930

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 6, JUNE 2010

Improved Computation for Levenberg—Marquardt
Training

Bogdan M. Wilamowski, Fellow, IEEE, and Hao Yu

Abstract—The improved computation presented in this paper is
aimed to optimize the neural networks learning process using Lev-
enberg-Marquardt (LM) algorithm. Quasi-Hessian matrix and
gradient vector are computed directly, without Jacobian matrix
multiplication and storage. The memory limitation problem for
LM training is solved. Considering the symmetry of quasi-Hessian
matrix, only elements in its upper/lower triangular array need to
be calculated. Therefore, training speed is improved significantly,
not only because of the smaller array stored in memory, but also
the reduced operations in quasi-Hessian matrix calculation. The
improved memory and time efficiencies are especially true for
large sized patterns training.

Index Terms—Levenberg—Marquardt (LM) algorithm, neural
network training.

I. BACKGROUND

RTIFICIAL NEURAL NETWORKS (ANNs) are widely

used in industrial fields, such as nonlinear control [1], [5],
system analysis and diagnosis [8], [14], and data classification
[10], [18].

As a first-order algorithm, error backpropagation (EBP) al-
gorithm [17], [19] is the most welcomed method in training
neural networks, since it was invented in 1986. However, EBP
algorithm is also well known for its low training efficiency.
Using dynamic learning rates is a common way to increase the
training speed of EBP algorithm [6], [13]. Also, momentum [16]
can be introduced to speed up its convergence. But, even with
those good suggestions, EBP algorithms (including improved
versions) are still network and iteration expensive in practical
applications.

Training speed is significantly increased by using second-
order algorithms [3], [9], [22], such as Newton algorithm and
Levenberg—Marquardt (LM) algorithm [12]. Comparing with
the constant (or manually adjusted) learning rates in EBP al-
gorithms, second-order algorithms can “naturally” estimate the
learning rate in each direction of gradient using Hessian matrix.
By combining EBP algorithm and Newton algorithm, LM algo-
rithm is ranked as one of the most efficient training algorithms
for small and median size patterns.

LM algorithm was implemented for neural network training
in [7], but only for multilayer perceptron (MLP) architectures.

Manuscript received June 16, 2009; revised January 21, 2010; accepted Feb-
ruary 18, 2010. Date of publication April 19, 2010; date of current version June
03, 2010.

The authors are with the Department of Electrical and Computer Engineering,
Auburn University, Auburn, AL 36849-5201 USA (e-mail: wilam@ieee.org;
hzy0004 @auburn.edu).

Digital Object Identifier 10.1109/TNN.2010.2045657

10 T T T T

—{3— EBP Algorithm
—D— LM Algorithm

Average Training Time (s)

16 Neurons
168 Weights

1 1 L
6 7 8 9 10 11 12 13 14 15
33 42 52 63 75 88 102 117 133 150

09 + —{3— EBP Algorithm
0.8 S LM Algorithm
© 0.7
£ 06
? 05
&
o 04
>
? 03
0.2
0.1
0[]‘_,—,6 - 3 3 . L L L L
6 7 8 9 10 1" 12 13 14 15 16 Neurons
33 42 52 63 75 88 102 117 133 150 168 Weights

(®)

Fig. 1. Comparison between EBP algorithm and LM algorithm, for different
number of neurons in fully connected cascade networks: (a) average training
time; (b) success rate.

The best known example is popular neural network toolbox of
MATLAB. Recently, LM algorithm was adapted for arbitrarily
connected neural (ACN) networks [20], [21]. Those ACN net-
works can handle more complex problems with less number of
neurons. LM algorithm implementations require calculation of
Jacobian matrix, whose size is proportional to the number of
training patterns.

Fig. 1 presents the training results the two-spiral problem
[2], using EBP and LM algorithms. In both cases, fully con-
nected cascade (FCC) networks were used; the desired sum
squared error was 0.01; the maximum number of iteration was
1000 000 for EBP algorithm and 1000 for LM algorithm. EBP
algorithm not only requires much more time than LM algorithm
[Fig. 1(a)], but also is not able to solve the problem unless
excessive number of neurons is used. EBP algorithm requires
at least 12 neurons and the second-order algorithm can solve it
in much smaller networks, such as seven neurons [Fig. 1(b)].

Fig. 2 shows the training results of the two-spiral problem,
using 16 neurons in fully connected cascade network, for both
EBP algorithm and LM algorithm. One may notice that, with

1045-9227/$26.00 © 2010 IEEE

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

WILAMOWSKI AND YU: IMPROVED COMPUTATION FOR LEVENBERG-MARQUARDT TRAINING 931

-10-10
(b)

Fig. 2. Training results of the two-spiral problem with 16 neurons in fully con-
nected cascade network. (a) EBP algorithm. (b) LM algorithm.

the same topology, LM algorithm is able to find better solutions
than those found using EBP algorithm.

The comparison results above illustrate a significant advan-
tage of LM algorithm training small and medium size patterns.
However, for problems with large number of patterns, such
as parity-16 problem (65536 patterns), LM algorithm will
have to use excessive memory for Jacobian matrix storage and
multiplication.

In the proposed modification of LM algorithm, Jacobian ma-
trix needs not to be stored and Jacobian matrix multiplication
was replaced by vector operations. Therefore, the proposed
algorithm can be used for problems with basically unlimited
number of training patterns. Also, the proposed improvement
accelerates training process.

In Section II, computational fundamentals of LM algorithm
are introduced to address the memory problem. Section III de-
scribes the improved computation for both quasi-Hessian ma-
trix and gradient vector in details. Section IV illustrates the
improved computation on a simple problem. Section V gives

some experimental results on memory and training time com-
parison between the traditional computation and the improved
computation.

II. COMPUTATIONAL FUNDAMENTALS
Derived from steepest descent method and Newton algorithm,
the update rule of LM algorithm is [7]
Aw = (JTT +pul)~"JTe (1)

where w is the weight vector, I is the identity matrix, p is the
combination coefficient, (P x M) x N the Jacobian matrix J
and (P x M) x 1 the error vector e are defined as

r 8611 (9611 8611 T
owy Ows owp
Ode1a de1s Oeia [e
871)1 8’(1)2 awN €12
Oeiyy Oein Oein
d d d Cim
N e 2 N e=| - |
dep1 Oepy dep1 ept
owy Ows own
depa Oepo depo r2
8w1 an (9'11'){\7 Lepar
depy Oepar depm
L Owq Ows owy

where P is the number of training patterns, M is the number
of outputs, and N is the number of weights. Elements in error
vector e are calculated by

Opm (€)

€pm = Upm —

where d,, and o,,, are the desired output and actual output,
respectively, at network output m when training pattern p.

Traditionally, Jacobian matrix .J is calculated and stored at
first; then Jacobian matrix multiplications are performed for
weight updating using (1). For small and median size patterns
training, this method may work smoothly. However, for large
sized patterns, there is a memory limitation for Jacobian matrix
J storage.

For example, the pattern recognition problem in MNIST
handwritten digit database [4] consists of 60000 training
patterns, 784 inputs, and ten outputs. Using only the simplest
possible neural network with ten neurons (one neuron per each
output), the memory cost for the entire Jacobian matrix storage
is nearly 35 GB. This huge memory requirement cannot be
satisfied by any 32-bit Windows compliers, where there is a
3-GB limitation for single array storage. At this point, with
traditional computation, one may conclude that LM algorithm
cannot be used for problems with large number of patterns.

III. IMPROVED COMPUTATION

In the following derivation, sum squared error (SSE) is used
to evaluate the training process:

M
>0 Gm)

p=1m=1

E(w) =

N | =

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

932

where e,,,,, is the error at output m obtained by training pattern
p, defined by (3).
The N x N Hessian matrix H is [15]

[O0°FE 0’E 0’E
ow? Ow1 0w, Ow10wn
0’E 0’E 0’E
H = 8w28w1 ow3 8w28wN o)
82 0’E 82
L OwnyOw; OwyOws OwN]

where N is the number of weights.
Combining (4) and (5), elements of Hessian matrix H can be

obtained as
epm> (6)
where ¢ and j are weight indexes.
For LM algorithm, (6) is approximated as [7], [15]

2
0%epm

S

p=1m=1

(8epm depm N

(‘37111 aw j ow; Ow; Ow;0w;

P M

N Z Z (a;zm aepm) . ™

where ¢;; is the element of quasi-Hessian matrix in row ¢ and
column j.

Combining (2) and (7), quasi-Hessian matrix @ can be calcu-
lated as an approximation of Hessian matrix

8w, 8w i

H~Q=J"J. (8)
N x 1 gradient vector g is

oF
8w2

(€))

dun own

_ [B_E 8_E]

Inserting (4) into (9), elements of gradient can be calculated

(Fezem)
—CEpm | -

From (2) and (10), the relationship between gradient vector g
and Jacobian matrix J is

as

(10)

>

9i =
aw
v p=1m=1

g=J"e. (11)

Combining (8), (11), and (1), the update rule of LM algorithm
can be rewritten as

Aw=(Q+pul)"'g (12)

One may notice that the sizes of quasi-Hessian matrix and

gradient vector g are proportional to number of weights in net-

works, but they are not associated with the number of training
patterns and outputs.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 6, JUNE 2010

(b)

Fig. 3. Two ways of multiplying matrixes: (a) row—column multiplication re-
sults in a scalar; (b) column-row multiplication results in a partial matrix q.

Equations (1) and (12) are producing identical results for
weight updating. The major difference is that in (12), quasi-
Hessian matrix @ and gradient vector g are calculated directly
without necessity to calculate and to store Jacobian matrix J as
is done in (1).

A. Review of Matrix Algebra

There are two ways to multiply rows and columns of two
matrixes. If the row of first matrix is multiplied by the column of
the second matrix, then we obtain a scalar, as shown in Fig. 3(a).
When the column of the first matrix is multiplied by the row of
the second matrix, then the result is a partial matrix g [Fig. 3(b)]
[11]. The number of scalars is N x N, while number of partial
matrices ¢ which later have to be summed is P x M.

When J7 is multiplied by .J using routine shown in Fig. 3(b),
at first, partial matrices ¢ (size: N X N) need to be calculated
P x M times, then all of P x M matrices ¢ must be summed
together. The routine of Fig. 3(b) seems complicated, therefore
almost all matrix multiplication processes use the routine of
Fig. 3(a), where only one element of resulted matrix is calcu-
lated and stored every time.

Even the routine of Fig. 3(b) seems to be more complicated
and it is used very seldom; after detailed analysis, one may con-
clude that the number of numerical multiplications and addi-
tions is exactly the same as that in Fig. 3(a), but they are per-
formed in different order.

In a specific case of neural network training, only one row
(N elements) of Jacobian matrix J (or one column of J7) is
calculated, when each pattern is applied. Therefore, if routine
from Fig. 3(b) is used then the process of creation of quasi-
Hessian matrix can start sooner without necessity of computing
and storing the entire Jacobian matrix for all patterns and all
outputs.

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

WILAMOWSKI AND YU: IMPROVED COMPUTATION FOR LEVENBERG-MARQUARDT TRAINING 933

TABLE 1
MEMORY COST ANALYSIS

Multiplication Methods | Elements for storage
Row-column (Fig. 3a) (PxM)xN + NxN + N
Column-row (Fig. 3b) NxN + N

Difference (P x M) x N

P is the number of training patterns, M is the number of outputs and N is the
number of weights.

The analytical results in Table I show that the column-row
multiplication [Fig. 3(b)] can save a lot of memory.

B. Improved Quasi-Hessian Matrix Computation

Let us introduce quasi-Hessian submatrix g,,,,, (size: N x N)

[Oepm 2 Oepm Oepm Oepm Oepm T
(8w1) 8w1 8w2 a—wlw
Oepm Oepm Oepm 2 Oepm Oepm
Tpm = owy 0wy < Ows > 8—7112%
O0epm Oepm Opm Otpm Oepm 2
| Owy Ow; Owpy Ows <M> i
(13)

Using (7) and (13), the N X N quasi-Hessian matrix @ can
be calculated as the sum of submatrices g,,,,

P M
Q=>"> gy (14)
p=1m=1
By introducing 1 X N vector jy,,
.| Oepm Oepm Oepm (15)
Tpm = ow, Owy own
submatrices dpm in (13) can be also written in the vector form
[Fig. 3(b)]

o = JpmIpm- (16)

One may notice that for the computation of submatrices g,,,,,,
only NV elements of vector j,,,, need to be calculated and stored.
All the submatrixes can be calculated for each pattern p and
output m separately, and summed together, so as to obtain quasi-
Hessian matrix Q.

Considering the independence among all patterns and out-
puts, there is no need to store all the quasi-Hessian submatrices
dpn,- Each submatrix can be summed to a temporary matrix
after its computation. Therefore, during the direct computation
of quasi-Hessian matrix @ using (14), only memory for N ele-
ments is required, instead of that for the whole Jacobian matrix
with (P x M) x N elements (Table I).

From (13), one may notice that all the submatrixes g,,, are
symmetrical. With this property, only upper (or lower) triangular
elements of those submatrixes need to be calculated. Therefore,
during the improved quasi-Hessian matrix ¢ computation, mul-
tiplication operations in (16) and sum operations in (14) can be
both reduced by half approximately.

C. Improved Gradient Vector Computation

Gradient subvector ,,,,, (size: N x 1) is

Oepm . Oepm
ow, ™ owq
Oepm . Oepm
"lpm = 87112 pm = 811}2 X €pm - (17)
Oepm Oepm
Epm —
owy ¥ Jwn

Combining (10) and (17), gradient vector g can be calculated
as the sum of gradient subvector 7,,,,

P M
9=>_> Ty

p=1m=1

(18)

Using the same vector j,,,, defined in (15), gradient subvector

can be calculated using
npm :jpmepm' (19)

Similarly, gradient subvector 7, can be calculated for
each pattern and output separately, and summed to a tempo-
rary vector. Since the same vector jp,, is calculated during
quasi-Hessian matrix computation above, there is only an extra
scalar ep,, that need to be stored.

With the improved computation, both quasi-Hessian matrix
@ and gradient vector g can be computed directly, without Jaco-
bian matrix storage and multiplication. During the process, only
a temporary vector j,,,, with N elements needs to be stored; in
other words, the memory cost for Jacobian matrix storage is re-
duced by (P x M) times. In the MINST problem mentioned in
Section II, the memory cost for the storage of Jacobian elements
could be reduced from more than 35 GB to nearly 30.7 kB.

D. Simplified Oep, /Ow; Computation

The key point of the improved computation above for quasi-
Hessian matrix @ and gradient vector g is to calculate vector
Jpm defined in (15) for each pattern and output. This vector is
equivalent of one row of Jacobian matrix .J.

The elements of vector j,,, can be calculated by

_ 0(0pm — dy) _
ow; Onet,, Ow;

Oepm

8wi

0opm Onety,

(20)

where d is the desired output and o is the actual output; net,,,
is the sum of weighted inputs at neuron n described as

I
net,, = Za:piwi 21
i=1

where z,,; and w; are the inputs and related weights, respec-
tively, at neuron n; I is the number of inputs at neuron 7.

Inserting (20) and (21) into (15), vector jpm can be calculated
by

. aopm
— :L' :1;' 1/ ..
]I)m 8netp1[rl,1 rl,]
aOp’rn
Tpn Tpn.i .. PP 22
dnetpy, [pn,1 pn,] (22)

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

934

patterns Inputs

1 -1 -1 1
2 -1 -1
3 1 -1 -1
4 11 1

outputs

Fig. 4. Parity-2 problem: four patterns, two inputs, and one output.

Fig. 5. Three neurons in MLP network used for training parity-2 problem;
weight and neuron indexes are marked in the figure.

where z,,, ; is the ¢th input of neuron n, when training pattern
.
Using the neuron by neuron computation [20], [21], elements
Zpn,i 10 (22) can be calculated in the forward computation,
while do,,,, /Onet,, are obtained in the backward computation.
Again, since only one vector j,,, needs to be stored for each
pattern and output in the improved computation, the memory
cost for all those temporary parameters can be reduced by
(P x M) times. All matrix operations are simplified to vector
operations.

IV. IMPLEMENTATION

In order to better illustrate the direct computation process for
both quasi-Hessian matrix @ and gradient vector g, let us ana-
lyze parity-2 problem as a simple example.

Parity-2 problem is also known as XOR problem. It has four
training patterns, two inputs, and one output. See Fig. 4.

The structure, three neurons in MLP topology (see Fig. 5), is
used.

As shown in Fig. 5, weight values are initialed as vector
w = {wi,ws, w3, ws, W5, We, W7, Ws, Wo . All elements in
both quasi-Hessian matrix @ and gradient vector g are set to
“«0.”

For the first pattern (—1, —1), the forward computation is as
follows:

1) netyp = 1x wy + (—1) X wo + (—1) X w3,

2) 011 = f(net11);

3) netio =1 X wy + (—1) X ws + (—1) X Weg
4) 012 = f(neti2);

5) net13 = 1 X wy + 011 X wg + 012 X wWo;

6) 013 = f(net1s);

7) €11 = 1-— 013.

Then the backward computation is performed to calculate
8811/81161}11, 8611/8net12 and 8611/8net13 in the fol-
lowing steps.

8) With results of steps (f) and (g), it can be calculated

8611 o 8(1 — f(netlg)) o

- 8net13 o 8net13

_ 8f(net13))

23
anetlg ()

53

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 6, JUNE 2010

% Initialization
Q=0;
g=0
% Improved computation
for p=1:P
% Forward computation

% Number of patterns

for m=1:M % Number of outputs
% Backward computation

calculate vector jpm; % Eq. (22)

calculate sub matrix qpm; % Eq. (16)

calculate sub vector Nym; % Eq. (19)

Q=Q+qpm; % Eq. (14)

=g Npm; % Eq. (18)
end;

end;

Fig. 6. Pseudocode of the improved computation for quasi-Hessian matrix and
gradient vector.

9) With results of step (b) to step (g), using the chain rule in
differential, one can obtain

8611 8f(net12) 8f(net13)
= = - — B 04
52 8net12 8net12 wo X 8net13 ()
(9611 af(netu) af(netlg)
= = =B @2
51 anetll 81161}11 X ws X 81161}13 (5)

In this example, using (22), the vector 7, is calculated as

8611 8611

111 = 1 -1 -1 1 -1 -1
Jul 0net11 X []8net12 % []
de1r
. (26
Onetys 011 012] (26)

With (16) and (19), submatrix g,; and subvector 7;; can be
calculated separately

2 2 2
51 =81 —S1 5183011 5183012
2 2
0 57 57 —S5183011 —S5153012
_ 10 0 3% —8183011 —S5153012
Q=1
0 0 0 83011012
2 2
0 0 o --- 0 83072
(27)
My =[51 —s1 —s1 53011 $3012] X e11. (28)

One may notice that only upper triangular elements of sub-
matrix ¢, are calculated, since all submatrixes are symmetrical.
This can save nearly half of computation.

The last step is to add submatrix g;; and subvector 7, to
quasi-Hessian matrix @ and gradient vector g.

The analysis above is only for training the first pattern. For
other patterns, the computation process is almost the same.
During the whole process, there is no Jacobian matrix compu-
tation; only the derivatives and outputs of activation functions
are required to be computed. All the temporary parameters are
stored in vectors which have no relationship with the number
of patterns and outputs.

Generally, for the problem with P patterns and M outputs,
the improved computation can be organized as the pseudocode
shown in Fig. 6.

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

WILAMOWSKI AND YU: IMPROVED COMPUTATION FOR LEVENBERG-MARQUARDT TRAINING 935

TABLE II
MEMORY COMPARISON FOR PARITY PROBLEMS
Parity-N Problems N=14 N=16
Patterns 16,384 65,536
Structures* 15 neurons 17 neurons
Jacobian matrix sizes 5,406,720 27,852,800
Weight vector sizes 330 425
Average iteration 99.2 166.4
Success Rate 13% 9%
Algorithms Actual memory cost
Traditional LM 79.21Mb 385.22Mb
Improved LM 3.41Mb 4.30Mb
*All neurons are in fully connected cascade networks
TABLE III
MEMORY COMPARISON FOR MINST PROBLEM
Problem MINST
Patterns 60,000
Structures 784=1 single layer network*
Jacobian matrix sizes 47,100,000
Weight vector sizes 785
Algorithms Actual memory cost
Traditional LM 385.68Mb
Improved LM 15.67Mb

*In order to perform efficient matrix inversion during training, only one of ten
digits is classified each time.

The same quasi-Hessian matrices and gradient vectors are ob-
tained in both traditional computation (8 and 11) and the pro-
posed computation (14 and 18). Therefore, the proposed com-
putation does not affect the success rate.

V. EXPERIMENTAL RESULTS

Several experiments are designed to test the memory and time
efficiencies of the improved computation, comparing with tra-
ditional computation. They are divided into two parts: memory
comparison and time comparison.

A. Memory Comparison

Three problems, each of which has huge number of patterns,
are selected to test the memory cost of both the traditional com-
putation and the improved computation. LM algorithm is used
for training and the test results are shown Tables II and III. In
order to make more precise comparison, memory cost for pro-
gram code and input files were not used in the comparison.

From the test results in Tables II and III, it is clear that
memory cost for training is significantly reduced in the im-
proved computation.

In the MNIST problem [4], there are 60 000 training patterns,
each of which is a digit (from 0 to 9) image made up of grayed 28
x 28 pixels. Also, there are another 10 000 patterns used to test
the training results. With the trained network, our testing error
rate for all the digits is 7.68%. In this result, for compressed,
stretched and moved digits, the trained neural network can clas-
sify them correctly [see Fig. 7(a)]; for seriously rotated or dis-
torted images, it is hard to recognize them [see Fig. 7(b)].

B. Time Comparison

Parity-N problems are presented to test the training time for
both traditional computation and the improved computation

Fig. 7. Some testing results for digit “2” recognition. (a) Recognized patterns.
(b) Unrecognized patterns.

TABLE IV
TIME COMPARISON FOR PARITY PROBLEMS

Parity-N Problems N=9 N=11 N=13 N=15
Patterns 512 2,048 8,192 32,768
Neurons 10 12 14 16
Weights 145 210 287 376

Average Iterations | 38.51 59.02 68.08 126.08

Success Rate 58% 37% 24% 12%

Algorithms Averaged training time (s)
Traditional LM 0.78 68.01 1508.46 43,417.06
Improved LM 0.33 22.09 173.79 2,797.93

using LM algorithm. The structures used for testing are all
fully connected cascade networks. For each problem, the initial
weights and training parameters are the same.

From Table IV, one may notice that the improved computa-
tion can not only handle much larger problems, but also com-
putes much faster than traditional one, especially for large sized
patterns training. The larger the pattern size is, the more time
efficient the improved computation will be.

Obviously, the simplified quasi-Hessian matrix computation
is the one reason for the improved computing speed (nearly two
times faster for small problems). Significant computation reduc-
tions obtained for larger problems are most likely due to the
simpler way of addressing elements in vectors, in comparison
to addressing elements in huge matrices.

With the presented experimental results, one may notice that
the improved computation is much more efficient than tradi-
tional computation for training with LM algorithm, not only on
memory requirements, but also training time.

VI. CONCLUSION

In this paper, the improved computation is introduced to in-
crease the training efficiency of LM algorithm. The proposed
method does not require to store and to multiply large Jacobian
matrix. As a consequence, memory requirement for quasi-Hes-
sian matrix and gradient vector computation is decreased by
(P x M) times, where P is the number of patterns and M
is the number of outputs. Additional benefit of memory reduc-
tion is also a significant reduction in computation time. Based
on the proposed computation, calculating process of quasi-Hes-
sian matrix is further simplified using its symmetrical property.

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

936

Therefore, the training speed of the improved algorithm be-
comes much faster than traditional computation.

In the proposed computation process, quasi-Hessian matrix
can be calculated on fly when training patterns are applied.
Moreover, the proposed method has special advantage for ap-
plications which require dynamically changing the number of
training patterns. There is no need to repeat the entire multipli-
cation of JT.J, but only add to or subtract from quasi-Hessian
matrix. The quasi-Hessian matrix can be modified as patterns
are applied or removed.

Second-order algorithms have lots of advantages, but they re-
quire at each iteration solution of large set of linear equations
with number of unknowns equal to number of weights. Since in
the case of first-order algorithms, computing time is only pro-
portional to the problem size, first-order algorithms (in theory)
could be more useful for large neural networks. However, as
one can see from the two-spiral example in Section I, first-order
algorithm (EBP algorithm) is not able to solve some problems
unless excessive number of neurons is used (Fig. 1). But with
excessive number of neurons, networks lose their generalization
ability and as a result, the trained networks will not respond well
for new patterns, which are not used for training.

One may conclude that both first-order algorithms and
second-order algorithms have their disadvantages and the
problem of training extremely large networks with second-order
algorithms is still unsolved. The method presented in this paper
at least solved the problem of training neural networks using
second-order algorithm with basically unlimited number of
training patterns.!

REFERENCES

[1] A. Y. Alanis, E. N. Sanchez, and A. G. Loukianov, “Discrete-time
adaptive backstepping nonlinear control via high-order neural net-
works,” IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1185-1195, Jul.
2007.

J. R. Alvarez-Sanchez, “Injecting knowledge into the solution of the

two-spiral problem,” Neural Comput. Appl., vol. 8, pp. 265-272, Aug.

1999.

N. Ampazis and S. J. Perantonis, “Two highly efficient second-order

algorithms for training feedforward networks,” IEEE Trans. Neural

Netw., vol. 13, no. 5, pp. 1064-1074, Sep. 2002.

L. J. Cao, S. S. Keerthi, C.-J. Ong, J. Q. Zhang, U. Periyathamby, X.

J. Fu, and H. P. Lee, “Parallel sequential minimal optimization for the

training of support vector machines,” IEEE Trans. Neural Netw., vol.

17, no. 4, pp. 1039-1049, Jul. 2006.

J. A. Farrell and M. M. Polycarpou, “Adaptive approximation based

control: Unifying neural, fuzzy and traditional adaptive approximation

approaches,” IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 731-732,

Apr. 2008.

[6] S. Ferrari and M. Jensenius, “A constrained optimization approach to
preserving prior knowledge during incremental training,” IEEE Trans.
Neural Netw., vol. 19, no. 6, pp. 996-1009, Jun. 2008.

[71 M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.
989-993, Nov. 1994.

[8] S.Khomfoi and L. M. Tolbert, “Fault diagnostic system for a multilevel
inverter using a neural network,” IEEE Trans. Power Electron., vol. 22,
no. 3, pp. 1062-1069, May 2007.

[9] C.-T. Kim and J.-J. Lee, “Training two-layered feedforward networks
with variable projection method,” IEEE Trans. Neural Netw., vol. 19,
no. 2, pp. 371-375, Feb. 2008.

[2

—

3

—

[4

—

[5

—

IThe method was implemented in neural networks trainer (NBN 2.08) [23],
and the software can be downloaded from website: http://www.eng.auburn.edu/
~wilambm/nnt/index.htm.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 21, NO. 6, JUNE 2010

[10] M. Kyperountas, A. Tefas, and I. Pitas, “Weighted piecewise LDA for
solving the small sample size problem in face verification,” IEEE Trans.
Neural Netw., vol. 18, no. 2, pp. 506-519, Mar. 2007.

[11] D. C. Lay, Linear Algebra and Its Applications, 3rd ed.
dison-Wesley, 2005.

[12] K. Levenberg, “A method for the solution of certain problems in least
squares,” Quart. Appl. Mach., vol. 2, pp. 164—168, 1944.

[13] Y.Liu,J. A. Starzyk, and Z. Zhu, “Optimized approximation algorithm
in neural networks without overfitting,” IEEE Trans. Neural Netw., vol.
19, no. 6, pp. 983-995, Jun. 2008.

[14] J. F. Martins, V. F. Pires, and A. J. Pires, “Unsupervised neural-net-
work-based algorithm for an online diagnosis of three-phase induc-
tion motor stator fault,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.
259-264, Feb. 2007.

[15] J.-X.Peng, K. Li, and G. W. Irwin, “A new Jacobian matrix for optimal
learning of single-layer neural networks,” IEEE Trans. Neural Netw.,
vol. 19, no. 1, pp. 119-129, Jan. 2008.

[16] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation
algorithm with momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3,
pp. 505-506, May. 1994.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533-536,
1986.

[18] B. Vigdor and B. Lerner, “Accurate and fast off and online fuzzy
ARTMAP-based image classification with application to genetic
abnormality diagnosis,” IEEE Trans. Neural Netw., vol. 17, no. 5, pp.
1288-1300, Sep. 2006.

[19] P.J. Werbos, “Back-propagation: Past and future,” in Proc. Int. Conf.
Neural Netw., San Diego, CA, Jul. 1988, vol. 1, pp. 343-353.

[20] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Com-
puting gradient vector and Jacobian matrix in arbitrarily connected
neural networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp.
3784-3790, Oct. 2008.

[21] B. M. Wilamowski, “Neural network architectures and learning algo-
rithms: How not to be frustrated with neural networks,” IEEE Ind. Elec-
tron. Mag., vol. 3, no. 4, pp. 56-63, Dec. 2009.

[22] J. M. Wu, “Multilayer Potts perceptrons with Levenberg-Marquardt
learning,” IEEE Trans. Neural Netw., vol. 19, no. 12, pp. 2032-2043,
Feb. 2008.

[23] H. Yu and B. M. Wilamowski, “Efficient and reliable training of neural
networks,” in Proc. IEEE Human Syst. Interaction Conf., Catania, Italy,
May 21-23, 2009, pp. 109-115.

, MA: Ad-

Bogdan M. Wilamowski (M’82-SM’83-F’00)
received the M.S. degree in computer engineering,
the Ph.D. degree in neural computing, and the Dr.
Habil. degree in integrated circuit design from
Gdansk University of Technology, Gdansk, Poland,
in 1966, 1970, and 1977, respectively.

He received the title of Full Professor from the
President of Poland in 1987. He was the Director
of the Institute of Electronics (1979-1981) and the
Chair of the Solid State Electronics Department
(1987-1989), Technical University of Gdansk,
Gdansk, Poland. He was/has been a Professor with the Gdansk University
of Technology, Gdansk (1987-1989), the University of Wyoming, Laramie
(1989-2000), and the University of Idaho, Moscow (2000-2003). Since 2003,
he has been with the Auburn University, Auburn, AL, where he is currently the
Director of the Alabama Micro/Nano Science and Technology Center and a
Professor with the Department of Electrical and Computer Engineering. He was
also with the Research Institute of Electronic Communication, Tohoku Uni-
versity, Sendai, Japan (1968—-1970), and the Semiconductor Research Institute,
Sendai (1975-1976), Auburn University (1981-1982 and 1995-1996), and the
University of Arizona, Tucson (1982—1984). He is the author of four textbooks
and about 300 refereed publications and is the holder of 28 patents. He was
the Major Professor for over 130 graduate students. His main areas of interest
include computational intelligence and soft computing, computer-aided design
development, solid-state electronics, mixed- and analog-signal processing, and
network programming.

Dr. Wilamowski was the President of the IEEE Industrial Electronics So-
ciety (2004-2005). He was an Associate Editor for the IEEE TRANSACTIONS
ON NEURAL NETWORKS, the IEEE TRANSACTIONS ON EDUCATION, the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the Journal of Intelligent and
Fuzzy Systems, the Journal of Computing, the International Journal of Circuit
Systems, and the IES Newsletter. He also was the Editor-in-Chief of the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS.

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

WILAMOWSKI AND YU: IMPROVED COMPUTATION FOR LEVENBERG-MARQUARDT TRAINING

Hao Yu received the M. S. degree in electrical en-
gineering from Huazhong University of Science and
Technology, Wuhan, Hubei, China. He is currently
working towards the Ph.D. degree in electrical engi-
neering at Auburn University, Auburn, AL.

He is a Research Assistant with the Department of
Electrical and Computer Engineering, Auburn Uni-
versity. His main interests include computational in-
telligence, neural networks and CAD.

Mr. Yu is a Reviewer for the IEEE TRANSACTIONS
ON INDUSTRIAL ELECTRONICS.

Authorized licensed use limited to: Auburn University. Downloaded on June 14,2010 at 19:23:24 UTC from IEEE Xplore. Restrictions apply.

937

