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ABSTRACT

A Steiner Hinimal Tree (SMT) for a given set
A= {al,---,an} in the plane is a tree which interconnects
these points and whose total length 7.e. the sum of lengths
of the branches, is minimum. To achieve the minimum, the
tree may contain other points (Steiner points) besides
COERRRFL e
Various improvements are presented to an earlier computer
program of the authors for plane SMTs. These changes have
radically reduced machine times. The existing program was
limited in application to about n=30, while the
innovations have facilitated solution of many randomly
generated 100-point problems in reasonable processing

times.
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1. Introduction

A Steiner Hinimal Tree (SMT) for a given set A={ay,---,a } of plane points is a
tree which interconnects these points and whose total length, ¢.e. the sum of
lengths of the branches, is minimum. To achieve the minimum, the tree may contain

other vertices, which are called Steiner points, besides CIERRRRY
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inding SMTs has been extensively studied. The reader is referred
to [1, 13] for background information, applications and bibliographies. Ve are
concerned with so—called "exact" computer programs for SMTs rather than heuristic
programs (e.g. [12]) which only find suboptimal trees, although the latter may run
considerably faster. All exact programs rely on an original geometric idea of
Melzak [10]. He showed how to reduce an n—point problem to a set of (n-1)-point
problems in a finite number of steps and hence exhibited a geometric (exponential)

algorithm for finding SMTs. There is a brief and illuminating description of

Melzak’s basic idea in [1].

The first computer program for SMTs was written in 1970 (see [6]). Since that date,
successive mathematical improvements to the algorithm, innovative programming and
of course faster machines have led to more sophisticated algorithms and programs
which are practical for higher numbers of given points. In Table 1 we list these
methods and their approximate application (using machines available when each was

written).



Program Author(s) Approximate

application

(1) STEINER Cockayne and Schiller [5] 7 points

(2) STEINER 72 Boyce and Seery [2] 10 points

(3) STEINER 73 Boyce and Seery [3] 12 points

(4) GEOSTEINER Vinter [11] 15 points
(5) EDSTEINERS6 Cockayne and Hewgill [5] 30 points (See section 2.2)

Tahle 1: Exigtin

We note that the problem is NP—complete [7] and hence it is unlikely that there is
any better method than backtracking with efficient pruning of the tree(s) of

possibilities.

In [5], the authors described some innovations for Winter’s algorithm GEOSTEINER
[13]. These were implemented into the program EDSTEINER86 which enabled us to
solve all problems of 17 or less given points and an estimated 80% of all problems

with at most 30 given points.
In this paper further improvements are introduced. These have been implemented in

a new faster program EDSTEINER89 which has successfully handled most randomly

generated problems of up to 100 given points.

2. GEOSTEINER and EDSTEINER86

For brevity, we assume that the reader is familiar with Winter’s work [13] and the
present authors’ previous paper [5], which explain any terminology undefined here.

A Fyll Steiner Iree (FST) on a plane set B, where |B| =m, is a plane tree whose



vertices are the points of B and exactly m—2 Steiner points satisfying:

(i) the degree of each point in B is1, and

(ii) each Steiner point has degree 3 and the angles at each Steiner point are

120°.

It is well known (see e.g. [4]) that an SMT for A is an edge—disjoint union of FSTs

on subsets of A.
2.1 GEOSTEINER
There have been dramatic increases recently in the size of problems which can be

solved, due to an outstanding breakthrough by Winter [13]. His algorithm
GEOSTEINER has two principal stages.

Stage 1 is an extremely clever procedure for producing TLIST which is a list of FSTs
containing (among others) all those FSTs whose union is an SMT for A. The
mathematical pruning techniques for rejecting FSTs from TLIST automatically
during processing, are so powerful that randomly generated problems with n < 30,
seem to have at most 100 FSTs in their TLIST and usually considerably less.
Furthermore, TLIST for 30-point problems could be generated in no more than five

minutes of computing time.

Stage 2 is a standard backtracking procedure along TLIST using a length test,
degree test and cycle test, to extract from TLIST the precise set of FSTs whose

union is an SMT ([13, Section 6]).



GEOSTEINER’s application was restricted to n <15 because of stage 2. Winter
mentioned that "with further improvements, it is reasonable to assert that point
sets with up to 30 V-points (in our terminology, n < 30) could be solved in less

than one hour".

2.2 EDSTEINERS6

In this program the authors were able to considerably reduce the one hour estimate
n most cases. The first change was the use of an incompatibility matrix for TLIST

to assist in speeding up the stage 2 backtracking [5, p. 152].

Due to the exponential nature of SMT procedures, it is highly desirable to invoke
theorems of the type: If (A has some geometric property), then the SMT for A is
the union of SMTs on subsets A ,---,A, (called blocks) of A. One such theorem
concerns the degeneracy of the Steiner polygon of A and may be applied at the
outset 7.e. before stage 1, (see [5, p. 153]). This block decomposition was
included in GEOSTEINER.

Another block decomposition theorem concerning the removal of certain
quadrilaterals from the Steiner polygon has recently been proved [9]. It may also
be applied before stage 1 and in some cases will facilitate decomposition even when
the Steiner polygon is non—degenerate. We have not yet incorporated this theorem
into machine programs and mention it here only for completemess. For further

discussion of such decompositions in other Steiner tree problems see [11].

Our second improvement was to use the computed TLIST to effect further block
decompositions in many cases, ([5, Theorems 2.2 and 2.3]). The blocks induce a

partition of TLIST and stage 2 can then be effected on the sets of the partition



separately which, of course, gives vast reductions in backtracking time.

EDSTEINER86 could solve any problem with n < 30 and maximum block size 17, using
no more than 6 minutes of time on the IBM 4381. It is estimated that about 807 of
randomly generated 30—point problems in the unit square have this property. For
such problems the machine time is dominated by stage 1, while stage 2 used at most
70 seconds. It was found that the time to process stage 2 with EDSTEINER86 may be
prohibitive for blocks of size greater than 17 and the present work is devoted to

improving this situation.

It should be noted that the Steiner polygon degeneration test is an easy polynomial
computation and hence problems with hundreds of given points could be solved by
EDSTEINER86 provided that the Steiner polygon test decomposes the problem into

blocks of maximum size 17.

3. Algorithmic Changes

In this section, we describe the changes which were made in the construction of
EDSTEINERS89 from EDSTEINER86. The TLIST for A is now computed by stage 1 and we
wish to extract the SMT. For each tree of TLIST, the original points (henceforth
called a—points), length of the FST, Steiner points and tree topology are stored.
It is possible to wait until the SMT has been extracted before constructing any
Steiner points [13, p. 332], but Steiner points are needed for our amendments.
Also TLIST is usually so short for n <100 that the machine time for computing all
Steiner points for each tree of TLIST, is insignificant, while the savings

facilitated by these points, can be very substantial.



The very simple ideas which have facilitated the surmounting of the 17-point block
size barrier, depend on the extension of the concept of compatibility introduced
in [5, page 152]. An amended compatibility matrix for TLIST is described in
Section 3.1 and in Section 3.2 we indicate that the backtracking for SMT extraction
is greatly reduced by performing it on a graph formed from the matrix. Examples of

the vast time reductions afforded by these changes appear in Section 4.

3.1 Forest Management of TLIST

Backtracking time can be saved by performing some pre—processing on TLIST, which
ve call forest management. This has two specific purposes: to delete even more
FSTs from TLIST and to construct a compatibility metriz M for TLIST whose entries
are C (meaning compatible), I (incompatible) or D (disjoint). The entry
M(i,j) (=M(j,i)) 1is associated with the unordered pair of FSTs Ti’Tj of TLIST

and we wish to construct M so that

M(i,j)=C if T. U Tj could possibly form a (connected) subtree of an
SMT.
=1 if at most one of Ti,Tj can be in an SMT.

=D otherwise.

As will be seen below, whenever a partial candidate (¢.e. a set of FSTs) for an SMT
has been constructed, the next FST to be added is compatible with some FST of the
partial candidate and incompatible with none of them. For efficient,
backtracking, therefore, we need to reduce the numbers of C’s and increase the

number of I’s in the matrix M, as far as possible.



The first step in the construction of M, is to make the following assignments:

M(i,j)=C if Ti’Tj have precisely one common a—point and the angle
between the branches of Ti and Tj at that point is at
least 120° (care must be taken with round—off).

=1 If branches of T. ,Tj intersect except at an a-point, if

T ,T. have at least two a—points in common or they have a

oA

J
single common a—point but the an
at this point is less than 120°.

=D Otherwise.

In order to describe the refinements to M, we define for each m=1,.--,n, the set
F ={Te TLIST]am € T}. It is clear that an SHT contains an FST from F = for each
m=1,---,n and hence some FST from each set Fm must be compatible with any FSTs
being considered for inclusion in an SMT. Note that some of the sets Fm will

decrease during forest management whenever an FST is deleted from TLIST.

The following refinements are now made to M. Ti’ Tj’ Tk denote trees of TLIST.
The tests (i), (ii) and (iii) are sequentially performed for each m=1,---,n. Ve

assume j # k.

i) If M(j,k) #I, a_¢T.UT, and for each T. € F_ at least one of M(j,1
m” ") 'k i~ m
or M(k,i) =1,
then change M(j,k) to I.
(No FST from Fm is compatible with both T Tk, hence Tj’ Tk are

incompatible.)



(ii) If M(j,k) =C, a_¢ Tj UT, and for each T; €F ,
either at least one of M(j,i) or M(k,i) =1
or M(j,i) =M(k,i) =C and T, n (TJ.UTk) has two a—points,
then change M(j,k) to I.
(Each FST of L which could possibly be in an SMT with Tj )Ty, in fact

forms a cycle with them, hence Tj ,Tk are incompatible.

| N
IdJ 7

(41) If a ¢ T, andforall T; €F,, M(i

then delete Tj from TLIST.

i) =1
/
(No FST from F_~is compatible with TJ. )
This process of refining the matrix M may be performed several times. Experience
has shown that more than two refinements are very seldom required. Machine time

for forest management is negligible compared to savings in backtracking time.

3.1.1 Further Refinements in Regular Lattice Problems

We have been consulting with scientists who are concernmed with finding SMTs
theoretically for certain regular lattice problems e.g. m xn square lattices and
some equiangular triangular lattices. The fact that distances between a-points
are duplicated in such problems, can often be exploited to delete more trees from
TLIST or to show further incompatibilities. We illustrate this situation in Fig. 1

in which:

The a—points a(, 8, g, Aare such that the segments IR and aaq have equal

lengths and the segment a a, isalsoan FST (say T.) of TLIST.
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Tj is an FST of TLIST containing as but not a; and is such that M(j,i) # I and

the angle between the branch of Tj at ag and the segment aja, is less than 120°.
Then the following refinements may be made:

(vi) If T, is the only FST in F; such that M(j,i) # I, then Tj may be

1
deleted from TLIST.

For suppose Tj were in an SMT, say U. Then by hypothesis Ti €U and ay has
degree one in U, hence a,la3¢U. Form U’ from U by replacing a0 with a;8q-
Since a, had degree one in U, U’ isa tree. But U’ has the same length as U and
is therefore another SMT. However U’ contradicts the 120° property.

(vii) If Ty is a third FST of TLIST such that M(k,j) #I and T, is the only
FST of F, satisfying M(k,i) # I and M(j,i) #1,
then M(k,j) may be changed to I.

The justification for such a change is very similar to that given for (vi) and is

omitted.

3.2 Backtracking

WVhen forest management is completed, the methods of [5] are used for block
decompositions (see Section 2.2). Any block A has an induced 1ist of FSTs TLIST.
containing all FSTs of TLIST with a-point sets contained in Ai and an induced
compatibility matrix Mi which is the submatrix of entries in M, concerning trees
in TLIST,. In this section we discuss the backtracking to extract an SMT for a

block. To avoid overuse of subscripts, from now on A= {al,---,an}, TLIST, M
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will denote a block, its induced TLIST and compatibility matrix.

Suppose TLIST = {Tl" .- ’Tt} and for each i=1,---,t, Ei and Ai denote the
length and a-points of Ti’ respectively. Let GC be the simple undirected graph
with vertex set TLIST and whose edges are the pairs TiTj such that M(i,j) =C.
Fach edge TiTj is labelled with the index of the a—point which is common to the
FSTs Ti and Tj'

Ve restrict the discussion at this time to randomly generated problems, since in
this case, the probability of there being an a—point of degree three in an SMT, is
zero. Let X be the set of FSTs in an SHT. Certainly G, [X], the subgraph of G,
induced by X, is connected. A cycle in GC[X] , with one exception, means a cycle
in the assumed SMT. The exception is a triangle in GC[X] with identical edge
labels. This corresponds to the case of a degree three a-point which we have
excluded. The restriction also implies that any edge label may only appear once in
GC[X] . Any pair of trees in X are compatible and hence the search is for a subset

X={T, |k €K} of verticesof G, such that

(i) GC[X] is a tree.
(ii) GC[X] has no duplicated edge label.

(iii) For each ky,k, €K, H(k ,ky) # I.

)

ek
v 1S minimum.
( ) Z ek . ..
keK

The solution is now found using a standard backtrack search of the graph G,. This

is far more efficient than the backtracking along the whole of TLIST (without
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forest management) which was performed in EDSTEINER86 and GEOSTEINER.

At the jth step, we have a partial SMT candidate 7.e. a subset Xj of vertices of Gc
satisfying (i), (ii) and (iii). At this step the set Lj’ disjoint from Xj, of all
vertices each of which may possibly be added to Xj to form Xj+1’ is placed on the
top of a stack. Clearly we need |Lj | to be as small as possible. Since each vertex

of Lj is compatible with exactly one vertex of X. and incompatible with none of

{so that (i) and (i

J
X. 1), the forest man
J+

ii) are satisfied ir

J
minimising C’s and maximising I’s in M) is vital.

Initially XO =0 and it is not necessary to place all vertices of X into Lo' It
is sufficient that L0 contains any one of the sets Fa- and we therefore set L0 to
1

be an Fa- which has minimum cardinality.
1

The algorithm proceeds by adding the vertex which is on top of the stack to Xj thus

forming Xj+1' It continues until Lj is empty, the length of the partial SMT

candidate exceeds that of the shortest complete SMT candidate found so far or until

(iv) is satisfied (7.e.we have a new SMT candidate). In each of these situations we

backtrack to an earlier step.

Only minor modifications are required to allow a-points to have degree three in an

SMT and we do not discuss this further.

4. Computational Experience

EDSTEINER89, which contains about 120 pages of FORTRAN code, was run on a SUN3/60

work station. This machine is approximately five times slower than the main frame
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IBM4381 on which EDSTEINERR6 was tested.

4.1 Randomly Generated Problems

Two hundred 32-point sets were randomly generated in the unit square. EDSTEINER89
found SMTs for all of these in reasonable machine times and in examples of this
size, stage 1 now dominates the total running time. The average time for stage 1

(TLIST construction) was 438 secs and the average time for stage 2 (forest

and after forest management were 68 and 60 respectively.

In order to further investigate the effectiveness of the new program and to decide
which parts of the procedure most limit this effectiveness, we ran ten randomly
generated problems of each point size 10,15,20,25,---,90,95,100 with a cut-off
time of 20 hours. O0f these one hundred and ninety problems, only nine were

unfinished at the cut—off point, the smallest of these being a 45—point problem.

Ve now change terminology and define Part 1 of EDSTEINER89 to mean the generation
of TLIST and the forest management described in 3.1. Part 2 will mean the SMT
extraction from the final TLIST. In all of the one hundred and ninety problems,
Part 1 was successfully completed. The average running time for Part 1 and the
average length of TLIST do not seem to grow particularly fast with n in randomly
generated problems. This fact is suggested by the graph, labelled random, of Fig.
2 in which a quadratic curve T = 2.02112 —60.9n + 446 has been fitted to the graph
of average Part 1 machine time against n. Obviously sample size is too small for

serious deduction.



14.

Finally, we conducted a further test of the effectiveness of EDSTEINER89 for
100-point square randomly generated problems. A hundred of these problems having
non—degenerate Steiner polygons were processed, using a cut—off time of 12 hours.
Seventy-seven of these were successfully completed. The average machine times (in
minutes) were 209 for TLIST construction, 27 for forest management and 10.8 for SMT
extraction. Part 1 successfully completed in all of the 100 problems. These times
convert approximately to 17.5, 3.5 and 1.1 minutes respectively of mainframe

1gths of TLIST before and

after forest
management were 220 and 200 respectively. Comparison of these numbers with the

values for n =32 (above) indicates the slow growth of TLIST length.

Experience has shown that about 157% of these random problems have degenerate
Steiner polygons and it is obvious that EDSTEINER89 has a greater success rate on
degenerate sets. We therefore suggest that the effectiveness of EDSTEINER89 on
square randomly generated 100-point sets is at least 80% with a cut—off time of 12

hours on the SUN3/60. One of the 100-point solutions is depicted in Fig. 3.

4.2 Square Lattice Problems

Regular configurations are often far more difficult to solve than randomly
generated sets. The pruning techniques are not so effective and it appears that in
order to solve many regular problems, the special geometry must somehow be
incorporated into the algorithm. The difficulty is illustrated by the vast
amounts of time taken for the following sets A of square lattice points. Let

n=4q+r and

A :{(iyj)lizl,-..,q and j:i,"',4:}

n
U{(l‘*'l,j)‘j 21,---,1‘}—
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The machine times in seconds for stage 2 for EDSTEINER86 and EDSTEINER89 for
various values of n are compared in Table 2 and a graph plotting the logarithm of
the two machine times which emphasizes the exponential nature of the computations,

is given in Fig. 4.

The fact that TLIST construction is also far slower for these square lattice
problems than for randomly generated

Fig. 2. The graph,
o (@) r 7

labelled An’ shows Part 1 machine times for the AIl problems.

Lastly in Fig. 5 we exhibit SMTs for 45 subsets of 4 xm square lattice points.
Each point set is of the form UUV where U contains the first k complete columns
of the lattice and k € {1,---,5} and V is one of the nine non—empty subsets of the

(k+1)st column.

n EDSTEINER86 EDSTEINER89
13 34 7
14 137 14
15 666 43
16 2169 86
17 6419 164
18 26064 552
19 122389 2674
20 395806 6348
21 12555
22 45191
23 437730

Table 2: Stage 2 machine times for the square lattice sets An
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5. Further Research

The authors are conducting research efforts in the following directions which

could lead to further reductions in computer time and hence increase the

applicability of the plane SMT program still further.

(1)

—~
[V
[

~—

(iii)

Introduction of the new quadrilateral removal theorem [9] as mentioned
in Section 2.2.
Further research on the geometry of TLIST. For example, the

establishment of block decompositions other than those facilitated by
Theorems 2.2 and 2.3 of [5], so that Part 2 computations may be speeded
up in cases where these theorems are insufficiently powerful to cause
completion within a reasonable time.

Further refinements to reduce the number of C’s and increase the number

of I’s in the compatibility matrix. For example it may be possible and
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useful to dynamically amend the matrix as successive partial SMT
candidates are constructed, i.e. the fact that certain FSTs are to be
included could obviously change the compatibility of other pairs of

FSTs.

(iv) There is now a linear time algorithm which will construct (if possible)

an FST given a topology [8]. F. Hwang and P. Vinter (private

communications

p—

have suggested that the ideas involved in that

(v) Use of the special geometry to increase the applicability of the program

for plane square lattice point sets .
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Fig.l Forest management with
duplicoted distances
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Fig. 3 A 100 Point example (random)
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