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Improved Computation of Cubic Natural Splines

with Equi-Spaced Knots

By Malcolm A. MacLeod

Abstract. An improved algorithm is given for the computation of the coefficients of the

interpolating polynomials for cubic natural splines with equi-spaced knots. By solving the

continuity equation recursively, a gain in computation efficiency is obtained and the

requirement of previous techniques for exact computation is eliminated.

1. Introduction. Considerable interest has developed over the last several years

in the use of spline functions for interpolation, largely as a result of the discovery of

their extremal properties [1]. Cubic splines have become popular because they combine

a fair degree of approximation (continuity of the function and its first two derivatives

at the knots) with relative ease of determination of the spline parameters (only a

second-order difference equation need be solved). Two recent papers have shown

that the parameters may be even more simply determined for the case of natural

splines defined at equi-spaced knots ([2], [3]). Unfortunately, the techniques given

in both these papers suffer from the defect that they require exact computation.

To retain any accuracy requires multiple precision computation once the number of

data points exceeds the limiting value nL = (n,/log 4) — 2, where n, is the number

of significant decimal digits carried by the computer employed. In the present paper,

an improved algorithm is presented which does not require exact computation and

which also displays an improved efficiency in determining the spline parameters.

2. Definitions. The function S(x) £ C2 defined on the n knots x, by 5(x¿) = Y,

is a cubic natural spline if it is represented as a cubic polynomial in each interval

x, î£ x ^ x,+i (/' = l(l)n — 1) and if the second derivatives vanish at the endpoints:

S"iXl) = S"(x„) = 0

(we follow the notation of Hoskins [3] with slight modification). The function Six)

is then defined within each interval [x,, xi+1] by the expression

Six) = (F, - ™,)(X' + 1~ *) + iYj+i - mi + 1)(^=^)

where A is the uniform knot spacing and m¡ = (A2/6)S"(x¿). Once the m¡ are deter-

mined, the spline is defined uniquely in terms of A and the local values (x,, xi+l, Y¡,
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Yi+1, m„ m,+i), a point of some practical importance. The m¿ reveal themselves as

those solutions of the so-called continuity equation

(2.2) m, + 1 + 4m, + m,_, =  52 Y¡        U = 2(1)« - 1)

which satisfy the boundary conditions

(2.3) m, =  mn = 0.

3. Solution of the Continuity Equation. The continuity equation (2.2) is a sim-

ple second-order, linear, inhomogeneous difference equation with constant coeffi-

cients and may be solved by the standard technique of variation of parameters [4].

However, doing so results in a solution involving a summation of terms whose

magnitudes grow exponentially with n. Though the solutions presented in [2], [3]

were not derived in this manner, they retain the exponential character and suffer

from the same accuracy loss due to truncation as n —* nL. This problem is known to

arise in the use of implicit techniques for solving partial difference equations [5], and

its solution by a recursive technique is both stable and accurate. To this end, define

(3.1) w, = e,mi + l + /,

and substitute in the continuity equation (2.2). The identification of the (e¿, /,) param-

eters is immediate on comparing with (3.1), and results in the expressions

(3.2) e, = -(4 + e,_1)"1,

(3.3) /, = -e,iô2Y, - /,.,)•

Substituting the first of the boundary conditions (2.3) into (3.1) and requiring that

the (e,, /,) be independent of the m¡ establishes that

(3.4) e, = /, = 0,

whence the (e,, /,•) may be evaluated by an ascending recursion from i = 2 to n. The

second of the boundary conditions (2.3) may then be used with (3.1) to evaluate

m, in a descending recursion from i = n to 1, which begins mn_x = /„. This technique

is known to be stable [5]. Although the f, are characteristic of the set Y, and must be

recalculated when a new set is introduced, the e{ may be calculated once for all, and

the first seven are listed in the accompanying table. A comparison of this table with

that of Hoskins [3] is revealing. The entries in his table vary as 4'-1 and begin to lose

Table

e,

1 -0.2500 0000
2 -0.2666 6667

3 -0.2678 5714
4 -0.2679 4258
5 -0.2679 4872
6 -0.2679 4916
7 -0.2679 4919
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significance when i surpasses the value nL defined in Section 1; while the entries in

the e, table here remain of order unity throughout. (Note that as i —* <*>,

e¡ —> — (2 — V3), one of the two characteristic roots of the difference equation

(2.2); e¡ is the ith approximant to the continued fraction of form (3.2) for the quantity
- (2 - V3).)

Thus, the m, are determined and the expression (2.1) may be used to interpolate

Y(x), its derivatives and integrals.

4. Computational Efficiency. We consider briefly the relative efficiencies of

the current algorithm and that of Hoskins [3], as realized on a digital computer.

Although an accurate estimate of program efficiency requires a count of all the opera-

tions, both algorithms have roughly the same balance of adds and multiplies, so we

have enumerated only the multiplications to compare the relative efficiencies. Apart

from the calculation of the e, (which may be input as constants), the realization of

the scheme of Section 3 above requires (n — 1) multiplications to calculate both

/, and ntj, for a total of 2(n — 1) operations. The scheme of Hoskins requires (n — 2)

operations to evaluate each of his formulas (H3.13), (H2.2), and (« — 1) operations

to recover his M, from the calculated quantities (a„_3(A2/6)M,) as shown in his Section

4, for a total of 3« — 5 operations. Thus, the current algorithm is about 50% faster

than Hoskins' algorithm with no limitation in calculation time or accuracy as n

becomes large. In evaluating Hoskins' scheme, we assumed that his table a, is built

into the program (as the e, above) and that the factor of 4 required in evaluating the

continuity equation (H2.2) is obtainable by a simple binary shift. If the latter is not

the case, an additional (n — 1) operations may have to be introduced, making the

present scheme roughly twice as fast as his.

5. Conclusions. The algorithm presented here is a simple, computationally

stable and accurate technique of improved efficiency for generating the parameters

for cubic natural splines defined on equi-spaced knots.
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