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Abstract— In this work, a new technique for the computation
of ellipsoidal invariant sets for continuous-time linear systems
controlled by a saturating linear control law is presented.
New sufficient conditions to guarantee that an ellipsoid is a
contractive invariant set for the closed-loop system is presented.
The contractive nature of the invariant set ensures asymptotic
stability of the controlled system. The main contributions of
the paper are the following: the proposed sufficient condition
is expressed in form of linear matrix inequalities constraints.
The presented method includes (and consequently improves)
previous results on this topic. The computational complexity of
the proposed approach is analyzed. Illustrative examples are
given.
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I. INTRODUCTION

Saturation is probably the most commonly encountered
nonlinearity in control engineering because of the physical
impossibility of applying unlimited control signals. It is well
known that the input saturation is source of performance
degeneration, limit cycles, different equilibrium points, and
even instability. Hence, it is great the interest in the analysis
and design of saturating control laws. See for instance [13],
[9], [11], and references therein.

An important, and still open, topic of this field is the esti-
mation of the domain of attraction of the closed-loop system.
The estimation of the domain of attraction of linear systems
subject to control saturation has received the attention of
many authors in the last years (see, for example, [5], [9],
[12], [14] and references therein).

One of the most relevant approaches to the analysis of
saturated systems is based on a linear differential inclusion
(LDI) of the saturation nonlinearity (see [3], [6], [14]). In
the literature, invariant ellipsoids have been used to estimate
the domain of attraction for nonlinear systems [1], [4], [7],
[8]. The domain of attraction of a given saturated system can
be approximated by means of an ellipsoid. In [14] and [9]
a linear differential inclusion for a linear saturated system is
presented. Based on that LDI, the authors propose how to
choose simultaneously both the matrix H , that characterizes
the LDI , and the greatest ellipsoid that is invariant under
the corresponding LDI.
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The main contribution of this paper is a new sufficient
condition for the contractiveness of a given ellipsoid. It is
proved in the paper that the presented sufficient condition
is less conservative than the one obtained when a linear
differential inclusion approach is adopted.

The paper is organized as follows. In section II the prob-
lem statement is introduced. Some preliminary notation is
given in section III. A novel sufficient condition for the con-
tractiveness of a given ellipsoid is presented in section IV. It
is shown in section V that the ellipsoidal estimation obtained
by means of the results of the paper is less conservative
than the ones obtained when a linear differential approach
is adopted. The computational complexity is analyzed in
section VI. Some illustrative examples are given in section
VII. The paper draws to a close with a section of conclusions.

II. PROBLEM STATEMENT

Let us consider the following system

ẋ = Ax + Bσ(Kx) (1)

where x ∈ IRn denotes the state vector. The function
σ : IRm → IRm is the vector-valued standard saturation
function defined as follows:

σ(u) = [σ(u1) σ(u2) . . . σ(um)]� ,

where σ(ui) = sign(ui)min {1, |ui|}.
Denote M = {1, 2, . . . ,m}. Denote also Bi, i = 1, . . . ,m

the columns of matrix B and Ki, i = 1, . . . ,m the rows of
matrix K. With this notation, system (1) can be rewritten as:

ẋ = Ax +
m∑

i=1

Biσ(Kix) = Ax +
∑
i∈M

Biσ(Kix)

The purpose of this paper is to present an LMI approach
to the computation of ellipsoidal estimations of the domain
of attraction for this class of saturated control systems.

III. SOME PRELIMINARY NOTATIONS

In order to present the main result of the paper, the
following notations and preliminary results are introduced
in this section.

Notation 1: Given a positive definite matrix P , and a
positive scalar ρ, E(P, ρ) represents the following ellipsoid:

E(P, ρ) = { x : x�Px ≤ ρ }.
Definition 1: Given the set of integers M, set V is the set

of all subsets of M. That is,

V = { S : S ⊆ M }
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Example: If m = 2, then M = {1, 2} and V =
{∅, {1}, {2}, {1, 2}}. Note that the empty set ∅ belongs to
V .

Throughout this paper: Sc denotes the complementary of
S in M. That is, Sc = { i ∈ M : i /∈ S }.

IV. MAIN RESULT

In this section, novel sufficient conditions for the contrac-
tiveness of a given ellipsoid are presented. The notion of
contractiveness is given in the following definition:

Definition 2: An ellipsoidal set E(P, ρ) is said to be
contractive for system ẋ = Ax + Bσ(Kx) if for every
x ∈ E(P, ρ), x �= 0:

d

dt
(x�Px) = 2x�P (Ax + Bσ(Kx)) < 0

The main result of the paper is the following theorem,
which, as it will be seen in section V, improves previous
results from the literature.

Theorem 1: The ellipsoid E(W−1, 1) is contractive if for
every S ∈ V there exists Y S ∈ IRm×n such that

AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiY
S
i +

(AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiY
S
i )� < 0

[
1 Y S

i

(Y S
i )� W

]
> 0,∀i ∈ S

where Y S
i denotes the i-th row of Y S .

Proof:

Note that the assumptions of the theorem guarantee that
for every S ∈ V there is Y S and ε > 0 such that:

AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiY
S
i +

(AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiY
S
i )� < −εI

That is,

(A +
∑
i∈Sc

BiKi)W + W (A +
∑
i∈Sc

BiKi)�

+
∑
i∈S

(BiY
S
i + (Y S

i )�B�
i ) < −εI (2)

From the assumptions of the theorem:[
1 Y S

i

(Y S
i )� W

]
> 0,∀i ∈ S

and property 1 (see Appendix A) it is inferred that for every
i ∈ S:

BiY
S
i + (Y S

i )�B�
i ≥ −αiW − BiB

�
i

αi
, ∀αi > 0

From the previous inequality and equation (2):

(A +
∑
i∈Sc

BiKi)W + W (A +
∑
i∈Sc

BiKi)�

−
∑
i∈S

(αiW +
BiB

�
i

αi
) < −εI,∀α > 0

where α = [α1, α2, . . . , αm]� > 0 denotes that each of
the components of α is greater than zero. Denoting P =
W−1 and pre-multiplying and post-multiplying both sides
of previous inequality by x�P and Px respectively:

x�P (A +
∑
i∈Sc

BiKi)x + x�(A +
∑
i∈Sc

BiKi)�Px

−
∑
i∈S

(αix
�Px +

x�PBiB
�
i Px

αi
) < −εx�P 2x

∀x �= 0,∀α > 0

Taking into account that x�Px ≤ 1 for every x ∈ E(P, 1) =
E(W−1, 1):

x�P (A +
∑
i∈Sc

BiKi)x + x�(A +
∑
i∈Sc

BiKi)�Px

−
∑
i∈S

(αi +
x�PBiB

�
i Px

αi
) < −εx�P 2x

∀x ∈ E(W−1, 1), x �= 0,∀α > 0

Note that εx�P 2x ≥ ∑
i∈S

εx�P 2x
m . Thus, denoting ε̄ =

εx�P 2x
m :

x�P (A +
∑
i∈Sc

BiKi)x + x�(A +
∑
i∈Sc

BiKi)�Px

−
∑
i∈S

(αi +
x�PBiB

�
i Px

αi
− ε̄) < 0

∀x ∈ E(W−1, 1), x �= 0,∀α > 0

Taking into account that the previous inequality is satisfied
for every α > 0:

x�P (A +
∑
i∈Sc

BiKi)x + x�(A +
∑
i∈Sc

BiKi)�Px

+
∑
i∈S

sup
ᾱ

(−ᾱ − x�PBiB
�
i Px

ᾱ
+ ε̄) < 0

∀x ∈ E(W−1, 1), x �= 0

Note that ε̄ = εx�P 2x
m > 0 for every x �= 0. This and

property 2 (see Appendix B) guarantees that:

x�P (A +
∑
i∈Sc

BiKi)x + x�(A +
∑
i∈Sc

BiKi)�Px

−2
∑
i∈S

|x�PBi| < 0
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∀x ∈ E(W−1, 1), x < 0

Denote z = B�Px ∈ IRm. With this notation, the i-
th component of vector z is equal to B�

i Px. Using this
notation, the previous inequality can be rewritten as:

2x�PAx + 2
∑
i∈Sc

ziKix − 2
∑
i∈S

|zi| < 0

∀x ∈ E(W−1, 1), x �= 0

This last inequality is satisfied for every S ∈ V . Therefore:

2x�PAx + 2max
S∈V

{∑
i∈Sc

ziKix −
∑
i∈S

|zi|
}

< 0

∀x ∈ E(W−1, 1), x �= 0

Taking into account property 3 (see Appendix C):

2x�PAx + 2z�σ(Kx) < 0

∀x ∈ E(W−1, 1), x �= 0

Recalling that z = B�Px:

2x�PAx + 2x�PBσ(Kx) = 2x�Pẋ =
d

dt
(x�Px) < 0

∀x ∈ E(W−1, 1), x �= 0

This proves the main result of the paper.

V. COMPARISON WITH THE LINEAR DIFFERENTIAL

INCLUSION APPROACH

One of the most efficient ways of computing ellipsoidal
estimations of the domain of attraction of a saturated control
systems relies in the use of a Linear Differential Inclusion
(LDI) of the saturated system. In this section we show that
theorem 1 yields less conservative ellipsoidal estimations
than the ones provided by the LDI approach.

By means of the concept of Linear Differential Inclusion,
the following sufficient condition for the contractiveness of
a given ellipsoid is obtained (see [9] for a proof):

Theorem 2: The ellipsoid E(W−1, 1) is contractive if
there exists Y ∈ IRm×n such that

AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiYi +

(AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiYi)� < 0

[
1 Yi

Y �
i W

]
> 0, i = 1, . . . ,m

where Yi denotes the i-th row of Y .
The sufficient condition for an ellipsoid to be invariant

provided by theorem (2) has been shown to be less conser-
vative than the existing conditions resulting from the circle
criterion or the vertex analysis [9], [14]. Moreover, as it is
shown in [10], theorem (2) provides not only a sufficient but

also a necessary condition for an ellipsoid to be invariant for
the single input case (m = 1).

Note that the above result (theorem (2)) can be obtained
directly from theorem (1). It suffices to make Y = Y S

for every S ∈ V . Therefore, we conclude that the results
presented in this paper provide an alternative proof of
theorem (2) (in this case without using the concept of Linear
Difference Inclusion).

The sufficient conditions provided by the main result of
this paper are less conservative than the ones corresponding
to theorem (2) (this is due to the greater number of decision
variables considered in theorem 1). We conclude then that
the approach proposed in this paper improves the results
obtained when a linear differential approach is adopted. The
computational complexity of the ellipsoidal estimation of the
domain of attraction presented in this paper is greater than
the one corresponding to the linear differential approach.
This is due to the greater number of matrices involved
in theorem (1). See next section for an analysis of the
computational complexity.

VI. COMPUTATIONAL COMPLEXITY

Theorem (1) can be applied to the computation of ellip-
soidal estimation of the domain of attraction of a saturated
system. However, the direct application of theorem (1) im-
plies the solution of a convex optimization problem with
2(m+1) constraints and 2m + 1 decision variables. Although
the exponential number of constraints does not imply an
excessive computational burden for practical values of m
(there are convex algorithms in which the computational
burden grows only linearly with the number of constraints),
the same can not be affirmed for the number of decision
variables: if m grows beyond a certain limit, the direct
application of theorem (1) can be limited because of the
exponential number of decision variables.

Fortunately, theorem 1 can be recast into an equivalent
form in which the number of decision variables is reduced to
only one: W . In this section it is proved that the main result
of the paper (theorem (1)) can be applied to the estimation
of the domain of attraction by means of the solution of a
convex problem with a reduced number of variables. For
that purpose, the following definition is introduced:

Definition 3: Given W > 0 and S ∈ V , the function
γS(W ) is defined as:

γS(W ) = min
Y ∈ IRm×n

λ̄

(
AW +

∑
i∈Sc

BiKiW +
∑
i∈S

BiYi +

(AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiYi)�
)

s.t.

[
1 Yi

Y �
i W

]
> 0, ∀i ∈ S

where Yi denotes the i-th row of Y and λ̄(·) denotes the
matrix function greatest eigenvalue.

In what follow, it is shown that γS(W ) is a convex
function on W for every S ∈ V . It is clear that the function:
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g(W,Y ) = λ̄

(
AW +

∑
i∈Sc

BiKiW +
∑
i∈S

BiYi+

(AW +
∑
i∈Sc

BiKiW +
∑
i∈S

BiYi)�
)

is a convex function on W and Y . Moreover, the constraint[
1 Yi

Y �
i W

]
> 0, ∀i ∈ S

can be rewritten as

h(W,Y ) = max
i∈S

λ̄

(
−

[
1 Yi

Y �
i W

])
< 0

Therefore, γS(W ) can be rewritten as:

γS(W ) = min
Y ∈ IRm×n

g(W,Y )

s.t. h(W,Y ) < 0

As both g(W,Y ) and h(W,Y ) are jointly convex in W and
Y , it is inferred that γS(W ) is convex with respect W (see
[2]). For this class of optimization problems it is possible to
find a subgradient of γS(W ) with respect W at any given
W0 (see also [2]).

Note that with the definition of γS(W ), theorem 1 can be
rewritten as:

Theorem 3: The ellipsoid E(W−1, 1) is contractive if

γS(W ) < 0,∀S ∈ V
As the trace of W is equal to the sum of the semiaxis of

ellipsoid E(W−1, 1), the maximization problem:

max
W>0

trace (W )

s.t. γS(W ) < 0, ∀S ∈ V
yields to the maximization of the ellipsoidal estimation
of the domain of attraction of the saturated system ẋ =
Ax+Bσ(Kx). The proposed maximization problem has the
following properties:

• It is a convex optimization problem. This convexity
stems from the already proved fact that γS(W ) is
convex on W .

• The evaluation of γS(W ) can be achieved solving an
LMI problem with a unique decision variable: Y ∈
IRn×m.

• The computation of a subgradient of γS(W ) with re-
spect W can also be done solving an LMI problem. This
makes it possible the application of any cutting plane
algorithm to the solution of the proposed optimization
problem [2].

VII. NUMERICAL EXAMPLES

In this section two different examples are presented. The
first example shows the application of the presented approach
to a two dimensional system. In the second example higher
dimensional systems are considered.

A. Two dimensional system

Let us consider the system ẋ = Ax + Bσ(Kx) where

A =
[

2 1
1 2

]
, B =

[
2 2
1 0

]
,

K is obtained as the solution of the LQR problem with
Q = I and R = 0.1 · I . That is,

K =
[ −2.0506 −5.9715

−3.1458 2.1906

]
.

Figure 1 shows how the conservativeness in the computa-
tion of an ellipsoidal estimation of the domain of attraction
is reduced by means of the main result of the paper. In
that figure, three different contractive ellipsoids are drawn.
The inner one represents the maximal contractive ellipsoid
obtained when the ellipsoidal estimation is constrained to
belong to the region of state space in which u = Kx does not
saturate (that is, σ(Kx) = Kx). The ellipsoid represented by
means of a dotted line corresponds to the ellipsoid obtained
when an LDI approach is adopted (theorem 2). The ellipsoid
represented by a solid line corresponds to the application of
the main result of the paper (theorem 1).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
1

x 2

Fig. 1. Contractive ellipsoidal sets

It can be seen in the figure that the ellipsoid obtained
by the sufficient condition presented in this paper is greater
than the other two ones. This is not surprising because it
has been proved in section V that theorem (1) provides less
conservative results than theorem (2).

B. Higher dimensional systems

Let us consider the following family of linear systems:

y(s) =

n∑
i=1

si−1ui(s)

(s − 1)n

where u ∈ IRm = IRn is the saturated actuation and n
is the dimension of the system. The control law is given by

6219



u = σ(Kx) where K corresponds to the solution of the LQR
problem with Q = I and R = 0.1I .

The following table shows the volume of the ellipsoid
obtained using the novel approach presented in this paper
(Method A) and the volume obtained by means of theorem
(2)(Method B).

Dimension Method A Method B % of improv.
1 18.67 18.67 0
2 237.97 212.95 11.75
3 122.98 102.47 20.01
4 343.02 262.64 30.61
5 472.67 411.98 14.73
6 738.74 614.97 20.13

Dimension 1 shows the same result using both methods.
In fact, the problem formulation is the same and therefore
the results are identical.

The observed improvement depends on the dimension of
the system. Although it usually increases with the dimension
(more decision variables are considered in the proposed
approach), it is not a fixed rule: dimension 5 has in this
case a lower improvement than dimensions 3 or 4.

Computing time required in the computation of the ellip-
soidal estimation of the domain of attraction is greater when
using the proposed approach. Note that the computing time
depends on the number of decision variables and constraints
of the LMIs.

The following table shows the computing time correspond-
ing to both methods (in seconds).

Dimension Method A Method B Linear
1 0.016 0.016 0.011
2 0.087 0.266 0.077
3 0.161 0.131 0.039
4 0.752 0.418 0.084
5 5.520 2.036 0.194
6 81.61 9.606 0.206

The following table shows the decision variables corre-
sponding to each of the estimation methods.

Dimension Method A Method B Linear
1 2 2 1
2 5 3 1
3 13 4 1
4 33 5 1
5 81 6 1
6 193 7 1

VIII. CONCLUSIONS

In this paper, a novel approach to the estimation of the
domain of attraction of a saturated linear system is presented.
The main contribution of the paper is a new sufficient
condition for the contractiveness of a given ellipsoid. It is
shown that the proposed approach is less conservative than
the one corresponding to the use of the concept of Linear
Difference Inclusion. The computational complexity of the
characterization of the proposed ellipsoidal estimation of the

domain of attraction is analyzed. Some illustrative examples
are given.
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APPENDIX

Appendix A

Property 1: Suppose that Y ∈ IR1×n and matrix W =
W� ∈ IRn×n are such that:[

1 Y
Y � W

]
> 0

then

B̄Y + Y �B̄� ≥ −αW − B̄B̄�

α
, ∀α > 0,∀B̄ ∈ IRn

Proof:
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Given B̄ ∈ IRn and α > 0:

0 ≤ (
√

αY � +
B̄√
α

)(
√

αY � +
B̄√
α

)�

= αY �Y +
B̄B̄�

α
+ B̄Y + Y �B̄�

It is then concluded that:

B̄Y + Y �B̄� ≥ −αY �Y − B̄B̄�

α
(3)

Applying Schur’s complement to the assumption[
1 Y

Y � W

]
> 0

it results that W > Y �Y . From this and inequality (3) it is
inferred that:

B̄Y + Y �B̄� ≥ −αW − B̄B̄�

α
, ∀α > 0

Appendix B

Property 2: Suppose that ε̄ > 0. Then, for every a ∈ IR:

sup
ᾱ>0

−ᾱ − a2

ᾱ
+ ε̄ > −2|a|

Proof:

Two cases must be taken into account
1) a = 0: In this case:

sup
ᾱ>0

−ᾱ − a2

ᾱ
+ ε̄ = sup

ᾱ>0
−ᾱ + ε̄ > 0 = −2|a|

2) a �= 0: It is clear that −ᾱ − a2

ᾱ + ε̄ is a concave
differentiable function on α in IR+. Thus, at the
supremum:

0 =
d

dᾱ
(−α − a2

ᾱ
+ ε̄) = −1 +

a2

ᾱ2

It is then concluded that the supremum is attained at
ᾱ = |a|. Thus:

sup
ᾱ>0

−ᾱ− a2

ᾱ
+ ε̄ = −|a|− a2

|a|+ ε̄ = −2|a|+ ε̄ > −2|a|

Appendix C

Property 3: Given z ∈ IRm:

z�σ(Kx) ≤ max
S∈V

{
∑
i∈Sc

ziKix −
∑
i∈S

|zi|}

where zi denotes the i-th component of vector z.

Proof:

Taking now into account property 4 in appendix D:

z�σ(Kx) =
m∑

i=1

ziσ(Kix) ≤

m∑
i=1

max {ziKix,−|zi|} =

max
S∈V

{
∑
i∈Sc

ziKix −
∑
i∈S

|zi|}

Appendix D

Property 4: Given a ∈ IR and y ∈ IR:

aσ(y) ≤ max {ay,−|a|}
Proof:

1) |y| ≤ 1: max {ay,−|a|} = ay = aσ(y)
2) |y| > 1 and ay ≥ 0: max {ay,−|a|} = ay ≥

a sign (y) = aσ(y)
3) |y| > 1 and ay < 0: max {ay,−|a|} = −|a| =

a sign (−a) = a sign (y) = aσ(y)
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