’s and Ben-Or’s [8] randomized algorithm that works in Õ(

√
n) rounds)

and the class of algorithms with amortized polylogarithmic communication bit complexity (c.f.,
Chlebus, Kowalski and Strojnowski [13] deterministic algorithm using Õ(1) communication bits).

Theorem 1 (Section 5.4). For any x ∈ [1, n] and the number of crashes f < n, Parameterized-
Consensus∗ solves Consensus with probability 1, in Õ(

√
nx) time and Õ(

√

n
x ) amortized bit com-

munication complexity, whp, using Õ(
√

n
x ) random bits per process.

In this section we only give an overview of the most novel and challenging part of Parameterized-
Consensus∗, called ParameterizedConsensus, which solved Consensus if the number of failures
f < n

10 . Its generalization to ParameterizedConsensus∗ is done in Section 5.4, by exploiting
the concept of epochs in a similar way to [8, 13]. In short, the first and main epoch (in our case,
ParameterizedConsensus followed by BiasedConsensus described in Section 2.1) is repeated
O(log n) times, each time adjusting expansion/density/probability parameters by factor equal to 9

10 .
The complexities of the resulting algorithm are multiplied by logarithmic factor.

High-level idea of ParameterizedConsensus. In ParameterizedConsensus, processes are
clustered into x disjoint groups, called super-processes SP1, . . . , SPx, of

n
x processes each. Each

process, in a local computation, initiates its candidate value to the initial value, pre-computes
the super-process it belongs to, as well as two expander-like overlay graphs which are later use to
communicate with other processes.

Degree δ of both overlay graphs is O(log n), and correspondingly the edge density, expansion
and compactness are selected, c.f., Sections 4.1 and 5. One overlay graph, denoted H, is spanned on
the set of x super-processes, while copies of the other overlay graph are spanned on the members
of each pair of super-processes SPi, SPj connected by an edge in H (we denote such copy by
SE(SPi, SPj)).

ParameterizedConsensus is split into three phases, c.f., Algorithm 7 in Section 5. Each
phase uses some of the newly developed tools, described later in this section: α-BiasedConsensus

and Gossip. Processes keep modifying their candidate values, starting from the initial values,
through different interactions.

Using the tools. α-BiasedConsensus is used for maintaining the same candidate value within
each super-process, biasing it towards 0 if less than a certain fraction α of members prefer 1; see
description in Section 2.1 and 6. Theorem 2 proves that α-BiasedConsensus works correctly
in Õ(

√

n/x) time and communication bits per process. Gossip, on the other hand, is used to
propagate values between all or a specified group of processes, see description in Section 2.2 and 7.2.

†We use Õ symbol to hide any polylog n factors.
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Theorem 3 guarantees that Gossip allows to exchange information between the involved up to n′

processes, where n′ ≤ n, in time O(log3 n) and using O(log6 n) communication bits per process (in
this application, we are using a constant number of rumors, encoded by constant number of bits).

In Phase 1, super-processes want to flood value 1 along an overlay graph H of super-processes,
to make sure that processes in the same connected component of H have the same candidate value
at the end of Phase 1. Here by a connected component of graph H we understand a maximum
connected sub-graph of H induced by super-processes of at least 3

4 · nx non-faulty processes; we call
such super-processes non-faulty. Recall, that the adversary can disconnect super-processes in H
by crashing some members of selected super-processes. To do so, the following is repeated x + 1
times: processes in a non-faulty super-process SPi, upon receiving value 1 from some neighboring
non-faulty super-process, make agreement (using BiasedConsensus) to set up their candidate
value to 1 and send it to all their neighboring super-processes SPj via links in overlay graphs
SE(SPi, SPj). One of the challenges that need to be overcome is inconsistency in receiving value
1 by members of the same super-process, as – due to crashes – only some of them may receive the
value while others may not. We will show that it is enough to assume threshold 2

3 in the Biased-

Consensus, which together with expansion of overlay graphs SE(SPi, SPj) and compactness of
H (existence of large sub-component with small diameter, c.f., Lemma 2) guarantee propagation of
value 1 across the whole connected component in H. It all takes (x+1) · (Õ(

√

n/x)+1) = Õ(
√
xn)

rounds and Õ(
√

n/x + log n) = Õ(
√

n/x) amortized communication per process; see Section 5.1
for details.

In Phase 2, non-faulty super-processes want to estimate the number of non-faulty super-processes
in the neighborhood of radius O(log x) in graph H. (We know from Phase 1 that whole connected
non-faulty component in H has the same candidate value.) In order to do it, they become “active”
and keep exchanging candidate value 1 with their neighboring super-processes in overlay graph
H in stages, until the number of “active” neighbors becomes less or equal to a threshold δx =
Θ(log x) < δ, in which case the super-process becomes inactive, but not more than than γx =
O(log x) stages. To assure proper message exchange between neighboring super-processes, Gossip

is employed on the union of members of every neighboring pair of super-processes. It is followed by
BiasedConsensus within each active super-process to let all its members agree if the threshold
δx on the number of active neighbors holds. Members of those super-processes who stayed active
by the end of stage γx (“survived”) conclude that there was at least a certain constant fraction
of non-faulty super-processes (each containing at least a fraction of non-faulty members) in such
neighborhood in the beginning of Phase 2, and thus they set up variable confirmed to 1 – it means
they confirmed being in sufficiently large group having the same candidate value and thus they
are entitled to decide and make the whole system to decide on their candidate value. It all takes
γx ·Õ(

√

n/x+log3 n) ≤ Õ(
√
xn) rounds and at most γx ·δ ·Õ(log6 n+

√

n/x) = Õ(
√

n/x) amortized
communication per process. See Section 5.3 for further details.

In Phase 3, we discard the partition into x super-processes. All processes want to learn if there
was a sufficiently large group confirming the same candidate value in Phase 2. To do so, they all
execute the Gossip algorithm. Processes that set up variable confirmed to 1 start the Gossip

algorithm with their rumor being their candidate value; other processes start with a null value.
Because super-processes use graph H for communication, which in particular satisfies ( x

64 ,
3
4 , δx)-

compactness property (i.e., from any subset of at least x
64 super nodes one can choose at least 3

4 of
them such that they induced a subgraph of degree at least δx), we will prove that at the end of Phase
2 at least a constant fraction of super-processes must have survived and be non-faulty (i.e., their
constant fraction of members is alive). Moreover, we show that there could be only one non-faulty
connected component of confirmed processes, by expansion of graph H that would connect two
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components of constant fraction of super-processes each (and thus would have propagated value 1
from one of them to another in Phase 1) – hence, there could be only one non-null rumor in the
Gossip, originated in a constant fraction of processes. By property of Gossip, each non-faulty
process gets the rumor and decides on it. It all takes Õ(log3 n) ≤ Õ(

√
xn) rounds and at most

Õ(log6 n) = Õ(
√

n/x) amortized communication per process; see Section 5.2 for details.

Summarizing, each part takes Õ(
√
xn) rounds and Õ(

√

n/x) amortized communication per pro-
cess. Each process uses random bits only in executions of BiasedConsensus it is involved to, each
requiring Õ(

√

n/x) random bits (at most one random bit per round). The number of such execu-
tions is O(x) in Part 1 and O(log n) in Part 2, which in total gives Õ(

√
xn) random bits per process.

2.1 α-Biased Consensus

Let us start with the formal definition of α-Biased Consensus.

Definition 1 (α-Biased Consensus). An algorithm solves α-Biased Consensus if it solves the Con-
sensus problem and additionally, the consensus value is 0 if less than α ·n initial values of processes
are 1.

In Section 6, we design an efficient α-Biased Consensus algorithm and prove the following:

Theorem 2 (Section 6). For every constant α > 0, there exists an algorithm, called α-Biased-

Consensus, that solves α-Biased Consensus problem with probability 1, in Õ(f/
√
n) rounds and

using Õ(f/
√
n) amortized communication bits whp, for any number of crashes f < n.

Note that for f = Θ(n) the algorithm works in Õ(
√
n) rounds and uses Õ(

√
n) communication

bits per process. Observe also that the above result solves classic Consensus as well, and as a
such, it is the first algorithm which improves on the amortized communication of Bar-Joseph’s and
Ben-Or’s Consensus algorithm [8], which has been known as the best result up for over 20 years.
The improvement is by a nearly linear factor Θ(n/ log13/2 n), while being only O(log3 n) away from
the absolute lower bound on time complexity (also proved in [8]).

High-level idea of α-BiasedConsensus. The improvement comes from replacing a direct com-
munication, in which originally all processes were exchanging their candidate values, by procedure
FuzzyCounting. This deterministic procedure solves Fuzzy Counting problem, i.e., each pro-
cess outputs a number between the starting and ending number of active processes, and does it
in O(log3 n) rounds and with O(log7 n) communication bits per process, see Sections 2.3, 7 and
Theorem 4.

First, processes run FuzzyCounting where the set of active processes consists of the processes
with input value 1. Then, each process calculates logical AND of the two values: its initial value
and the logical value of formula “ones ≥ α · n”, where ones is the number of 1’s output by the
FuzzyCounting algorithm. Denote by xp the output of the logical AND calculated by process p
– it becomes p’s candidate value.

Next, processes run O(f/
√
n log n) phases to update their candidate values such that eventually

every process keeps the same choice. To do so, in a round r every process p calculates, using the
FuzzyCounting algorithm, the number of processes with (current) candidate value 1 and, sepa-
rately, the number of processes with (current) candidate value 0, denoted Or

p and Zr
p respectively.

Based on these numbers, process p either sets its candidate value to 1, if the number Or
p is large

enough, or it sets it to 0, if the number Zr
p is large, or it replaces it with a random bit, if the number

of zeros and ones are close to each other.
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In the Bar-Joseph’s and Ben-Or’s algorithm the numbers Zr
p and Or

p were calculate in a single
round of all-to-all communication. However, we observe that because processes’ crashes may affect
this calculation process in an arbitrary way (the adversary could decide which messages of the
recently crashed processes to deliver and which do not, see Section 4) and also because messages are
simply zeros and ones, this step can be replaced by any solution to Fuzzy Counting. In particular,
the correctness and time complexity analysis of the original Bar-Joseph’s and Ben-Or’s algorithm
captured the case when an arbitrary subset of 0-1 messages from processes alive in the beginning
of this step and a superset of those alive at the end of the step could be received and counted –
and this can be done by our solution to the Fuzzy Counting problem.

Monte Carlo version for f = n − 1. α-BiasedConsensus as described above is a Las Vegas
algorithm with an expected time complexity τ = Õ(

√
n), as is the original Bar-Joseph’s and Ben-

Or’s algorithm on which it builds. However, we can make it Monte Carlo, which is more suitable
for application in ParameterizedConsensus, by forcing all processes to stop by time const · τ .
In such case, the worst-case running time will always be while the correctness (agreement) will hold
only whp. In order to be applied as a subroutine in the ParameterizedConsensus, we need
to add one more adjustment, so that ParameterizedConsensus could guarantee correctness
with probability 1. Mainly, processes which do not decide by time const · τ − 2 initiate a 2-round
switch of the whole system of P processes to a deterministic consensus algorithm, that finishes in
O(n) rounds and uses O(polylog n) communication bits per process, e.g., from [13]. Such switch
between two consensus algorithms has already been designed and analyzed before, c.f., [13], and
since this scenario happens only with polynomially small probability, the final time complexity of
ParameterizedConsensus will be still Õ(

√
xn) and bit complexity Õ(

√

n/x) per process, both
whp and expected.

2.2 Improved Fault-tolerant Gossip Solution

The ParameterizedConsensus algorithm relies on a new (deterministic) solution to a well-known
Fault-Tolerant Gossip problem, in which each non-faulty process has to learn initial rumors of all
other non-faulty processes (while it could or could not learn some initial rumors of processes that
crash during the execution). Many solutions to this problem have been proposed (c.f., [9, 3]), yet,
the best deterministic algorithm given in [9] solves Fault-tolerant Gossip in O(log3 n) rounds using
O(log4 n) point-to-point messages amortized per process. However, it requires Ω(n) amortized
communication bits regardless of the size of rumors. We improve this result as follows:

Theorem 3 (Section 7.2). Gossip solves deterministically the Fault-tolerant Gossip problem in
Õ(1) rounds using Õ(|R|) amortized number of communication bits, where |R| is the number of
bits needed to encode the rumors.

High-level idea of Gossip. The algorithm implements a distributed divide-and-conquer ap-
proach that utilizes the BipartiteGossip deterministic algorithm, described in Section 2.4, in the
recursive calls. Each process takes the set P, an initial rumor r and its unique name p ∈ P as an
input. The processes split themselves into two groups of size at most ⌈n/2⌉ each: the first ⌈n/2⌉
processes with the smallest names make the group P1, while the n − ⌈n/2⌉ processes with the
largest names constitute group P2. Each of those two groups of processes solves Gossip separately,
by evoking the Gossip algorithm inside the group only. The processes from each group know the
names of every other process in that group, hence the necessary conditions to execute the Gossip

recursively are satisfied. After the recursion finishes, a process in P1 stores a set of rumors R1 of
processes from its group, and respectively, a process in P2 stores a set of rumors R2 of processes

5



from its group. Then, the processes solve the Bipartite Gossip problem by executing the Bipar-

titeGossip algorithm on the partition P1, P2 and having initial rumors R1 and R2. The output
of this algorithm is the final output of the Gossip. A standard inductive analysis of recursion and
Theorem 5 stating correctness and Õ(1) time and Õ(|R|) amortized communication complexities
of BipartiteGossip imply Theorem 3, which proof is deferred to Section 7.2.

2.3 Fuzzy Counting

The abovementioned improvement of algorithm α-BiasedConsensus over [8] is possible because
of designing and employing an efficient solution to a newly introduced Fuzzy Counting problem.

Definition 2 (Fuzzy Counting). An algorithm solves Fuzzy Counting if each process returns a
number between the initial and the final number of active processes. Here, being active depends on
the goal of the counting, e.g., all non-faulty processes, processes with initial value 1, etc.

Note that the returned numbers could be different across processes. In Section 7 we design a
deterministic algorithm FuzzyCounting and prove the following:

Theorem 4 (Section 7.2). The FuzzyCounting deterministic algorithm solves the Fuzzy Count-
ing problem in Õ(1) rounds, using Õ(1) communication bits amortized per process.

High-level idea of FuzzyCounting. FuzzyCounting uses the Gossip algorithm with the
only modification that now we require the algorithm the return the values Z and O, instead of the
set of learned rumors. We apply the same divide-and-conquer approach. That is, we partition P
into groups P1 and P2 and we solve the problem within processors of this partition. Let Z1, O1
and Z2, O2 be the values returned by recursive calls on set of processes P1 and P2, respectively.
Then, we use the BipartiteGossip algorithm, described in Section 2.4, to make each process learn
values Z and O of the other group. Eventually, a process returns a pair of values Z1+Z2 and O1+O2
if it received the values from the other partition during the execution of BipartiteGossip, or it
returns the values corresponding to the recursive call in its own partition otherwise. It is easy to
observe that during this modified execution processes must carry messages that are able to encode
values Z and O, thus in this have it holds that |R| = O(log n).

2.4 Bipartite Gossip

Our Gossip and FuzzyCounting algorithms use subroutine BipartiteGossip that solves the
following (newly introduced) problem.

Definition 3. Assume that there are only two different rumors present in the system, each in at
most ⌈n/2⌉ processes. The partition is known to each process, but the rumor in the other part is
not. We say that an algorithm solves Bipartite Gossip if every non-faulty process learns all rumors
of other non-faulty processes in the considered setting.

Bipartite Gossip is a restricted version of the general Fault-tolerant Gossip problem, which can
be solved in O(log3 n) rounds using O(log4 n) point-to-point messages amortized per process, but
requires Ω(n) amortized communication bits. In this paper, we give a new efficient deterministic
solution to Bipartite Gossip, called BipartiteGossip, which, properly utilized, leads to better
solutions to Fault-tolerant Gossip and Fuzzy Counting. More details and the proof of the following
result are given in Section 7.1.
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Theorem 5 (Section 7.1). Given a partition of the set of processes P into two groups P1 and P2
of size at most ⌈n/2⌉ each, deterministic algorithm BipartiteGossip solves the Bipartite Gossip
problem in Õ(1) rounds and uses Õ(n · |R|) bits, where |R| is the minimal number of bits needed
to uniquely encode the two rumors.

High-level idea of BipartiteGossip. If there were no crashes in the system, it would be enough
if processes span a bipartite expanding graph with poly-logarithmic degree on the set of vertices
P1 ∪P2 and exchange messages with their initial rumors in Õ(1) rounds. In this ideal scenario the
O(log n) bound on the expander diameter suffices to allow every two process exchange information,
while the sparse nature of the expander graphs contributes to the low communication bit complexity.
However, a malicious crash pattern can easily disturb such a naive approach. To overcome this,
in our algorithm processes – rather than communicating exclusively with the other side of the
partition – also estimate the number of crashes in their own group. Based on its result, they are
able to adapt the level of expansion of the bipartite graph between the two parts to the actual
number of crashes.

The internal communication within group P1 uses graphs from a family of Θ(log n) expanders:
Gin = {Gin(0), . . . , Gin(log n)}, for t = O(log n), spanned on the set of processes P1 and such that
Gin(i) ⊆ Gin(i + 1), the degree and expansion parameter of the graphs double with the growing
index, and the last graph is a clique. They select the next graph in this family every time they
observe a significant reduction of non-faulty processes in their neighborhood. Initially, processes
from P1 span an expander graph Gin(0) with O(log n) degree on the set P1, in the sense that each
process in P1 identifies its neighbors in the graph spanned on P1. In the course of an execution, each
process from P1 keeps testing the number of non-faulty processes in its O(log n) neighborhood in
Gin(0). If the number falls down below some threshold, the process upgrades the used expanding
graph by switching to the next graph from the family – Gin(1). The process continues testing,
and switching graph to the next in the family if necessary, until the end of the algorithm. The
ultimate goal of this ’densification’ of the overlay graph is to enable each process’ communication
with a constant fraction of other alived processes in P1. Note here that this procedure of adaptive
adjustment to failures pattern happens independently at processes in P1, therefore it may happen
that processes in P1 may have neighborhoods taken from different graphs in family Gin.

The external communication of processes from P1 with processes from P2 is strictly correlated
with their estimation of the number of processes being alive in their O(log n) neighborhood in P1
using expanders in Gin, as described above. Initially, a process from P1 sends its rumor according
to other expander graph Gout(0) of degree O(log n), the first graph in another family of expanders
graphs Gout = {Gout(0), . . . , Gout(t)}, for t = O(log n), spanned on the whole set of processes
P1 ∪P2, such that Gout(i) ⊆ Gout(i+1), the degree and expansion parameter of the graphs double
with the growing index, and the last graph is a clique. Each time a process chooses a denser graph
from family Gin in the internal group communication, described in the previous two paragraphs, it
also switches to a denser graph from family Gout in the external communication with group P2. The
intuition is that if a process knows that the number of alive processes in its O(log n) neighborhood
in P1 has been reduced by a constant factor since the last check, it can afford an increase of its
degree in external communication with group P2 by the same constant factor, as the amortized
message complexity should stay the same.

The above dynamic adjustment of internal and external communication degree allows to achieve
asymptotically similar result as in the fault-free scenario described in the beginning, up to polylog-
arithmic factor. More details and the proofs of correctness and performance are in Section 7.1.
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2.5 Local Signalling

LocalSignalling is a specific deterministic algorithm, parameterized by a family of overlay graphs
provided to the processes. Processes start at the same time, but may be at different levels – the level
indicates which overlay graph is used for communication. The name Local Signalling comes from
the way it works – similarly to distributed sparking networks, a process keeps sending messages
(i.e., ’signalling’) to its neighbors in its current overlay graph as long as it receives enough number of
messages from them. Once a process fails to receive a sufficient number of messages from processes
that use the same overlay graph or the previous ones, LocalSignaling detects such anomaly and
remembers a negative ’not surviving’ result (to be returned at the end of the algorithm). Such
process does not stop, but rather keeps signaling using less dense overlay graph, in order to help
processes at lower level to survive. This non intuitive behavior is crucial in bounding the amortized
bit complexity. The algorithm takes O(log n) rounds. Its goal is to leverage the adversary – if the
adversary does not fail many processes starting at a level ℓ, some fraction of them will survive and
exchange messages in O(log n) time and O(polylog n) amortized number of communication bits.

More specifically, the algorithm run by process p takes as in input:

i) the name of a process p and a set of all processes in the system P;
ii) an expander-like overlay graph family G = {G(1), . . . , G(t)} spanned on P such that: t =
O(log n), G(i) ⊆ G(i + 1), the degree and expansion parameters of the graphs double with the
growing index, and the last graph is a clique. Two additional parameters δ and γ describe a
diameter and a maximal degree of the base graph G(1), resp. See Section 4.1;

iii) the process’ (starting) level ℓp, which denotes the index of the graph from family G the process
currently uses to communicate; and

iv) the message to convey, r.

For a given round, let T denote a communication graph ∪p∈PNG(ℓp)(p), that is, a graph with the
set of vertices corresponding to P and the set of edges determined based on neighbors of each
vertex/process p ∈ P from the graph G(ℓp) corresponding to the current level ℓp of process p.
Processes exchange messages along this graph, and those who discover that the number of their
alived neighbors with the same or higher level ℓ is below some threshold, decrease their level by 1
(i.e., switch their overlay graphs to the previous one in the family). Those who do it at least once
during the execution of LocalSignalling, which takes O(log n) rounds, have ’not survived Local
Signalling’, others ’have survived’.

We will show that if all processes start LocalSignaling at the same time, those who have
survived Local Signalling must have had large-size O(log n)-neighborhoods in graph T in the be-
ginning of the execution. Moreover, they were able to exchange messages with other surviving
processes in their O(log n)-neighborhoods, c.f.. Lemma 17. We will also prove that the amortized
bit complexity of the LocalSignaling algorithm is O(polylog n) per process, c.f., Lemma 16.
This is the most advanced technical part used in our algorithm – its full description and detail
analysis are given in Section 8.

3 Previous and related work

Early work on consensus. The Consensus problem was introduced by Pease, Shostak and Lam-
port [29]. Early work focused on deterministic solutions. Fisher, Lynch and Paterson [18] showed
that the problem is unsolvable in an asynchronous setting, even if one process may fail. Fisher and
Lynch [17] showed that a synchronous solution requires f+1 rounds if up to f processes may crash.

8



The optimal complexity of consensus with crashes is known with respect to the time and the
number of messages (or communication bits) when each among these performance metrics is consid-
ered separately. Amdur, Weber and Hadzilacos [4] showed that the amortized number of messages
per process is at least constant, even in some failure-free execution. The best deterministic al-
gorithm, given by Chlebus, Kowalski and Strojnowski in [13], solves consensus in asymptotically
optimal time Θ(n) and an amortized number of communication bits per process O(polylog n).

Efficient randomized solutions against weak adversaries. Randomness proved itself useful
to break a linear time barrier for time complexity. However, whenever randomness is consid-
ered, different types of an adversary generating failures could be considered. Chor, Merritt and
Shmoys [14] developed constant-time algorithms for consensus against an oblivious adversary – i.e.,
the adversary who knows the algorithm but has to decide which process fails and when before
the execution starts. Gilbert and Kowalski [21] presented a randomized consensus algorithm that
achieves optimal communication complexity, using O(1) amortized communication bits per process
and terminates in O(log n) time with high probability, tolerating up to f < n/2 crash failures.

Randomized solutions against (strong) adaptive adversary. Consensus against an adap-
tive adversary, considered in this paper, has been already known as more expensive than against
weaker adversaries. The time-optimal randomized solution to the consensus problem was given

by Bar-Joseph and Ben-Or [8]. Their algorithm works in O(
√
n

logn) expected time and uses O(n
3/2

logn)
amortized communications bits per process, in expectation. They also proved optimality of their
result with respect to the time complexity, while here we substantially improve the communication.

Beyond synchronous crashes. It was shown that more severe failures or asynchrony could cause
a substantially higher complexity. Dolev and Reischuk [15] and Hadzilacos and Halpern [23] proved
the Ω(f) lower bound on the amortized message complexity per process of deterministic consensus
for (authenticated) Byzantine failures. King and Saia [27] proved that under some limitation on the
adversary and requiring termination only whp, the sublinear expected communication complexity
O(n1/2polylog n) per process can be achieved even in case of Byzantine failures. Abraham et al. [1]
showed necessity of such limitations to achieve subquadratic time complexity for Byzantine failures.

If asynchrony occurs, the recent result of Alistarh et al. [2] showed how to obtain almost optimal
communication complexity O(n log n) per process (amortized) if less then n/2 processes may fail,
which improved upon the previous resultO(n log2 n) by Aspnes andWaarts [6] and is asymptotically
almost optimal due to the lower bound Ω(n/ log2 n) by Aspnes [5].

Fault-tolerant Gossip was introduced by Chlebus and Kowalski [9]. They developed a de-
terministic algorithm solving Gossip in time O(log2 f) while using O(log2 f) amortized messages
per process, provided n − f = Ω(n). They also showed a lower bound Ω( logn

log(n logn)−log f ) on the

number of rounds in case O(polylog n) amortized messages are used per process. In a sequence
of papers [9, 20, 10], O(polylog n) message complexity, amortized per process, was obtained for
any f < n, while keeping the polylogarithmic time complexity. Note however that general Gossip
requires Ω(n) communication bits per process for different rumors, as each process needs to de-
liver/receive at least one bit to all non-faulty processes. Randomized gossip against an adaptive
adversary is doable w.h.p. in O(log2 n) rounds using O(log3 n) communication bits per process, for
a constant number of rumors of constant size and for f < n

3 processes, c.f., Alistarh et al. [3].

4 Model and Preliminaries

In this section we discuss the message-passing model in which all our algorithms are developed and
analyzed. It is the classic synchronous message-passing model with processes’ crashes, c.f., [7, 8].
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Processes. There are n synchronous processes, with synchronized clocks. Let P denote the set
of all processes. Each process has a unique integer ID in the set P = [n] = {1, . . . , n}. The set
P and its size n are known to all the processes (in the sense that it may be a part of code of an
algorithm); it is also called a KT-1 model in the literature [28].

Communication. The processes communicate among themselves by sending messages. Any
pair of processes can directly exchange messages in a round. The point-to-point communication
mechanism is assumed to be reliable, in that messages are not lost nor corrupted while in transit.

Computation in rounds. A computation, or an execution of a given algorithm, proceeds in
consecutive rounds, synchronized among processes. By a round we mean such a number of clock
cycles that is sufficient to guarantee the completion of the following operations by a process: first,
multicasting a message to an arbitrary set of processes (selected by the process during the preceding
local computation in previous round or stored in the starting conditions); second, receiving the sent
messages by their (non-faulty) destination processes; third, performing local computations.

Processes’ failures and adversaries. Processes may fail by crashing. A process that has
crashed stops any activity, and in particular does not send nor receive messages. There is an upper
bound f < n on the number of crash failures we want to be able to cope with, which is known to
all processes in that it can be a part of code of an algorithm. We may visualize crashes as incurred
by an omniscient adversary that knows the algorithm and has an unbounded computational power;
the adversary decides which processes fail and when. The adversary knows the algorithm and is
adaptive – if it wants to make a decision in a round, it knows the history of computation until
that point. However, the adversary does not know the future computation, which means that it
does not know future random bits drawn by processes. We do not assume failures to be clean, in
the sense that when a process crashes while attempting to multicast a message, then some of the
recipients may receive the message and some may not; this aspect is controlled by the adversary.
An adversarial strategy is a deterministic function, which assigns to each possible history that may
occur in any execution some adversarial action in the subsequent round – i.e., which processes to
crash in that round and which of their last messages would reach the recipients.

Performance measures. We consider time and bit communication complexities as performance
measures of algorithms. For an execution of a given algorithm against an adversarial strategy, we
define its time and communication as follows. Time is measured by the number of rounds that occur
by termination of the last non-faulty process. Communication is measured by the total number of
bits sent in point-to-point messages by termination of the last non-faulty process. For randomized
algorithms, both these complexities are random variables. Time/Communication complexity of a
distributed algorithm is defined as a supremum of time/communication taken over all adversarial
strategies, resp. Finally, time/communication complexity of a distributed problem is an infimum
of all algorithms’ time/communication complexities, resp. In this work we present communication
complexity in a form of an amortized communication complexity (per process), which is equal to
the communication complexity divided by the number of processes n.

Notation whp. We say that a random event occurs with high probability, or whp, if its probability
can be lower bounded by 1−O(n−c) for a sufficiently large positive constant c. Observe that when a
polynomial number of events occur whp each, then their union occurs with high probability as well.
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4.1 Overlay Graphs

We review the relevant notation and main theorems assuring existence of specific fault-tolerant
compact expanders from [13]. We will use them as overlay graphs in the paper, to specify via which
links the processors should send messages in order to maintain small time and communication com-
plexities. Some properties of these graphs have already been observed in [13], however we also prove
a new property (Lemma 2) and use it for analysis of a novel Local Signalling procedure (Section 8).

Notation. Let G = (V,E) denote an undirected graph. Let W ⊆ V be a set of nodes of G. We
say that an edge (v,w) of G is internal for W if v and w are both in W . We say that an edge (v,w)
of G connects the sets W1 and W2 or is between W1 and W2, for any disjoint subsets W1 and W2

of V , if one of its ends is in W1 and the other in W2. The subgraph of G induced by W , denoted G|W ,
is the subgraph of G containing the nodes in W and all the edges internal for W . A node adjacent
to a node v is a neighbor of v and the set of all the neighbors of a node v is the neighborhood of v.
N i

G(W ) denotes the set of all the nodes in V that are of distance at most i from some node in W
in graph G. In particular, the (direct) neighborhood of v is denoted NG(v) = N1

G(v).

Desired properties of overlay graphs. Let α, β, δ, γ and ℓ be positive integers and 0 < ε < 1
be a real number. The following definition extends the notion of a lower bound on a node degree:

Dense neighborhood: For a node v ∈ V , a set S ⊆ Nγ
G(v) is said to be (γ, δ)-dense-neighborhood

for v if each node in S ∩Nγ−1
G (v) has at least δ neighbors in S.

We want our overlay graphs to have the following properties, for suitable parameters α, β, δ and ℓ:

Expansion: graph G is said to be ℓ-expanding, or to be an ℓ-expander, if any two subsets of ℓ
nodes each are connected by an edge.

Edge-density: graph G is said to be (ℓ, α, β)-edge-dense if, for any set X ⊆ V of at least ℓ nodes,
there are at least α|X| edges internal for X, and for any set Y ⊆ V of at most ℓ nodes, there
are at most β|Y | edges internal for Y .

Compactness: graph G is said to be (ℓ, ε, δ)-compact if, for any set B ⊆ V of at least ℓ nodes,
there is a subset C ⊆ B of at least εℓ nodes such that each node’s degree in G|C is at least δ.
We call any such set C a survival set for B.

Existence of overlay graphs. Let δ, γ, k be integers such that δ = 24 log n, γ = 2 log n and
25δ ≤ k ≤ 2n

3 . Let G(n, p) be an Erdős–Rényi random graph of n nodes, in which each pair of
nodes is connected by an edge with probability p, independently over all such pairs.

Theorem 6 ([13]). For every n and k such that 25δ ≤ k ≤ 2n
3 , a random graph G(n, 24δ/k)

satisfies all the below properties whp:

(i) it is (k/64)-expanding, (iii) it is (k, 3/4, δ)-compact,

(ii) it is (k/64, δ/8, δ/4)-edge-dense, (iv) the degree of each node is between 22n
k δ and 26n

k δ.

We define an overlay graph G(n, k, δ, γ) as an arbitrary graph of n nodes fulfilling the conditions
of Theorem 6. Graph G(n, k, δ, γ) can be computed locally (i.e., in a single round) and determinis-
tically by each process. Specifically, by Theorem 6, the class of graphs satisfying the four properties
(i) - (iv) is large, therefore any deterministic search in the class of n-node graphs, applied locally
by each process, returns the same overlay graph G(n, k, δ, γ) in all processes.‡

‡Recall that each round contributes 1 to the time complexity, no matter of the length of local computation.
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Lemma 1 ([13]). If graph G = (V,E) of n nodes is (k/64, δ/8, δ/4)-edge-dense then any (γ, δ)-
dense-neighborhood for a node v ∈ V has at least k/64 nodes, for γ ≥ 2 lg n.

The new property. The key new property of overlay graphs with good expansion, edge-density
and compactness is that survival sets in such graphs have small diameters.

Lemma 2. If graph G = (V,E) of n nodes is ( k
64 )-expanding, (

k
64 ,

δ
8 ,

δ
4)-edge-dense and (k, 34 , δ)-

compact, then for any set B ⊆ V of at least k nodes and for any two nodes v,w from set C being
a survival set of B, the nodes v,w are of distance at most 2γ + 1 in graph G|C , for any γ ≥ 2 lg n.

5 Parameterized Consensus: Trading Time for Communication

We first specify and analize algorithm ParameterizedConsensus, for a given parameter x ∈
[1, . . . , n]§ and a number of crashes f < n

10 . Later, in Section 5.4, we show how to generalize it to
algorithm ParameterizedConsensus∗, which works correctly and efficiently for any number of
crashes f < n.

Notation and data structures. Let p ∈ P denote the process executing the algorithm, while bp
denote p’s input bit; P, x, p, bp are the input of the algorithm. Let SP1, . . . , SPx be a partition of the
set P of processes into x groups of n

x processes each. SPi is called a super-process, and each p ∈ SPi

is called its member. We also denote by SP[p] the super-process SPi to which p belongs. A graph
H is an overlay graph G(x, x3 , δx, γx), which existence and properties are guaranteed in Theorem 6
and Lemma 2, where δx := 24 log x, γx := 2 log x. We uniquely identify vertices of H with super-
processes. We say that two super-processes, SPp and SPq, are neighbors if vertices corresponding
to them share an edge in H. For every two such neighbors, we denote by SE(SPp, SPq) an overlay
graph G(2n

x ,
2n
3x , 24 log

2n
x , 2 log 2n

x ) which vertices we identify with the set SPp∪SPq. (SE(SPp, SPq)
is a short form of super-edge between SPp and SPq.) Again, for existence and properties of the
above overlay graph we refer to Theorem 6 and Lemma 2. Since the processes operate in KT -1
model, we can assume that all objects mentioned in this paragraph can be computed locally by any
process. Below is a pseudo-code of algorithm ParameterizedConsensus.

Algorithm 1: ParameterizedConsensus

input: P, x, p, bp
1 calculate locally {SP1, . . . , SPx}, H ;
2 candidate value ←

ParameterizedConsensus:Phase 1(P, {SP1, . . . , SPx},H, x, p, bp);
3 confirmed ← ParameterizedConsensus:Phase 2(P, {SP1, . . . , SPx}, H, x, p);
4 if confirmed = 1 then
5 CandidatesValues← Gossip(P, p, candidate value) ; /* Phase 3 */

6 else
7 CandidatesValues← Gossip(P, p,−1) ; /* Phase 3 */

8 decision value← any value of the set CandidatesValues that differs from − 1 ;
9 return decision value

§Without loss of generality, we may assume that x is a divisor of n. If it is not the case, we can always make ⌈x⌉
groups of size

⌈

n
x

⌉

, which would not change the asymptotic analysis of the algorithm.
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High-level idea of ParameterizedConsensus. We cluster processes into x disjoint groups
(super-processes) of n

x processes each. Processes locally compute the super-process they belong to
and overlay graphs. Starting from this point, we view the system as a set of x super-processes.

In the beginning (see line 2 and Section 5.1 for description of Phase 1), Phase 1 is executed
in which super-processes flood value 1 along an overlay graph H of super-processes. The main
challenge is to do it in Õ(

√
xn) rounds and Õ(

√

n/x) amortized communication per process whp.

In Phase 2 (see line 3 and Section 5.2 for description of Phase 2), super-processes estimate the
number of operating super-processes in the neighborhood of radiusO(log x) in graphH. Members of
those super-processes who estimate at least a certain constant fraction (we say that they “survive”),
set up variable confirmed to 1. The main challenge is to do it in Õ(

√

n/x) rounds and Õ(
√
nx)

amortized communication per process whp.

Next, we discard the partition into x super-processes. All processes execute aGossip algorithm.
Processes that set up variable confirmed to 1 start the Gossip algorithm with their initial value
being the value of the super-process they belonged to. Other processes start with a null value (-1).
Because super-processes use graph H for communication, which in particular satisfies (x, 34 , δx)-
compactness property, we will prove that at the end of Phase 2 at least a constant fraction of
non-faulty (i.e., their 3

4 fraction of members are alive) super-processes survive. This implies that at
least a constant fraction of processes begins the Gossip algorithm with a not-null value. Because
the not-null value results from a flooding-like procedure of value 1 (if there is any in the system), we
will be able to prove that, eventually, every process gets the same value, since at most a constant
number of crashes can occur.

To preserve synchronicity, in the ParameterizedConsensus algorithm we use the Monte
Carlo version of BiasedConsensus in both Phase 1 and Phase 2, see discussion in Section 2.1.
However, with a polynomial small probability, in this variant of Consensus some processes may
not reach a decision value. To handle this very unlikely scenario, processes who have not decided
in a run of BiasedConsensus alarm the whole system by sending a message to every other
process. Then, the whole system switches to any deterministic Consensus algorithm with O(n)-
time and amortized communication bit complexities (c.f., [7]) and returns its outcome as the final
decision. The latter part of alarming and the deterministic Consensus algorithm could use Θ(n)
communication bits, however it happens only with polynomially small probability, see Section 2.1;
therefore, it does not affect the final amortized complexity of the ParameterizedConsensus

algorithm whp. For the sake of clarity, we decide to not include this relatively straightforward
’alarm’ scheme in the pseudocodes.

5.1 Specification and Analysis of Phase 1

High-level idea. In the beginning, the members of every super-process agree on a single value
among their input values. Once this is done, super-processes start a flooding procedure navigated by
an overlay graphH. H should be an expander-like, regular graph with good connectivity properties,
but a small degree of at most O(log x). Intuitively, this can guarantee that regardless of the crash
pattern there will exist a connected component, of a size being a constant fraction of all vertices,
in H consisting of super-processes that are still operating. The flooding processes is a sequential
process of O(x) phases. A single super-process communicates, that means it sends value 1 to all
its neighbors in H, in at most one phase only; either in the first phase, if the value its members
agreed on in the beginning is 1; or in the very first phase after the super-process received value 1
from any of its neighbors in H. End of the flooding process encloses the Phase 1 of the algorithm.
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Algorithm 2: ParameterizedConsensus:Phase 1

input: P, {SP1, . . . , SPx}, H, x, p, bp
1 is active← true ;
2 candidate value← 2

3-BiasedConsensus(p, SP[p], bp);

3 for i← 1 to x+ 1 do
4 if is active = true & candidate value = 1 then
5 candidate value← 2

3 -BiasedConsensus(p, SP[p], candidate value) ;

6 else

7 stay silent for y = Õ(
√

n
x) rounds ;

8 if is active = true & candidate value = 1 then
9 foreach super-process SPj being a neighbor of SP[p] in H do

10 send 1 to every member of SPj which is a neighbor of p in SE(SP[p], SPj) ;

11 end
12 is active← false ;

13 if p received a message containing 1 in the previous round then
14 candidate value← 1 ;

15 end
16 return 1

3-BiasedConsensus(p, SP[p], candidate value)

Once members of a super-process get value 1 for the first time, their use BiasedConsensus to
agree if value 1 has been received or not. It is necessary due to crashes during the flooding process,
yet it is not easy to implement with low amortized bit complexity. A pattern of crashes can result in
some members of a super-process receiving value 1 and some other not. One can require all members
to execute BiasedConsensus in each phase, but this will blow up the amortized bit complexity to
Õ(x

√

n
x ) whp. We in turn, propose to execute BiasedConsensus only among this members who

received value 1 in the previous communication round (i.e. line 10) and use the stronger properties
of Biased Consensus problem to argue that the number of calls to the BiasedConsensus algorithm
will not be to large.

Analysis. Recall, that we say that a super-process communicates with another super-process if
any of its members executes lines 9-11 of the Algorithm 2. Trivially, from the Algorithm 2 we get
that each member of a super-process executes line 10 at most once, since if the line is executed
then variable is active will be changed to false, but the next lemma shows that we can expect
more: members of a super-process preserve synchronicity in communicating with other members.

Lemma 3. For every i ∈ [x], there is at most one iteration of the main loop in which SPi commu-
nicates with any other super-process.

Proof. Let us fix any super-process SPi and consider the first round r in which that super-processes
communicates with another one. If such round does not exist the lemma holds. Now, if a member p
of the super-process SPi executes line 10, it must have its variables is active and candidate value

set to true and 1, respectively. In particular this means, that p had to execute line 5 before it
reached line 10 in this iteration. Otherwise, its value candidate value would be 0. This, let us
conclude that the 2

3 -BiasedConsensus algorithm executed in line 5 returned value 1. Since, we
used a Biased Consensus algorithm, see Theorem 2, we have that at least 2

3 |SPi| members started
the synchronous execution of line 5. It easily follows, that each of this members either became
faulty or executed line 10 later in the same iteration of the main loop. If a member executed
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line 10, it sets its variable is active to false and stays idle for the rest of the algorithm run, in
particular it does not participate in any future run of the 2

3 -BiasedConsensus algorithm. The
same holds if a member became a faulty process. It gives us that at most 1

3 |SPi| members of
SPi can participate with value other than 0. Since they always execute the 2

3 -BiasedConsensus

algorithm, thus according to Theorem 2, the result will always be 0. This proves that SPi will not
communicate in any other round than r.

Lemma 4. For every i ∈ [x], members of a non-faulty super-process SPi return the same value in
Phase 1.

Proof. Each member returns its decision based on the result of the Biased variant of a Consensus
algorithm executed on the set of all members of its super-process, thus according to Theorem 2,
each member must return the same value.

Recall, that we defined a super-process non-faulty if in the end of the ParameterizedConsensus

algorithm at least 3
4 of its members have not been crashed. In particular, the number of operating

members is at least 3n
4x in every phase of the algorithm.

Lemma 5. There are no two non-faulty super-processes that are connected by an edge in H but
they members return different decision values in the end of Phase 1.

Proof. Assume contrary, that there exist two super-processes SP1, SP2 that are connected by an
edge in H, such that members SP1 return value 0, but members of SP2 return 1. For the super-
process SP2, the returned value is calculated based on values of variables candidate value of its
members, which are in turn calculated based on output of the 2

3 -BiasedConsenus algorithm from
line 5 (optionally, it can be a result of the run of this algorithm in line 2, but than line 5 is executed
as well). Therefore, there must be at least iteration of the main loop in which members of SP2

agreed on 1 in the line 5. Observe, that in the same iteration these members must communicate,
i.e. execute line 10. According to Lemma 3 there is at most one such iteration. Let k be the
number of this iteration.

Suppose that k = x+1. This means that members of SP2 have set variable candidate value to
1 based on received messages from members of a neighboring super-process SPa. We observe, this
messages must be received in the preceding iteration, that is in the iteration k − 1, super-process
SP3 communicated with SP2. By Lemma 3 there is at most on such iteration for SP3, which in
turn gives us that some other super-process must communicate with SP3 in the iteration k − 2.
By backwards induction and the fact the each super-process communicates at most once, we get a
chain of distinct super-processes P2, SP3, . . . , SPx+2, such that for j ∈ [3, x+ 2] super-process SPj

communicated with super-process SPj−1 in the iteration r − j + 2 of the main loop. The chain
consists of x distinct super-processes, thus SP1 must belong to it. This in turn means that there
exists an iteration of the main loop, in which members of SP1 communicated by sending message
1 to other super-processes, i.e. they executed lines 9-11. If the communication happened in this
iteration, by a retrospective reasoning, we can conclude the 2

3 -BiasedConsensus in line 5, that
proceeds the communication must result in value 1. From the property of the α-Biased Consensus,
we have that at least 2

3 fraction of members of SP1 started the line 5 having value candidate value

set to 1. Because SP1 is non-faulty, thus at least 2
3 − 1

4 ≥ 1
3 fraction of members from SP1 remain

non-faulty to the end of Phase 1. Therefore, the outcome of the 1
3−BiasedConsensus algorithm

must be 1 which is a contradiction with the assumption that members of SP1 have set the variable
decision value to 0.
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Consider now the case where k < x + 1. We shall show that members of SP2 send message
1 to sufficiently many members of SP1 in iteration k + 1 ≤ x + 1 to influence the value their
return. Provided that SP2 communicates in round k, we observe that members must also execute
line 5, and to make the communication possible, the 2

3−BiasedConsensus must return value 1.
From the properties of α−Biased Consensus, we get that at least 2

3 fraction of members of SP2

started the Consensus algorithm with candidate value set to 1. Since SP2 is non-faulty, thus at
least 2

3 − 1
4 = 5

12 fraction of members of SP2 took part in sending messages to members of SP1 in
lines 9-11. The graph SE(SP2, SP1) satisfies properties of Theorem 6; in particular, by Lemma 1,
we get that at least 11

12 members of SP1 received message 1 in the iteration k. Using the fact that
SP1 is non-faulty, we argue that at least 11

12 − 1
4 = 2

3 members of SP1 participated in the run of
the 2

3 -BiasedConsensus algorithm in the next k + 1 iteration. These processes preserved the
variable candidate value set to 1 since sufficiently many members started and finished the run
of the 2

3 -BiasedConsensus algorithm. These members eventually take part in the execution of
the 1

3 -BiasedConsensus algorithm at the end of Phase 1. Since their start the execution having
candidate value set to 1 and they do not crash, thus the result of the 1

3 -BiasedConsensus must
be 1. This proves the lemma.

From the previous lemma we can immediately conclude.

Lemma 6. Members of each connected component of H formed by a non-faulty super-processes
return the same decision values in the end of Phase 1.

Lemma 7. The Phase 1 part of the ParameterizedConsensus algorithm takes Õ(x
√

n/x)
rounds and uses Õ(n

√

n/x log n) bits whp.

Proof. The upper bound on the number of rounds follows from the observation that in each iter-
ation of the main loop of the Phase 1 algorithm, the execution of 2

3 -BiasedConsensus in line 5

takes Õ(
√

n/x) rounds whp, by Theorem 2, and every other instruction is just a single round
communication. By applying union bound over all iterations of the main loop, we get the the total
running time of the Phase 1 algorithm is Õ(x

√

n/x) whp.

To get the correct upper bound on the bit complexity of the algorithm we will first bound
the number iterations in which members of a super-process SP[p] call the

2
3 -BiasedConsensus

algorithm in line 5. Observe, that this line is executed only if both variables is active and
candidate value are set to true and 1 respectively. Also, from the pseudocode of Phase 1 it fol-
lows that before the current iteration ends either is activewill be set to false, or candidate value

will be changed to 0. Thus, to execute line 5 in any future iteration, members of SP[p] must re-
ceive a message 1 from a member of a neighbor of SP[p] in H, since this is the only way to re-set
candidate value to 1. But the crux is, that this cannot happen more than δx number of times.
Indeed, in Lemma 3 we proved that members of each super-processes send messages to other mem-
bers at most once. Moreover, they do this in the very same round. Since SPp has no more than δx
neighbors in H we get that 2

3 -BiasedConsensus algorithm in line 5 can be executed at most this
number of times among members of SP[p]. Combining this fact with the complexity bounds given

in Theorem 2, we get the the total number of bits used for all runs of the 2
3 -BiasedConsensus

algorithm among members of SPp is O(δx · (n/x)
√

n/x log4 n/x) whp.

Members may communicate in only one other way, by sending single bits in line 10. However,
by entering the if clause containing this line, a member must change its variable is active from
true to false. Since this operation is irrevocable, the line 10 may be executed at most one by
each process. For communication between super-processes, SP[p] and SP[q], we used sparse graphs
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SE(SP[p], SP[q]) of degree δn/x = O(log(n/x). Also the degree of SP[q] in H is δx which gives us the
in total members of SP[p] use O((n/x) · log(n/x) · δx) bits for the second type of communication.

Summing the two above estimation over all super-processes gives us the claimed upper bound
on the number of bits used by Phase 1.

5.2 Specification and Analysis of Phase 2

Algorithm 3: ParameterizedConsensus:Phase 2

input: P, {SP1, . . . , SPx}, H, x, p
1 if 3

4 -BiasedConsensus(p, SP[p], 1) = 1 then

2 is active← true

3 else
4 is active← false ; /* stage i */

5 for i← 1 to γx do
6 if is active = true then
7 SN ← ∅ ;
8 foreach super-process SPj being a neighbor of SP[p] in H do

9 Nj ← Gossip(SP[p] ∪ SPj , p, p) ;

10 SN ← SN ∪Nj ;

11 end
12 if |SN | > δx then many superprocesses← 1 ;
13 else many superprocesses← 0 ;
14 survived← 2

3-BiasedConsensus(p, SP[p], many superprocesses) ;

15 if survived = 0 then
16 is active← false

17 end

18 end
19 return is active; /* a bit indicating whether p’s super-process survived */

High-level idea. In Phase 2, non-faulty super-processes estimate the number of operating super-
processes in the neighborhood of radius O(log x) in graph H. Those who estimate at least a certain
constant fraction, set up variable confirmed to 1. In order to achieve that, each super-process
keeps signaling all its neighbors in H in γx = O(log x) stages until at least a constant fraction of
them signaled its activity in preceding stage. A super-process that has been signaling during all
stages is said to survive. We will prove that, thanks to suitably chosen connectivity properties of
H, at least a constant fraction of super-processes survives. Members of these super-processes will
influence the final decision of the whole system in the following Phase 3.

Analysis.

Lemma 8. At least 1
2 super-processes are non-faulty and survive Phase 2 of the Parameterized-

Consensus algorithm.

Proof. The lemma follows from the connectivity properties of the graph H. We say that a super-
process becomes inactive whenever its members set the variable is active to false. Observe
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that this definition is consistent since the variable is always an output of the α-BiasedConsensus

algorithm.

Let S be the set of non-faulty super-processes. Because adversary can crash at most 1
10 processes,

thus |S| > 6
10x. First, we see that every super-process belonging S starts Phase 2 with is active

being set to 1, since during the entire execution it has at least 3
4 fraction of non-faulty processes.

The compactness property of H ensures that there exists a survival set C ⊂ S, |C| > 5
6 |S| = 1

2x.
Because each super-process of C has at least δx neighbors in C (i.e. other super-processes connected
with it by an edge in C), thus members of super-processes from C receive at least δx different rumors
when they execute Fault-tolerant Gossip algorithm in line 9, in each iteration of the main loop.
Therefore, every super-process from C survives Phase 2.

Lemma 9. The Phase 2 part of the ParameterizedConsensus algorithm takes Õ(
√

n/x)
rounds and uses Õ(n

√
nx) bits whp.

Proof. We separately calculate running time of each sub-algorithm used in Phase 2. According
to Theorem 2 each run of the α-BiasedConsensus algorithm on a group consisting of members
of a single super-process lasts Õ(

√

n/x) whp. The Gossip algorithm is executed on a group of
processes that has size 2(n/x) and from Theorem 3 we conclude that this single execution has
running time Õ(1). Since in Phase 2 we repeat the aforementioned subroutines δx times we get
that total running time is Õ(

√

n/x) whp.s

Each execution of the α-BiasedConsensus algorithm costs Õ(nx
√

n
x ) bits whp. Members of a

single super-process execute γx+1 = 2 log(x)+1 instances of the α-BiasedConsensus algorithm.
Since there is x super-processes in total, thus the Phase 2 algorithm uses Õ(n

√

n/x) bits for
evokes of the α−Biased Consensus algorithm. The other communication bits processes generate
only by participating in the Gossip algorithm with members of neighbors of its super-process, c.f
executing line 9. Members of a single super-process participate in δx parallel executions of Gossip
in a single iteration, since this is the degree of every vertex in H. Each execution of the Gossip

algorithm uses Õ(nx |R|) bits according to Theorem 3, where |R| denotes the number of bits needed
to encoded all initial rumors. However, in our case there are two initial rumors of size O(log n) -
the two identifiers of the super-processes sharing an edge in H. Since we have only γx iterations
and x super-processes, we get the total number of bits used for the evokes of Gossip algorithm is
Õ(n). Therefore, the number of bits used by processes in Phase 2 is Õ(n

√

n/x+ n) = Õ(n
√
nx)

whp, as claimed.

5.3 Analysis of algorithm ParameterizedConsensus

Lemma 10. The value candidate value is the same among all members of super-processes that
survived Phase 2.

Proof. If a super-process SPi has survived Phase 2., than it had been continuously communicating
with at least δx other super-processes for at least γx stages. From the similar reasoning to this
in proof of Lemma 17 and the choice of H to be (x, 34 , γx)-compact, we conclude that SPi must
belong to a connected component in H consisting of survived super-processes of size 1

2x at least
in the end of Phase 2. Observe, that every super-processes that survived must be a non-faulty
processes in the end of Phase 1, c.f. line 2 of Phase 2. According to Lemma 6, members of
all super-processes belonging to the same connected component of non-faulty super-processes in H
share the same candidate value. Since there can be at most one connected component of non-

18



faulty super-processes of size > 1
2x, we see that all members of survived super-processes have the

same value of the variable candidate value.

Lemma 11. The algorithm ParameterizedConsensus satisfies validity, agreement and termi-
nation conditions.

Proof. The validity conditions follows from the fact, that processes always manipulate only the
values that were given to them as in input.

For the agreement condition, we first observe that by Lemma 10, all members of super-processes
that survived share the same value of the candidate value variable. Also, we observe that only
members of survived super-processes feed the execution of the Gossip algorithm with an initial
rumor different than −1. In particular, we have that the Gossip in lines 5 and 7 (Phase 3)
is executed with at most two different initial rumors, −1 and candidate value of members of
survived super-processes. By Lemma 8, a fraction of at least 1

2 super-processes survived. The total
number of members belonging to this set is 1

2 · nx · x = 1
2n. Since, no more than 1

10n processes crash
in the course of the whole execution, at least 1

2n − 1
10n = 2

5n > 0 will be non-faulty in the end
of Gossip algorithm execute in line 7 of the main algorithm. By Theorem 3, we conclude that
every non-faulty process learns the value of candidate value that was the input to this Gossip

algorithm. This gives the agreement condition.

The termination follows immediately, given the fact that Phase 1 and Phase 2 terminate
with probability 1,¶ by Lemma 7 and Lemma 9. The Gossip algorithm is deterministic and by
Theorem 3 it terminates in Õ(1) rounds.

Theorem 7. For any x ∈ [1, n] and any number of crashes f < n
10 , ParameterizedConsensus

solves Consensus with probability 1, in O(
√
nx polylog n) time and O(

√

n
x polylog n) amortized bit

communication complexity, whp, using O(
√

n
x polylog n) random bits per process.

Proof. By Lemma 11 we already know that the ParameterizedConsensus algorithm is a solution
to the Consensus problem.

By Lemma 7 and Lemma 9 we get the time and bit complexity of Phase 1 and Phase 1. By
Theorem 3, we have that a single execution of a Gossip algorithm takes Õ(1) rounds and Õ(1)
communication bits amortized per process, given that there can be only two different rumors of
size Õ(1) each, as we argued in Lemma 11. These bounds together give us the desired complexity
of the ParameterizedConsensus algorithm.

A single run of the α-BiasedConsensus algorithm on members of a super-processes gen-
erates Õ(nx

√

n
x) random bits, since each member generates at most one random bit per every

round of the algorithm, see Section 2.1. Since, the processes execute at most Õx runs of the α-
BiasedConsensus algorithm, thus the total number of random bits used is Õ(n

√

n
x ) which implies

Õ(
√

n
x ) amortized random bit complexity.

5.4 Generalization to any number of failures.

In this subsection we highlight main ideas that generalize the ParameterizedConsensus al-
gorithm to work in the presence of any number of crashes f < n. We call the resulting algo-
rithm ParameterizedConsensus∗. We exploit the concept of epochs in a similar way to [8, 13].

¶Recall here, that we obtained the probability 1 of termination by applying the Monte Carlo version of Biased-

Consensus algorithm.
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In short, the first and main epoch (in our case, ParameterizedConsensus followed by Bi-

asedConsensus described in Section 2.1) is repeated O(log n) times, each time adjusting ex-
pansion/density/probability parameters by factor equal to 9

10 . The complexities of the resulting
algorithm are multiplied by logarithmic factor. More details are given below.

Consider a run of the ParameterizedConsensus algorithm, as described and analyzed in
previous sub-sections. Let us analyze the state of the system at the end of ParameterizedCon-

sensus algorithm if more than n
10 crashes have occurred. In the end, there exist two group of

processes, those that have decision value set to −1 (i.e., the last Gossip has not been successful
in their case), and those who have decision value set to a value from {0, 1}. Observe, that if at
most n

10 processes were faulty, then we already proved in Theorem 7 that the first of these sets would
be empty and there could be only one value in {0, 1} taken by alive processes. Thus, we can extend
the run of the ParameterizedConsensus by an execution of 1

2-BiasedConsensus among mem-
bers of each super-processes, separately for different super-processes, to make them agree if there
exists a member of the super-process who had received a null value in the last Gossip execution.
A single run of ParameterizedConsensus followed by the run of 1

2 -BiasedConsensus is called
an epoch. Based on the output of the 1

2 -BiasedConsensus, the members of each super-process
decide whether they keep the agreed candidate value as decision final value and stay idle in the next
epoch, or they continue to the next epoch. There are three key properties here. First, because the
decision of entering next epoch is made based on an output to Biased Consensus, it is consistent
among members of a single super-process. Second, in the good scenario, i.e., when only less than n

10
processes crashed, every process will start the run of the 1

2 -BiasedConsensus with the same value,
yet different than a null-value. From validity condition, all processes stay idle. Third, a non-faulty
super-process at the end of Phase 2 actually implies that there was a majority of non-faulty other
super-processes in its O(log n) neighborhood, regardless of the number of failures (c.f., Lemma 17 –
thus, only one value in {0, 1} can be confirmed in the whole system as long as at least one process
remains alive, whp.

In the next epoch, super-processes that are not idle, repeat the ParameterizedConsensus

algorithm, but tune its parameters to adjust to the larger number of crashes (i.e., smaller fraction
of alive processes). They use:

• a graph H1, instead of H, which is roughly 10
9 denser (i.e a graph G()) compared to graph H

used in the previous epoch,

• new threshold α1 :=
2
3 · 9

10 for evoking BiasedConsensus algorithm,

• they loose the parameter in the definition of a non-faulty super-process by a factor of 9/10.

In general, processes repeats this process of ’densification’ in subsequent Θ(log n) epochs. Eventu-
ally, one of this epochs must be successful, otherwise the number of crashed process would exceed
n/(1/10)Θ(n) > n. On the other hand, each time we ’densify’ graph H, i.e., we take an overlay
graph Hi from the family of overlay graphs as defined in Section 4.1 but with expansion and den-

sity parameters adjusted by factor
(

9
10

)i
, we are guaranteed that only a fraction of previously alive

processes execute the next epoch. As density and expansion parameters in the family of overlay
graphs are inversely proportional, we conclude that in each epoch the amortized bit complexity
stays at the same level of O(

√

n
x ). Therefore, in cost of multiplying both, the time complexity and

the amortized bit complexity by a factor of Θ(log n), we are able to claim Theorem 1.

Theorem 1 (Strengthened Theorem 7). For any x ∈ [1, n] and the number of crashes f < n,
ParameterizedConsensus∗ solves Consensus with probability 1, in O(

√
nx polylog n) time and
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O(
√

n
x polylog n) amortized bit communication complexity, whp, using O(

√

n
x polylog n) random

bits per process.

6 Randomized α-Biased Consensus

The α-BiasedConsensus algorithm generalizes and improves the SynRan algorithm of Bar-
Joseph and Ben-Or [8]. For this part, we purposely use the same notation as in [8] for the ease of
comparison.

First, processes run Fuzzy Counting (i.e. use the FuzzyCounting algorithm from Section 7)
where the set of active processes consists of this processes which the input value to the α-Biased
Consensus is 1. Then, each process calculates logical AND of the two values: its initial value and
ones ≥ α ·n, where ones is the number of 1’s output by the Fuzzy Counting algorithm. Denote xp
the output of the logical AND calculated by process p.

In the following processes solves an α-Biased Consensus on xp. Each process p starts by setting
its current choice bp to xp. The value bp in the end of the algorithm indicates p’s decision. Now,
processes use O(f/

√
n log n) phases to update their values bp such that eventually every process

keeps the same choice. To do so, in a round r every process p calculates the number of processes
that current choice is 1 and the number of processes that current choice is 0, denoted Or

p and Zr
p

respectively. Based on these numbers, process p either sets bp to 1, if the number Or
p is large enough;

or it sets bp to 0, if the number Zr
p is large; or it replaces bp with a random bit, if the number

of zeros and ones are close to each other. In Bar-Joseph’s and Ben-Or’s the numbers Zr
p and Or

p

were calculate in a single round all-to-all of communication. However, we observed that because
processes’ crashes may affect this calculation process in almost arbitrary way, this step can be
replaced by any solution to Fuzzy Counting. That holds, because Fuzzy Counting exactly captures
the necessary conditions that processes must fulfill to simulate the all-to-all communication, that
is it guarantees that candidate values of non-faulty processes are included in the numbers Or

p and
Zr
p calculated by any processor p. Thus, rather than using all-to-all communication, our algorithms

utilizes the effective FuzzyCounting algorithm where active processes are those who have their
current choice equal 1. The output of this algorithm serves as the number Or

p, while the number
Zr
p is just n−Or

p. For the sake of completeness, we also provide the pseudocode of the algorithm.
We conclude the above algorithm in the Theorem 2.

Theorem 2. The α-BiasedConsensus algorithm solves α-Biased Consensus with probability 1.
The algorithm has expected running time O(f/

√
n · log5/2 n) and the expected amortized bit com-

plexity O(f/
√
n · log13/2 n), for any number of crashes f < n.

Setting α := 1
2 we get a better randomized solution to classic Consensus problem.

Corollary 1. The 1
2-BiasedConsensus algorithm is a solution to Consensus. The algorithm

satisfies agreement and validity with probability 1, has expected running time O(f/
√
n · log5/2 n),

and the expected amortized bit complexity O(f/
√
n · log13/2 n), for any number of crashes f < n.

Monte Carlo version. The original algorithm α-BiasedConsensus has the expected running
time O(

√
n log13/2 n). However, we can force all processes to stop by that time multiplied by a

constant. In such case, the worst-case running time will be always Õ(
√
n) while the correctness

(agreement) will hold only whp.
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Algorithm 4: α-BiasedConsensus. The part in which our algorithm differs from the
SynRyn algorithm from [8] algorithm is underlined.

input: P, p, bp, α
output: a consensus value

1 if FuzzyCounting(P, p, bp) > α · |P| then xp ← bp & 1;
2 else xp ← 0;
3 r := 1; N r

−1 = N r
0 = n; decided = FALSE ;

4 while TRUE do
5 participate in CheapCounting execution with input bit being set to bp; let O

r
p, Z

r
p be

the numbers of ones and zeros (resp.) returned by CheapCounting;
6 N r

p = Zr
p +Or

p;

7 if (N r
p <

√

n/ log n) then

8 send bp to all processes, receive all messages sent to p in round r + 1;

9 implement a deterministic protocol for
√

n/ log n rounds;

10 end
11 if decided = TRUE then
12 diff = N r−3

p N r
i ;

13 if (diff ≤ N r−2
p /10) then STOP;

14 else decided = FALSE;

15 end
16 if Or

p > (7N r
p − 1)/10 then bp = 1, decided = TRUE;

17 else if Or
p > (6N r

p − 1)/10 then bp = 1;

18 else if Zr
p = 0 then bp = 1;

19 else if Or
p < (4N r

p − 1)/10 then bp = 0, decided = TRUE;

20 else if Or
p < (5N r

p − 1)/10 then bp = 0;

21 else set bp to 0 or 1 with equal probability;
22 r := r + 1;

23 end
24 return bp

7 Gossip and Fuzzy Counting

In this section we design and analyze an algorithm, called Gossip which, given a set of processes
P, solves the Gossip problem in Õ(1) rounds and uses Õ(|R|) communication bits amortized per
process, where |R| is the number of bits needed to encode initial rumors of all processes. A small
modification of this algorithm will result in a solution to the Fuzzy Counting problem with the
same time and only logarithmically larger bit complexity.

7.1 Bipartite Gossip

We start by giving a solution to Gossip problem in a special case, called Bipartite Gossip, in which
processes are partitioned into two groups P1 and P2 each of size ⌈n/2⌉ at most. Processes starts
with at most two different initial rumors r1 and r2 such that processes of each group share the same
initial rumor. The partition and the initial rumor is assumed to be an input to the algorithm. The
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goal of the system is still to achieve Gossip.

High level idea of algorithm BipartiteGossip. If there were no crashes in the system, it
would be enough if processes span a bipartite expanding graph with poly-logarithmic degree on
the set of vertices P1 ∪ P2 and for Õ(1) rounds exchange messages with their initial rumors. In
this ideal scenario the O(log n) bound on the expander diameter suffices to allow every two process
exchange information, while the sparse nature of the expander graphs contributes to the small
bit complexity. However, a malicious crash pattern can easily disturb such naive approach. To
overcome this, in our algorithm processes will adapt to the number of crashes they estimate in their
group, by communicating over denser expander graphs from a family of Θ(log n) expanders: Gin =
{Gin(0), . . . , Gin(log n), }, every time they observe a significant reduction of non-faulty processes
in their neighborhood.

Initially, processes from P1 span an expander graph with O(log n) degree on the set P1, denoted
Gin(0). In the course of execution each process from P1 will test the number of non-faulty processes
in the O(log n) neighborhood in Gin(0). If the number appeared to be too small, the process will
upgrade the expanding graph it uses by doubling its degree, namely it switches to the next graph
from the family - Gin(1). From now on, this process will use this denser graph for the testing.
The ultimate goal of this ’densification’ is to enable each process communication with a constant
fraction of alived other process from P1. Note here, that this process of adaptive adjustment to
failures pattern happens independently for processes in P1.

The communication of processes from P1 with processes from P2 is strictly correlated with
their estimation of the number of processes being alive in their O(log n) neighborhood in part P1.
Initially, a process from P1 sends its rumor according to other expander graph G0

out
of degree

O(log n), the first graph from family of expanders graphs Gout = {Gout(0), . . . , Gout(log n)} and
each time the process chooses a denser graph from family Gin it also switches to a denser graph
from family Gout. The intuition is that if a process knows that its number of neighbours in O(log n)
neighborhood has been reduced by a constant factor since it checked it last time, it can afford an
increase of its degree in communication with P2 by the same constant factor, as the amortized
message complexity should stay the same.

Estimating the number of alive processes in O(log n) neighborhoods. In the heart of the
above method lies an algorithm, called LocalSignaling that for each process p, tests the number
of other alive processes in p’s neighborhood of radius O(log n). As a side result, it also allows to
exchange a message with these neighbors. The algorithm takes as in input: a set of all processes
in the system P, an expander-like graph family G = {G(0), . . . , Gt} spanned on P, together with
two parameters δ and γ, describing a diameter and a maximal degree of the base graph G(0); the
name of a process p; the process’ level ℓ which denotes which graph from family G the process uses
to communicate; and the message to convey r. Let T denote a graph ∪v∈PNGℓv

(v), that is a graph
with set of vertices corresponding to P and set of edges determined based on neighbors of each
vertex from a graph on the proper level. Provided that LocalSignaling is executed synchronously
on the whole system it returns whether the process p was connected to a constant number of other
alived processes at the beginning of the execution accordingly to graph T . Assumed that, the
algorithm guarantees that p’s message reached all these processes and vice versa - messages of
these processes reached p. On the other hand, we will prove that the amortized bit complexity of a
synchronous run of the LocalSignaling algorithm is Õ(n). This is the most advanced technical
part used in our algorithm. It’s full description and detailed analysis is given in Section 8.

BipartiteGossip algorithm and its analysis. In this paragraph we give a pseudocode of the
BipartiteGossip algorithm which implements the idea discussed before. We start by formal
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description of utilized graphs and connected to them subroutines.

The graphs used by processs are grouped into two families: Gin and Gout. Denote t = ⌊log n⌋,
δ = 2 log n, γ = 24 log n. Consider a process p; it gets as an input the partition of set [n] into groups
P1, P2, hence it can determine the group it belongs to. The family Gin = {Gin(0), . . . , Gin(t+ 1)}
serves for communication inside each group.

A single graph Gin(i), for i ∈ {0, . . . , t}, is a union of G(n/2, n
3·2j , δ, γ), over j ∈ {0, . . . , i},

of graphs given in the Theorem 6 with nodes being the processes in p′s group, that is Gin(i) =
⋃j=i

j=0G(n/2, n
3·2j , δ, γ). Graph Gt+1 is a clique with nodes being the processes of p’s group.

The family Gout = {Gout(0), . . . , Gout(t + 1)} serves for communication outside each group. A
single graph Gout(i), for i ∈ {0, . . . , t}, is a union of G(n, 2n

3·2j , δ, γ), over j ∈ {0, . . . , i}, of graphs
given in the Theorem 6 with nodes being all the processes, that is Gout(i) =

⋃j=i
j=0G(n, 2n

3·2j , δ, γ).
Graph Gt+1 is a clique with nodes being all the processes.

Observe, that those families and parameters t, δ, γ are deterministic and can be precomputed
by each process, assumed the knowledge of partition P1 and P2. As a such, they are assumed to
be known to the algorithm on every stage of the algorithm.

The Exchange communication scheme for a graph G, used in the BipartiteGossip
algorithm: This communication scheme takes two rounds. In the first round p sends a message
containing a bit and the set R, being a set of all learned so far rumors by p, to every process in
the set NG(p) that is not faulty according to p’s view on the system. The receiver treats such a
message as both a request and an increment-knowledge message. In the second round, p responses
to all the received requests by sending R to each sender of every request received in the previous
round.

Algorithm 5: BipartiteGossip

input: partition P1, P2; p, r
output: set R of learned rumors, initially set to {r}

1 for i← 1 to 2t do
2 repeat 3 times
3 do Exchange on graph Gout(i+ 1);
4 repeat 2γ + 1 times
5 do Exchange on graph Gin(i+ 7);

6 repeat t + 2 times
7 do Exchange on graph Gin(i+ 2);
8 survived← LocalSignaling(p,Gin, i, δ, γ,R);
9 if survived = false then

10 i← min(i+ 1, t+ 1)
11 end

12 end
13 return R

Analysis of correctness. We call a single iteration of the main loop of the BipartiteGossip

algorithm an epoch. First, we show that if in a single epoch a big fraction of processes from the
groups P1 and P2 worked correctly, then by the end of the epoch every process has learned both
rumors r1 and r2. Let E be an epoch. Let BEGIN1 (BEGIN2) be the set of processes from the group
P1 (group P2 respectively) that were non-faulty before the epoch E started. Let END1 (END2) be
the set of those processes from the group P1 (group P2 respectively) that were non-faulty after the
epoch E ended. We assume that epoch E is such that:
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|END1| > 1
3 |BEGIN1| and |END2| > 1

3 |BEGIN2|.

Lemma 12. After the first iteration of the loop from line 2 in epoch E, each non-faulty process
from the group P1 is on level jp ≥ log

(

n
3·64·|BEGIN1|

)

.

Proof. Assume, to the contrary, that there is a process p ∈ P1 being on level jp strictly smaller then
log

(

n
3·64·|BEGIN1|

)

at the end of phase 1 of epoch E . Since in each iteration of the loop 2, an instance

of LocalSignaling is executed t+ 2 = |Gin|+ 2 times, process p must have survived at least one
LocalSignaling execution while being at that or a smaller level. In this execution, process p was
using graph Gin(jp) that satisfies the conditions of Theorem 6 with parameter kjp := n

3·2jp . From
the specific properties of the LocalSignaling algorith, i.e. Lemma 17 in Section 8 point 1, we
conclude that p must have a (γ, δ)-dense-neighborhood in Gjp ∩ BEGIN1. A property of the overlay
graphs, Lemma 1, says that any (γ, δ)-dense-neighborhood in the graph Gjp has at least n

64·3·2jp
nodes. Given that jp < log

(

n
3·64·|BEGIN1|

)

, we conclude that the size of the (γ, δ)-dense-neighborhood

of p in Gjp ∩ BEGIN1 is at least n
64·3·2jp > |BEGIN1|. This gives a contradiction with the fact that the

set BEGIN1 contains all non-faulty process from the group P1.

Lemma 13. There exists a set C1 ⊆ END1 of size at least |BEGIN1|
4 such that after the second iteration

of the loop 2 of epoch E each process p from set C1 has the other rumor r2 in its set R.

Proof. Let i =
⌈

log n
3·64·|BEGIN1|

⌉

. From Lemma 12 we know that from in the beginning of the

second iteration of the loop 2 of epoch E each process is at level at least i. Therefore, starting
from the second iteration of this loop, each process uses graph Gin(i + 7) (or a denser graph in
the family Gin) to communicate within processes from the same group. The set END1, viewed as

a set of nodes in the graph Gin(i + 7), is of size at least |BEGIN1|
3 . Now, we constructed graph

Gin(i + 7) such that it is (ki+7, 3/4, δ)-compact, where ki+7 := n
3·2i+7 . Because i ≥ log n

3·64·|BEGIN1| ,

thus ki+7 < |BEGIN1|
3 < |END1|. Therefore, there exists a survival set C1 in graph Gin(i+ 7) being a

subset of END1. The size of C1 is at least |END1| · 3/4 > |BEGIN1|
4 .

Analogical reasoning proves that after the first iteration of the loop 2 of epoch E each process

from set P2 is on level j ≥
⌈

log n
3·64·|BEGIN2|

⌉

and there exists a set C2 ⊆ END2, such that |C2| >
|BEGIN2|

4 . Without loss of generality assume that j ≥ i (the communication between non-faulty
processes is bi-directional). The processes from set C2 use overlay graph Gout(j+1) to communicate
with the group P1 in the beginning of the second iteration of the loop 2 in epoch E , i.e. to execute
line 3. This graph is ( n

3·64·2j )-expanding. Since j ≥ i, both sets C1 and C2 are of size at least
n

3·64·2j .
Hence, due to the graph expansion and proper sizes of C1, C2, there exists an edge between C1

and C2 in graph Gout(j + 1). Thus, the call of the Exchange communication schemes on graph
Gout(j+1), that takes place in line 3 of epoch E , results in at least one process from set C1 knowing
the other rumor r2.

From another property of the overlay graphs, Lemma 2, we know that every other pair of
processes in C1 are in distance 2γ + 1 in graph Gin(i+ 7)|C1

. Therefore, after the execution of the
loop in line 4 in the second iteration of the loop 2 in epoch E , each process from C1 knows the
other rumor r2.

Lemma 14. After the epoch E ends, each process from the set END1 knows the other rumor r2.

Proof. Consider any process p from the set END1. In the third iteration of the loop 2 in the epoch
E , there exists at least one round in which that process survives the procedure LocalSingaling.
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Assume that p survives that instance of the Local Signaling with the level set to ip. A property
of the LocalSignaling algorithm, i.e. Lemma 17 point 2, from Section 8, gives us that there
exists a (γ, δ)-dense-neighborhood of process p in the graph Gin(ip) consisting of processes that are
non-faulty and at the level at least ip at the beginning of the third iteration of the loop 2. Moreover,
the (γ, δ)-dense-neighborhood is such that p received the set R of any node from the set in this
instance of the LocalSignaling algorithm. Let D be the set of those processes that constitute
the (γ, δ)-dense-neighborhood. From Lemma 1 we know that the size of D is at least n

64·3·2ip .

The graph Gin(ip+2) used to in the communication rounds that precedes that instance (i.e. to
execute line 7) of Local Signaling is

(

n
64·3·4·2ip

)

-expanding. Consider the set C1 given in Lemma 13.

We have |C1| ≥ |BEGIN1|
4 . We argue that set C1 has size at least n

64·3·4·2ip . This holds because

Lemma 12 bounds the value ip from below by log
(

n
3·64·|BEGIN1|

)

. Therefore, by expansion of the

graph, the sets D and C1 are connected by at least one edge in Gin(ip + 2). From Lemma 13 we
derive that each process in C1 knows the other rumor r2 at the beginning the third iteration of the
loop 2 in epoch E .

Hence, the rumor r2 must have reached some process in D before the instance of Local Signaling
started, when processes from D were performing the communication inside their group. This holds,
because each process in D used the graph Gin(ip+2), or a denser graph from the family Gin (which,
by definition, has graph Gin(ip + 2) as a subgraph) , in the rounds preceding the Local Signaling,
i.e. line 7. Next, in the execution of Local Signaling which p survived, the information from any
process from set D was conducted to process p, and this information includes the other rumor
r2.

Analysis of communication complexity. Let Li(r) be the set of non-faulty processes that at
the beginning of the round r are on level i or bigger. We show that for any round r ≥ 2 and for
any i ∈ [t], the number |Li(r)| is at most 2n

2i
.

Lemma 15. For any round r ≥ 2 and any level i ∈ [t] the number of processes in the set Li(r) is
at most 2n

2i
.

Proof. Assume, to arrive at a contradiction, that there exists round r ≥ 2 and level i ∈ [t] such
that at the beginning of round r the inequality |Li(r)| > 2n

2i
holds. Consider graph Gin(i− 1). The

construction of the graph guarantees that it is ( n
3·2i−1 , 3/4, δ)-compact. Because 2n

2i
≥ n

3·2i−1 , thus

there exists a survival subset S of Li(r)∩Gin(i−1) of size at least 3·n
2i−1 > 0, because i ≤ t = ⌊log n⌋.

Let r′ be the maximum round in which an instance of the LocalSignaling algorithm started and
there exists a process from set S that executed the LocalSignaling at level exactly i − 1. Let
A ⊆ S be the set of the processes at level exactly i− 1 in round r′.

First, since all processes from S are at level at least i in round r, round r′ exists, furthermore r′ <
r and the set A is non-empty. Also, every process from S starts the instance of the LocalSignaling
in round r′ at level i − 1 or bigger. The last is true, because not surviving an instance of Local
Signaling by a process results in increasing its level by 1.

Observe, that all processes used the graph Gin(i−1) as a subgraph of the communication graph
in the instance of the LocalSignaling algorithm starting at round r′. Since set S is a survival
set for Li(r) of the graph Gin(i − 1), thus, from a property of the LocalSignaling algorithm,
that is Lemma 17 point 3 in Section 8, we conclude that every process from set S that started this
instance of Local Signaling at level i − 1 survived this instance of Local Signaling. In particular
this means that processes from the non-empty set A ⊆ S stayed at level exactly i − 1 after this
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instance of Local Signaling. This contradicts the fact that r′ was defined as the last round with a
process in S starting Local Signaling at level exactly i− 1.

Let us recall the Theorem 5.

Theorem 5. BipartiteGossip solves the Bipartite Gossip problem in O(log3 n) rounds, with
O(log5 n · |R|) amortized number of communication bits, where |R| is the number of bits needed to
encode the rumors.

Proof. In order to count the number of bits sent, in total, by all processes, observe that a process
that is at a level i in a round uses at most O(26n·δki

), where ki :=
n

3·2i , links to communicate in this

round with other processes. Lemma 15 assures that there is at most 2n
2i

processes at level i in a

round. Thus, in a single round, processes use O(
∑i=t+1

i=0
2n
2i
· 2·26n·δki

) = O(t · n · δ) = O(n · log2 n)
messages. A single message carries a single bit and at most two rumors. The number of bits needed
to deliver such essage is O(|R|). Since the algorithm runs in O(log3 n) rounds, the total number of
bits used by processes is O(n · log5 n · |R|).

In order to prove correctness, observe that if all the processes from group P1 or all the processes
from group P2 fail during the execution, then every non-failed process knows the rumor of every
other non-failed process (because only the owners of a single rumor survived). Hence, consider a
case in which at the end of the algorithm the number of processes that survived is greater than
zero in each group. Since the number of epochs is 2t, there must exist an epoch E in which the
ratio of the processes that survived the epoch to the processes that were non-faulty at the begin
of the epoch is greater then 1

3 , in both groups. In every epoch in which the above is not satisfied,
the number of non-faulty processes decreases at least 3 times in one of the groups, and thus it
cannot happen more then 2 log n < 2t times. The conclusion of Lemma 14 completes the proof of
correctness.

7.2 The Gossip algorithm

Here, we describe an algorithm based on the divide-and-conquer approach, called Gossip that
utilizes the BipartiteGossip algorithm to solve Fault-tolerant Gossip. Each process takes the set
P, an initial rumor r and its unique name p ∈ [|P|] as an input. The processes split themselves
into two groups of size at most ⌈n/2⌉. The groups are determined based on the unique names. The
first ⌈n/2⌉ processes with the smallest names make the group P1, while the n − ⌈n/2⌉ processes
with the largest names define the group P2. Each of those two groups of processes solves Gossip
separately by evoking the Gossip algorithm inside the group only. The processes from each group
know the names of every other process in that group, hence the necessary conditions to execute
the Gossip recursively are satisfied. After the recursion finishes, a process from P1 stores a set of
rumors R1 of processes from its group, and respectively a process from P2 stores a set of rumors
R2 of processes from its group. Then, the processes solve Bipartite Gossip problem by executing
the BipartiteGossip algorithm on the partition P1, P2 and having initial rumors R1 and R2.
The output to this algorithm is the final output of the Gossip.

Theorem 3. Gossip solves deterministically the Fault-tolerant Gossip problem in O(log3 n) rounds
using O(log6 n·|R|) amortized number of communication bits, where |R| is the number of bits needed
to encode the rumors.

Proof. Because of the recursive nature of the algorithm, the easiest way to analyze it is by using the
induction principle over the number of processes. If the system consists of one non-faulty process,
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the process returns the exact number of zeros and ones immediately, regardless of its initial bit.
Thus, both the conditions – termination and validity – are satisfied.

Assume then, that the system consists of n > 1 processes. First, the processes perform the
Gossip algorithm in two groups of size at most ⌈n/2⌉. It takes T (⌈n/2⌉) rounds and 2M(⌈n/2⌉)
bits, where T (x) and M(x) is the number of rounds and the total number of bits used by the
Gossip algorithm executed on a system with x processes. Then, the n processes execute the
BipartiteGossip algorithm, which requires O(log3 n) rounds and O(n · log6 n)|R| communication
bits, by Theorem 3. Thus, in total, the algorithm takes T (⌈n/2⌉) + O(log3 n) rounds and sends
M(⌈n/2⌉ + n · log6 n|R|) communication bits. Given that T (1) = 1 and M(0) = 0, we calculate
that the functions T (x) and M(x) are asymptotically equal to O(log3 n) and O(n · log7 n)|R|,
respectively. This proves the termination condition and bounds the use of communication bits.

Now, we prove that the validity condition holds. After the recursive run of the algorithm, each
process from the group P1 stores set R1 consisting of rumors of alived processes from P1. This
set satisfies the validity conditions for the system consisting of processes from the group P1. The
processes from the group P2 store analogical set R2. If all processes from the group P1 or P2 have
crashed, then the validity condition holds from the inductive assumption. If there exists at least one
correct process in each group, then the execution of the BipartiteGossip algorithm guarantees
that each process has sets R1 and R2. In this case, the result returned by every process, that is,
the union of these two sets, satisfies the validity condition.

Modification for Fuzzy Counting. We define the Fuzzy Counting problem as follows. There
is a set n processes, P, with unique names that are comparable. Each process knows the names of
other processes (i.e. they operate in KT-1 model). Each process starts with an initial bit b ∈ {0, 1}.
Let Z denote the number of processes that started with the initial bit set to 0 and never failed.
Similarly, O denotes the number of processes that started with 1 and never failed. Each process has
to return two numbers: zeros and ones. An algorithm is said to solve fuzzy counting if every non
faulty process terminates (termination condition) and the values returned by any process fulfill the
conditions: zeros ≥ |Z|, ones ≥ |O| and zeros+ ones ≤ n (validity condition).

To solve this problem, we use the Gossip algorithm with the only modification that now we
require the algorithm the return the values Z and O, instead of the set of learned rumors. We apply
the same divide-and-conquer approach. That is, we partition P into groups P1 and P2 and we
solve the problem within processors of this partition. Let Z1, O1 and Z2, O2 be the values returned
by recursive calls on set of processes P1 and P2, respectively. Then, we use the BipartiteGossip

algorithm to make each process learn values Z and O of the other group. Eventually, a process
returns a pair of values Z1 + Z2 and O1 + O2 if it received the values from the other partition during
the execution of BipartiteGossip; or it returns the values corresponding to the recursive call in
its partition otherwise. It is easy to observe, that during this modified execution processes must
carry messages that are able to encode values Z and O, thus in this have it holds that |R| = O(log n).
We conclude this modification in the following theorem.

Theorem 4. There exists an algorithm, called FuzzyCounting that solves Fuzzy Counting prob-
lem in O(log3 n) rounds with O(log7 n) amortized bit complexity.

8 Local Signalling – Estimating neighborhoods in expanders

The LocalSignaling algorithm, presented in this section, allows to adapt the density of used
overlay graph to any malicious fail pattern guaranteeing fast information exchange among a constant
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fraction of non-faulty nodes with amortized Õ(n|R|) bit complexity, where R is the overhead that
comes from the bit size of the information needed to convey.

High level idea. The procedure is formally denoted LocalSignaling(P, p,G, δ, γ, ℓ, r), where P
is the set of all processes, p is the process that executes the procedure and G = {G(1), . . . , G(t)}
denotes the family of overlay graphs that processes from P uses to select processes to directly
communicate – those are neighborhoods in some graph of the family G. In our case, the family
will consist of graphs with increasing connectivity properties. Parameters γ, δ correspond to the
property of (γ, δ)-dense-neighborhoods which the base graph G(1) must fulfill. They are also related
to the time and actions taken by processes if failures occur, respectively. The parameter ℓ ≤ t is
called a starting level of process p and denotes the communication graph from family G from which
the node p starts the current run of the procedure. This parameter may be different for different
processes. Finally, the parameter r denotes a rumor that process p is supposed to deliver to other
processes. Since processes operates in KT−1 model, the implementation assumes that each process
uses the same family G (see the corresponding discussion after Theorem 6).

Procedure LocalSignaling(P, p,G, δ, γ, ℓ, r) takes 2γ consecutive rounds. The level of process
p executing the procedure is initially set to ℓ, and is stored in a local variable i. Each process stores
also s set R of all rumors it has learned to this point of execution. Initially, R is set to {r}.
Odd rounds: Process p sends a request message to each process q in NG(i)(p), provided i > 0.

Even rounds: Every non-faulty process q responds to the requests received at the end of the
previous round – by replying to the originator of each request a message containing the
current level i of process q and the set R of all different rumors q collected so far.

At the end of each even round, processes that requested information in the previous round
collect the responses to those requests. If a single process p received less then δ responses
with level’s value of its neighbors greater or equal than its level value i, then p decreases i by
one. Additionally, p merges every set of rumors it received with its own set R. If i drops to
0, then p does not send any requests in the consecutive rounds.

Output: We say that process p has not survived the LocalSignaling algorithm if it ends with
value i lower than its initial level i. Otherwise, p is said to have survived the LocalSignaling
algorithm. p returns a single bit indicating whether it has survived or not and the set R
containing all rumors it has learnt in the course of the execution.

Lemma 16. The procedure LocalSignaling(P, p,G, δ, γ, ℓ, r) takes O(γ) rounds and uses
(
∑i=t

i=1 |Li|·
|NG≤i

(Li)| · γ · |R|
)

communication bits, where Li denotes the set of processes that start at level i,
the graph G≤i is a union of graphs G(1), . . . , G(i), and the value |R| denotes the number of bits
needed to encode all possible rumors.

Proof. Each process executes work for 2γ rounds, thus this must be also the running time of the
whole procedure. Next, we bound the total number of bits that processes used in the instance of
Local Signaling. Observe, that every message is of size at most 1 + |R|, thus it is enough to upper
bound the total number of messages sent. Each node in each round either sends a request or replies
once to each received requests. Thus, it is enough to bound the number of sent requests only. The
processes that start at level i may only decrease their levels after a round. There are O(γ) rounds
in total, thus they send at most |NG≤i

(Li)| · γ requests. If we sum this expression over all possible
start levels, we get the claimed upper bound on the number of messages and, in consequence, the
claimed upper bound on the number of bits used by participating processes.

29



Surviving the LocalSignaling algorithm – the consequences. Here, we present benefits of
the LocalSignaling algorithm if a proper graph family G is used. Assume that t ≥ 1 and consider
a sequence (ki)i∈[t]. Let G = {G(1), . . . , G(t)} be a family of graphs G(i) = G(n, ki, δ, γ) defined as
in Theorem 6. We require, for any 1 ≤ i < t that G(i) ⊆ G(i + 1). Consider a simultaneous run
of the procedure LocalSignaling(P, p,G, δ, γ, ℓ, r) at every process p ∈ P. Here, we require each
process p ∈ P to use the same family of graphs G. Since our processes operates in KT−1 model,
this requirement could be always satisfied.

When a process p survives an instance of Local Signaling and no failures occurred in this
instance, then the set of processes which exchanged a message with p during the Local Signaling
execution is a (γ, δ)-dense-neighborhood for p in graph Gℓ, where ℓ is the level of p given as an
argument to the procedure. We show that the same property holds in general case (when failures
occurred), provided p has survived Local Signaling.

Let Bℓ,1 be the start set on level ℓ: it consists of the processes that are non-faulty at the
beginning of this instance of Local Signaling and their level is at least ℓ. Let Bℓ,2 ⊆ Bℓ,1 be the end
set : it consists of the processes that are non-faulty just after the termination of this instance and
their level at the beginning of this instance was at least ℓ. The processes in Bℓ,1 \Bℓ,2 are among
those that have crashed during the considered instance of Local Signaling.

Lemma 17. The following properties hold for arbitrary times of crashes of the processes in Bℓ,1 \
Bℓ,2:

1. If there is a (γ, δ)-dense-neighborhood for p ∈ Bℓ,2 in graph Gℓ|Bℓ,2
, then process p survives

Local Signaling.

2. If p survived the Local Signaling, then there is (γ, δ)-dense-neighborhood for p ∈ Bℓ,1 in
graph G(ℓ)|Bℓ,1

. Moreover, p receives the rumor r of any node from that (γ, δ)-dense-neighborhood.

3. Any process in a survival set C for Bℓ,2 that started at level exactly ℓ survives Local Signaling.

Proof. We first prove property 1. Let S be any (γ, δ)-dense-neighborhood for p in graph G|Bℓ,2
.

We argue, that every process in S ∩ Nγ−1
G(ℓ)(p) receives at least δ responses at the second round of

Local Signaling. Indeed, at least that many requests were sent by this process to all its neighbors,
in the first round. Since, all these neighbors were at the level at least ℓ in the first round (by the
definition of Bip,2), thus the process preserves its variable i set to ℓ after the second round of the

Local Signaling procedure. By induction on j ≤ γ, no process in S ∩Nγ−j
G(ℓ)(p) decreases its value i

before the end of the 2j-th round of Local Signaling, and hence p survives.

Next, we argue that property 2 holds. Suppose, that p survives the LocalSignaling algorithm.
Then, there is a set S1 ⊆ NG(ℓ)(p) of at least δ processes such that every process from S1 survives
the first 2(γ−1) rounds of the LocalSignaling algorithm. Obviously, p received a rumor r of any
process from S1. By induction, for each 1 ≤ j ≤ γ there is a set Sj such that Sj−1 ⊆ Sj ⊆ N j

G(ℓ)(p),

and all processes in Sj survive the first 2(γ−j) rounds of the LocalSignaling algorithm, and their
rumors were conducted to process p. The set Sγ satisfies the definition of (γ, δ)-dense-neighborhood
for p in graph G|Bℓ,1

and the induction argument assures that the rumors of processes in Sγ have
reached the p process.

Finally, we prove the third property. Consider a survival set C for Bℓ,2. By the definition of
a survival set, each process in C has at least δ neighbors in C. Because, C ⊆ Bℓ,2, thus every
process from the set C starts the instance of Local Signaling with variable i set to ℓ at least. The
variable i decreases at most by one between every two rounds of the LocalSignaling algorithm,
thus variables i of processes in C cannot fall below ℓ. In consequence, each process from C that
started with at the initial level ℓ terminates with the value i being equal to ℓ and thus survives this

30



instance of Local Signaling.

9 Conclusions and Open Problems

We explored the Consensus problem in the classic message-passing model with processes’ crashes,
from perspective of both time and communication optimality. We discovered an interesting tradeoff
between these two complexity measures: Time × Amortized Communication = Õ(n), which, to the
best of our knowledge, has not been present in other settings of Consensus and related problems.
We believe that a corresponding lower bound could be proved: Time × Amortized Communication
= Ω̃(n). Interestingly, a similar tradeoff could hold between time and amount of randomness, as our
main algorithm ParameterizedConsensus∗ satisfies the relation: Time×Amortized Randomness
= Õ(n). Exploring similar tradeoffs in other fault-tolerant distributed computing problems could
be a promising and challenging direction to follow.
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