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Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) hold

great potential for drug screening applications. However, their usefulness is limited by the

relative immaturity of the cells’ electrophysiological properties as compared to native

cardiomyocytes in the adult human heart. In this work, we extend and improve on

methodology to address this limitation, building on previously introduced computational

procedures which predict drug effects for adult cells based on changes in optical

measurements of action potentials and Ca2+ transients made in stem cell derived

cardiac microtissues. This methodology quantifies ion channel changes through the

inversion of data into a mathematical model, and maps this response to an adult

phenotype through the assumption of functional invariance of fundamental intracellular

and membrane channels during maturation. Here, we utilize an updated action potential

model to represent both hiPSC-CMs and adult cardiomyocytes, apply an IC50-based

model of dose-dependent drug effects, and introduce a continuation-based optimization

algorithm for analysis of dose escalation measurements using five drugs with known

effects. The improved methodology can identify drug induced changes more efficiently,

and quantitate important metrics such as IC50 in line with published values.

Consequently, the updated methodology is a step towards employing computational

procedures to elucidate drug effects in adult cardiomyocytes for new drugs using stem

cell-derived experimental tissues.
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INTRODUCTION

The development of human induced pluripotent stem cells

(hiPSCs) opens promising avenues of investigation into a wide

variety of fundamental questions in cell physiology and beyond

[for recent reviews, see, e.g., (Yoshida and Yamanaka, 2017; Di

Baldassarre et al., 2018; Ye et al., 2018)]. One of the more

immediately tractable applications of hiPSCs is the creation of
specific human cell and tissue samples to augment drug

discovery and development pipelines. These pipelines have

traditionally relied on animal models in key areas of testing,

but are limited by significant physiological differences between

animal and human cells [see, e.g., (Mathur et al., 2016; Fine and

Vunjak-Novakovic, 2017; Yoshida and Yamanaka, 2017; Ye
et al., 2018)]. These differences, both at the genetic and

proteomic levels, give rise to distinctly non-human system

dynamics, for example, a mouse’s heart rate is much more

rapid than a human’s (∼600 bpm vs. ∼60 bpm), such that it is

often difficult to translate drug effects from one species to

another [see, e.g., (Mathur et al., 2016; Fine and Vunjak-

Novakovic, 2017; Yoshida and Yamanaka, 2017; Ye et al., 2018)].
By using hiPSC-derived cells, it is possible to measure drug

effects directly in human-based systems, and therapeutics can

eventually, in principle, be tested and adjusted at the level of the

individual patient. This hiPSC-based, patient-centric approach

opens up great possibilities for drug development, both in terms

of the scope of illnesses approachable, including disorders caused
by rare mutations, as well as improved safety by the early

identification of drug side effects in human cells. Nevertheless,

hiPSCs are also associated with a variety of scientific challenges

that must be resolved to realize the full potential of the

technology [see, e.g., (Mathur et al., 2015; Mathur et al., 2016;

Mora et al., 2017; Christensen et al., 2018; Ronaldson-Bouchard

et al., 2018; Zhao et al., 2018)].
Maturity of generated cells and tissues is one of these key

challenges, a prominent example being the maturation of hiPSC-

derived cardiomyocytes (hiPSC-CMs) (Chen et al., 2016).

Human cardiomyocytes develop over many years [see (Hille,

2001), ch. 21], and during this period the density of specific ion

channels changes significantly, due both to increased area of the
cell membrane and proliferation of membrane channels [see, e.g.,

(Sontheimer et al., 1992; Moody and Bosma, 2005; Bedada et al.,

2016)]. Therefore, the physiological response of immature

hiPSC-CMs to a drug cannot necessarily be used to infer the

properties of the drug, nor the response of adult human

cardiomyocytes. Even if it is known exactly how a drug affects

an hiPSC-CM, it is difficult to deduce its effect on adult cells;
direct interpretation may in fact lead to both false positives and

false negatives [see (Liang et al., 2013; Mathur et al., 2015)].

In (Tveito et al., 2018), we used mathematical modeling of

cardiac cell dynamics to address these challenges associated with

the application of hiPSC-CMs. Such mathematical modeling of

the cardiac action potential (AP) remains an active area of
research, and sophisticated models have been developed in

order to accurately simulate both single cells and cardiac tissue

dynamics [see e.g., (CellML Model Repository; Rudy and Silva,

2006; Grandi et al., 2010; O’Hara et al., 2011; Rudy, 2012;

Franzone et al., 2014; Qu et al., 2014; Edwards and Louch,

2017; Quarteroni et al., 2017; Tveito et al., 2017)]. We

presented an algori thm for invert ing experimental

measurements of the membrane potential and the cytosolic
calcium (Ca2+) concentration in order to obtain parameters for

a mathematical model of the hiPSC-CM AP. We then

demonstrated how this model of hiPSC-CMs can be mapped

to an APmodel representing adult cells. We were able to estimate

the effect of a drug on essential ion currents for hiPSC-CMs as

based on measurements from a microphysiological system
(Mathur et al., 2015), and then to map this effect onto the

adult cardiomyocyte AP model. The combination of these two

methods permitted, in principle, to deduce drug effects on adult

human cardiomyocytes as based on measurements of hiPSC-

CMs in a microphysiological system.

The overall method developed in (Tveito et al., 2018) is
illustrated in Figure 1. In this procedure, we take optical

measurements using fluorescent dyes in a microphysiological

system to define relative traces of the membrane potential and

cytosolic Ca2+ concentration for cells under normal media

conditions and in the presence of drugs. We then define a

mathematical model for the control (undrugged) cases by

identifying parameters denoted by phiPSC,C (hiPSC is for
hiPSC-derived, C is for control) in an AP model that

matches the experimental waveforms. Using this model of

hiPSC-CMs, we then define a maturation matrix Q such that

QphiPSC,C = pA,B, where pA,B (A is for adult, B is for base) are

known parameters representing a generic AP model of an adult

human cardiomyocyte. Here, the matrix Q represents the
developmental change in ion channel density and geometry

from hiPSC-CMs to adult cardiomyocytes, independent of drug

effects on individual channels.

Next, experimental traces of the membrane potential and

cytosolic Ca2+ concentration are taken for the same cells in the

presence of drugs, and these traces are used to define a new

parameter-vector phiPSC,D (hiPSC-CM, Drug) that matches the
data. This new parameterization gives us information about what

modeled channels have been altered by the drug. Then, by

assuming that the drug affects every individual ion channel in

the same manner for the hiPSC-CMs and the adult cells, the

parameter vector for the adult case is given by pA,D = QphiPSC,D.

Hence, we can find an AP model for adult human cardiomyocytes
under the influence of the drug, even though only the effect for

hiPSC-CMs has been measured.

The present report aims to present a number of modifications

to improve the accuracy and reliability of these methods. First,

using the AP models of Grandi et al. (2010), O’Hara et al. (2011),

Paci et al. (2013), Paci et al. (2015), Paci et al. (2017), and Paci

et al. (2018) as a basis, we have derived a new AP model to
improve representation of experimental data. As our inversion

algorithm is based on conducting a huge number of simulations

with varying parameter values, it is essential to have a model that

is stable with respect to perturbations of the parameters.
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Therefore, the new model is designed for improved stability. In
particular, the model of the intracellular Ca2+ dynamics has been

modified to avoid instabilities in the balance between the influx

and efflux of Ca2+ to the sarcoplasmic reticulum (SR).

In addition, our aim has been to create models that can be

mapped back and forth between hiPSC-CMs and adult

cardiomyocytes. A vital modeling assumption has been that the
individual channels are the same in these two cases, and that only

channel density should change. However, existing AP models are

not derived with such a mapping in mind, and models of

identical single channel dynamics vary significantly among

models. Therefore, we have derived a new AP model which

strictly adheres to the principle that every current (and flux)
should be written as a product of the ion channel density and the

dynamics of a single channel; identical ion channels are

represented by identical mathematical models. Consequently,

the mathematical representation of a single channel is the same

for the hiPSC-CMs and adult cardiomyocytes in the novel AP

model presented here.

Finally, we present a new method for inverting experimental
data into parameters for the AP model by introducing a

continuation-based approach, searching for optimal parameters

by gradually moving from known parameters to the parameters
we want to identify. Continuation methods are well developed in

scientific computing [see e.g., (Keller, 1987; Allgower and Georg,

2012)] and offer significant computational savings to find

optimal solutions.

In this manuscript, we first motivate and describe the

approaches outlined above. We then evaluate these methods
with respect to accuracy using simulated data. Subsequently, the

new methods are used to identify the effect of five well-

characterized drugs based on optical measurements of hiPSC-

CMs. In all cases considered, the predicted effects are consistent

with known drug effects, lending credence to the principle that

novel drug effects on adult cardiomyocytes could reliably be
estimated using measurements of hiPSC-CMs and the

described methodology.

METHODS

Here, we offer a detailed presentation of all steps illustrated in

Figure 1. First, we present the derivation of a new AP model.

FIGURE 1 | The effect of a drug on adult cardiomyocytes can be identified by the process illustrated. The cytosolic calcium concentration (Ca2+) and the

membrane potential (V) are measured in a microphysiological system (Mathur et al., 2015; Mathur et al., 2016) of hiPSC-CMs. Data are collected when no drug has

been applied (control, C) and when a drug has been applied (D). The data are used to parameterize a model for both cases, represented by the parameter vectors

phiPSC,C and phiPSC,D for the control and drugged cases, respectively. The control parameter vector phiPSC,C is used to define the maturation matrix Q such that

QphiPSC,C = pA,B, where pA,B is the parameter vector of a generic base model of adult human cardiomyocytes. By comparing the adult parameter vectors for the

control and drugged cases, the effect of the drug can be identified.

Jaeger et al. Computational Identification of Drug Response From hiPSC-CMs

Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 10 | Article 16483

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Next, we describe the inversion method used in our

computations. Finally, we discuss how to characterize the

identifiability of the parameters involved in the inversion as

based on singular value decomposition (SVD) of model currents.

The Base Model
As noted above, we aim to define an AP model that can be scaled

from very early stages of human development (days) to fully

developed adult cardiomyocytes. To review, for one specific
membrane current, we assume that the only difference between

the hiPSC-CM and adult cases is that the number of channels

and the membrane area has changed; thus, the density of

the specific ion channel carrying the current has changed, but

the properties of every individual channel remains the same. The

same principle holds for the intracellular Ca2+ machinery; the

individual channels and buffers remain the same, but both
the intracellular volumes and the number of channels change

from hiPSC-CMs to adult cardiomyocytes. Our model will,

therefore, be based on models of single ion channel dynamics

and only the density of these single channels will change. When a

drug is involved, we assume that the effect of the drug on a single

channel is the same in the hiPSC-CM and adult cases, and
therefore one can use the effect in the hiPSC-CM case to

estimate the effect for the adult case.

Modeling the Membrane Currents
The standard model [see, e.g., (Izhikevich, 2007; Plonsey and

Barr, 2007; Ermentrout and Terman, 2010; Sterratt et al., 2011)]

of the membrane potential of an excitable cell is given by

the equation
dv

dt
= −o

x

Ix , (1)

where v is the membrane potential (in mV), and Ix are the

membrane currents through ion channels of different types, as
well as pumps and exchangers located on the cell membrane.

These currents are all given in units of A/F, and may be

written on the form

Ix =
Nx

ACm

ix, (2)

where Nx is the number of channels of type x on the cell

membrane, A is the area of the cell membrane (in mm2) and

Cm is the specific capacitance of the cell membrane (in pF/mm2).
Furthermore, ix represents the average current through a single

channel of type x (in pA). For voltage-gated ion channels, this

average single-channel current is given on the form

ix = gx0ox(v − Ex), (3)

where gx0 is the conductance of a single open channel (in nS), Ex is

the equilibrium potential of the channel (in mV), and ox is the

unitless open probability of the channel. Note that in models given
on this form, it is common to consider a lumped parameter gx,

given by

gx =
Nx

ACm

gx0 ,

and parameters of this type are given for each of the ion channels

considered in the base model in the Supplementary

Information. For membrane pumps and exchangers, the

single-channel current is given on a similar form. The specific

currents included in the model will be described below.

Scaling of the Membrane Currents
As mentioned above, we assume that the specific membrane

capacitance and the ion channels responsible for each of the

membrane currents are the same during different stages of

development for the cell, but that the number of ion channels,

Nx, and the membrane area, A, may differ. Therefore, currents can

be mapped from one stage of development, S1, to another stage of

development, S2, simply by adjusting the channel density of
the currents.

More specifically, for the formulation (1)–(2), this means that

we assume that the parameter Cm and the expressions for the

single-channel currents, ix, are the same for S1 and S2, but that

the channel density Nx

A
can be different. Let A

S1
x ,A

S2
x and N

S1
x ,N

S2
x

denote the membrane area and number of channels of type x for
the S1 and S2 cases, respectively. Furthermore, let lx represent the

change of channel density in the sense that

NS1
x

AS1
x

= (1 + lx)
NS2
x

AS2
x

: (4)

Now, the S1 and S2 currents are related according to

IS1x =
NS1
x

A
S1
x Cm

ix = (1 + lx)
NS2
x

A
S2
x Cm

ix = (1 + lx)I
S2
x , (5)

for each of the currents x.

The Base Model is the Generic Adult Model
Based on these considerations, it is convenient to define one

default base model from which all other models are derived

to simplify a mapping procedure between different
development stages.

Defining a base model as representing hiPSC-CMs, from

which adult cardiomyocytes subsequently develop, may seem to

be a natural choice. However, in the scheme illustrated in

Figure 1, there is only one fixed model—the generic adult

model—while all other models will change depending on the
experimental measurements. For simplicity, we, therefore, define

the generic adult model to be the default base model, and scale all

other models relative to this model.

Main Currents Present in Human Cardiomyocytes
Modern models of human cardiomyocytes are complex and the

models for the individual currents are based on years of
experience using patch-clamp measurements. In the

formulation (1), our aim has been to include the main

currents present in human cardiomyocytes, but to keep the

number of currents as low as feasible in order to keep the base

model relatively simple. The experimental inputs in the present

methodology are optically-derived, and data based on sensitive

dyes are not expected to be able to uncover equally fine details of
the dynamics as compared to traditional electrophysiological

measurements derived via patch clamp. It is, therefore,
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reasonable to represent the data using simpler models. Our

choice of currents is based on the O’Hara et al. (2011) model

and the Grandi et al. (2010) model for human adult ventricular

cardiomyocytes, in addition to the Paci et al. (2013) model for

hiPSC-CMs. Furthermore, we have focused on including

currents considered to be critical for depolarization and
repolarization of the AP and, therefore, those typically

investigated for response to drugs [see, e.g., (Crumb

et al., 2016)].

In (Crumb et al., 2016), the fast sodium current, INa, the late

sodium current, INaL, the L-type Ca
2+ current, ICaL, the transient

outward potassium current, Ito, the rapid and slow delayed
rectifier potassium currents, IKr and IKs, and the inward

rectifier potassium current, IK1, were investigated for their drug

responses, and we have included each of these currents in our

model. In addition, we have included the sodium-potassium

pump, INaK, the sodium-calcium exchanger, INaCa, the Ca2+

pump, IpCa, the background Ca2+ current, IbCa, and the
background chloride current, IbCl, as they all appear to have a

significant effect on the computed AP and Ca2+ transient of the

Grandi et al. (2010) model. Furthermore, we have included the

hyperpolarization-activated cyclic nucleotide-gated funny

current, If. While this current is very small for adult

ventricular cardiomyocytes, it is substantial for hiPSC-CMs

(Garg et al., 2018). The formulation used for each of the
currents is given in the Supplementary Information. The

formulations are based on those of the currents in the Paci

et al. (2013), the Grandi et al. (2010), and the O’Hara et al. (2011)

models, and we have chosen formulations that seems to work

well for both the hiPSC-CM and adult cases and that are able to

provide good fits for our considered data of hiPSC-CMs.

Modeling Intracellular Ca2+ Dynamics
In addition to the membrane potential, we also want the base

model to represent the dynamics of the intracellular Ca2+

concentration. We consider the following five intracellular

compartments [based on (Grandi et al., 2010)]:

1. The dyad, representing the small cytosolic subspace between

the L-type Ca2+ channels and the ryanodine receptors (RyRs),
2. The subsarcolemmal space, representing the remaining part

of the cytosolic space that is located close to the membrane,

3. The bulk cytosolic space,

4. The junctional sarcoplasmic reticulum (jSR), representing the

part of the SR that is close to the RyR-channels,

5. The network sarcoplasmic reticulum (nSR), representing the
remaining part of the SR.

The Ca2+ concentrations and volume fractions defined for

each of these compartments are given in Figure 2. In all

compartments except the nSR, we consider both the

concentration of free Ca2+ and the concentration of Ca2+

bound to a buffer. The Ca2+ concentration in the extracellular
space is assumed to remain constant. The intracellular Ca2+

fluxes between compartments are illustrated in Figure 2, and the

model takes the form

dcd
dt

= 1
Vd
(JCaL − Jbd − Jcd),

dbd
dt

= 1
Vd

Jbd ,

dcsl
dt

= 1
Vsl

(J sle − Jcsl − Jbsl + J sls ),
dbsl
dt

= 1
Vsl

Jbsl ,

dcc
dt

= 1
Vc
(Jcsl + Jcd − Jnc − Jbc ),

dbc
dt

= 1
Vc
Jbc ,

dcs
dt

= 1
Vs
(J sn − J sls − Jbs ),

dbs
dt

= 1
Vs
Jbs ,

dcn
dt

= 1
Vn
(Jnc − J sn) :

See Section S2.1 in the Supplementary Information for a

derivation of these equations.

Definition of Ca2+ Fluxes
Every model flux Jx representing the flux through a type of

channel can be written on the form

Jx =
Nx

Vcell

jx ,

where Nx is the number of channels of type x, Vcell is the cell
volume (in L) and jx is the average flux through a single

channel of type x (in mmol/ms). Below, we will describe the

formulation chosen for the flux through the RyR channels.

Definitions of each of the remaining fluxes are specified in the

Supplementary Information.

Modeling Release From the SR
In our model of Ca2+ dynamics, we deviate from previous

modeling approaches in two specific ways:

1. Ca2+ is released through RyR channels from the SR directly to

the subsarcolemmal space (SL) and not to the dyad.
2. Release of Ca2+ through the RyR channels is a product of two

factors; one factor models the open probability of the RyR

channels, whereas the other models the availability of

channels that can be opened. We assume that each channel

can only process a certain amount of Ca2+ before it

deactivates.

We will see below that these two modeling assumptions lead

to a model that exhibits two key physiological features of Ca2+

release from the SR of cardiomyocytes, so-called high gain and

graded release (see Section S2.2 in the Supplementary

Information for explanations of these terms).

Flux through RyRs (Jsls )
As we will employ the base model for several different parameter
combinations, the model for the RyR flux must be stable, in the

sense that careful tuning of the model is not requisite to ensure

reasonable activation and deactivation of the RyRs.

As outlined above, we let the Ca2+ released from the SR enter

the SL space rather than the dyad. This is done in order to

achieve graded release (see the Supplementary Information), in

the sense that the amount of Ca2+ released from the SR through
the RyRs should depend directly upon the amount of Ca2+

entering the cell through L-type Ca2+ channels. If the model

were to be formulated such that Ca2+ released from the jSR
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instead entered the dyad, it would be difficult to distinguish the
increase in dyadic Ca2+ concentration resulting from L-type Ca2+

channel flux as opposed to release via RyRs. Directing the RyR

flux into the SL, the concentration change in the dyad is almost

exclusively due to the influx through L-type Ca2+ channels, and

by letting the flux through the RyRs depend on the Ca2+

concentration in the dyad, we achieve graded release.
Furthermore, a common modeling approach for the RyRs is

to govern inactivation by a decreased jSR concentration [see e.g.,

(Sobie et al., 2010)]. However, for large variations in parameter

values, this may lead to model instabilities, because the jSR
concentration depends upon the balance between the flux

through the SERCA pumps and the RyRs, which depend upon

the balance between the Ca2+ fluxes in and out of the cell. In

order to avoid an RyR model whose inactivation mechanism

depends on the jSR concentration, we instead introduce a new

assumption that some RyRs are only able to carry a given amount
of Ca2+ ions during each AP.

We then assume that a small portion of the RyR channels

are always open (type 0), while the remaining channels (type 1) are

FIGURE 2 | Membrane currents, Ca2+ fluxes and intracellular compartments of the base model. The volume fractions of the compartments are based on (Grandi

et al., 2010).
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activated by an increased dyadic Ca2+ concentration and are

inactivated after they have transported a given amount of Ca2+

ions. Therefore, the total flux through the RyRs may be expressed as

J sls = JRyR + Jleak, (6)

where JRyR represents the flux through the RyR channels of type 1

and Jleak represents the flux through the RyR channels of type 0.

We assume that the flux through the two types of RyR channels

are given by expressions of the form

JRyR =
Mp

Vcell

jRyR , (7)

Jleak =
M0

Vcell

jRyR , (8)

where jRyR denotes the flux through a single open RyR channel

(in mmol/ms) and Vcell denotes the total cell volume (in L). In

addition, M0 denotes the number of RyR channels that are

always open (type 0), M denotes the number of available RyR

channels of type 1, and p is the open probability of the channels

of type 1. The single channel flux through the RyRs is given by

jRyR = aRyR,0(cs − csl), (9)

where aRyR,0 (in L/ms) represents the rate of release.

Furthermore, the open probability of the RyR channels of type

1 is modeled by a simple function that increases sigmoidally with

the dyadic Ca2+ concentration, cd, based on the model in
(Friel, 1995):

p =
c3d

c3d + k 3
RyR

: (10)

We let the total number of RyR channels of type 1 be given by
NRyR and the total number of RyR channels of type 0 be given by

M0 = gRyRNRyR : (11)

In other words, the total number of RyR channels (of both

types) is given by (1+gRyR)NRyR.

We assume that every RyR of type 1 is able to transport a fixed
amount of Z Ca2+ ions during an AP. After Z ions have been

transported, the channel becomes inactivated. However, we

assume that as the dyadic Ca2+ concentration, cd, returns to

rest and the open probability, p, consequently decreases, the

inactivated channels gradually recover from inactivation. We let

the number of available channels of type 1 be governed by

dM

dt
= −

Vcell

Z
JRyR +

hRyR

p
(NRyR −M) : (12)

Here, the first term dominates for large values of p, drivingM

towards zero as more Ca2+ is transported through the RyR

channels of type 1. Furthermore, for small values of p (i.e., at

rest), the second term dominates and drives M towards the
maximum value NRyR.

In order to reduce the number of free parameters in the

model, we define a scaled variable r, defined as r = M
NRyR

, and

divide both sides of equation (12) by NRyR. The equation

then reads

dr

dt
= −

JRyR

bRyR
+
hRyR

p
(1 − r), (13)

where

bRyR =
NRyR

Vcell

Z : (14)

Inserting M = rNRyR into (7) and defining

aRyR =
NRyR

Vcell

aRyR,0, (15)

we get the following expression for active RyR flux

JRyR = p � r � aRyR(cs − csl), (16)

where we recall that

p =
c3d

c3d + k 3
RyR

: (17)

Moreover, inserting (11) and (15) into (8), we obtain

Jleak = gRyR � aRyR(cs − csl) : (18)

Scaling the RyR flux
When considering cells of different levels of maturity, we assume

that the number of RyRs and the cell volume may be different,

but that the function of a single RyR channel is the same for

different levels of maturity. We also assume that the ratio
between RyR channels of type 0 and 1, gRyR, and the number

of Ca2+ ions that each RyR channel of type 1 can transport, Z, is

the same for the different maturity levels. Considering the model

(13)–(18), this means that the only adjustment necessary

between two maturity levels S1 and S2 is an adjustment of the

density
NRyR

Vcell
in the definition of aRyR and bRyR. We, therefore,

introduce a scaling factor lRyR such that

N
S1
RyR

VS1
cell

= (1 + lRyR)
N

S2
RyR

VS2
cell

, (19)

and represent this adjustment of the RyR density in the model by

scaling aRyR and bRyR by

aS1
RyR = (1 + lRyR)a

S2
RyR , (20)

bS1
RyR = (1 + lRyR)b

S2
RyR , (21)

where superscript S1 and S2 denote the S1 and S2 versions of the
parameters, respectively.

Inversion of Optical Measurements
The inversion procedure, used to construct base model

representations of data obtained from optical measurements of

the AP and Ca2+ transient of hiPSC-CMs, is described below.

First, in Section Optical Measurements, we describe how optical

measurements of hiPSC-CMs are obtained. Next, in Section
Definition of Adjustment Factors, we describe how adjustment

factors l are set up to represent control (non-drugged) cells from

different data sets. In Section IC50 Modeling of Drug Effects, we

describe how the effect of a drug is modeled using IC50 values
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and corresponding factors, denoted by e. The aim of the

inversion procedure is to find optimal parameter vectors l and

e so that the model parameterized by l and e aligns to the

measured data as best possible. This is explained in more detail in

Section Coupled Inversion of Data From Several Doses. In Section

Properties of the Cost Function, we describe the cost function
constructed to measure the difference between the model and the

data. Finally, in Section A Continuation-Based Minimization

Method, we describe the continuation-based minimization

method used to minimize the cost function in our computations.

Optical Measurements
Using previously developed techniques (Mathur et al., 2015),
cardiac microphysiological systems derived from a single line of

hiPSCs were loaded and matured prior to drug exposure. The

resulting tissues consisted of approximately 90% cardiomyoctyes,

with a small population of stromal support cells. On the day

upon which studies were performed, freshly measured drugs

(Nifedipine, Lidocaine, Cisapride, Flecainide, and Verapamil)

were dissolved into DMSO or media and serially diluted. Each
concentration of the drug to be tested was preheated for 15–20

min in a water bath at 37°C and subsequently sequentially

injected in the device. At each dose, after 20 min of exposure,

the drug’s response on the microtissue was recorded using a

Nikon Eclipse TE300 microscope fitted with a QImaging camera.

Fluorescent images were acquired at 200 frames per second using
filters to capture GCaMP and BeRST-1 fluorescence as

previously described. Images were obtained across the entire

chip for 6–8 sec at a resolution of 511 x 222 square 1.3 micron

pixels. Excitation was paced at 1 Hz, to capture multiple beats

for processing.

Fluorescence videos were analyzed using custom Python

software utilizing the open source Bio-Formats tool to produce
characteristic AP and Ca2+ waveforms for each chip and tested

drug dose. Briefly, for each analysis, the fluorescent signal was

averaged over the entire microtissue. The signal was then

smoothed using a 3-point median filter, and five to seven

individual action potentials or calcium transients were

overlayed by aligning the maximum dF/dt and then averaged
into a single transient. For each drug escalation study, we chose

the single series with the most continuity between control cases

and subsequent drug doses for both AP and Ca2+ transient for

inversion and mapping analysis.

Definition of Adjustment Factors
In order to make base model representations of control cells

from different data sets, we must define adjustment factors l for
a base model parameter set. These adjustment factors represent

alterations of the channel densities and geometry of the cells

under consideration, as explained above. For example, for each

membrane channel type x, the adjustment factor lx is defined as

Nx

A
= (1 + lx)

Nb
x

Ab

, (22)

where Nx

A
is the channel density on the cell membrane for the

fitted model and Nb
x

Ab is the channel density in the default base

model. We generally consider adjustment factors for the

membrane channel densities for all the currents of the model,

i.e., lNa, lNaL, lCaL, lto, lKr, lKs, lK1, lNaCa, lNaK, lpCa, lbCl,

lbCa, and lf, although some of the factors are fixed in some cases

(see Section Identifiability of the Currents in the hiPSC-CM

Base Model).
For the density of an intracellular channel type x, the

adjustment factor lx is similarly defined as

Nx

Vcell

= (1 + lx)
Nb
x

Vb
cell

, (23)

where Nx

Vcell
and Nb

x

Vb
cell

are the channel densities for the fitted model

and the default base model, respectively. We consider the

adjustment factors lRyR and lSERCA for intracellular channel

densities, and the factors l

d
B, l

sl
B, l

c
B and l

s
B for intracellular

calcium buffers (see the Supplementary Information). In

addition, we consider adjustments to the intracellular diffusion

coefficients, lcd , l
c
sl , and l

c
n (see the Supplementary Information).

In order to reduce the number offree parameters to be determined

in the inversion procedure for different control data, we assume

that the buffer concentrations change at the same rate in all

intracellular compartments, so that we only consider a single

adjustment factor

ld
B = lsl

B = lc
B = ls

B : = lB : (24)

Similarly, we assume that the intracellular diffusion

coefficients change at the same rate, so that

lc
d = lc

sl = ls
n : = la : (25)

Furthermore, because we wish to avoid ending up with
unrealistic values of the surface-to-volume ratio, c, we assume

that the scaling factor for the cell surface-to-volume ratio varies

little between data sets and only employ two different values of c

in the computations. We use the value c = 0.6 mm˗1 for adult cells

and the value c = 0.9 mm˗1 for hiPSC-CMs, based on the values

used in the Grandi et al. AP model for adult cardiomyocytes

(Grandi et al., 2010) and the Paci et al. AP model for hiPSC-CMs
(Paci et al., 2013). Note here that t-tubules (i.e., invaginations of

the cell membrane extending into the center of the cell) are

present for adult ventricular cardiomyocytes (Orchard et al.,

2009), and this is incorporated into the adult version of c by

increasing the cell surface area by a factor of about two compared

to the geometrical surface of the cylinder shape of the cell [see
e.g., (Luo and Rudy, 1994)]. For hiPSC-CMs, t-tubules are

believed to be absent or underdeveloped [see e.g., (Di

Baldassarre et al., 2018; Jiang et al., 2018)], and in our choice

of c for hiPSC-CMs, we have assumed that t-tubules are not

present for hiPSC-CMs.

IC50 Modeling of Drug Effects
Following previous modeling of channel blockers [see, e.g.,

(Brennan et al., 2009; Davies et al., 2012; Zemzemi et al., 2013;

Paci et al., 2015)], we model the dose-dependent effect of a drug

by scaling the channel conductances according to

Jaeger et al. Computational Identification of Drug Response From hiPSC-CMs

Frontiers in Pharmacology | www.frontiersin.org February 2020 | Volume 10 | Article 16488

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


gDi =
1

1 + D
IC50i

gCi , (26)

where gDi is the conductance of channel i in the presence of a

drug with concentration D, IC50i is the drug concentration that

leads to 50% block of channel i, and gCi is the channel

conductance in the control case (i.e., in the absence of drugs).
Specifically, this means that if the drug concentration D equals

the IC50 value, we have gDi = 1
2
gCi .

It should be mentioned that a drug may certainly affect a

channel in a more complex manner than is assumed here. The

effect of drugs can realistically be represented by introducing new

states in Markov models of the ion channel. In such models, the
transition rates between different model states are able to

represent the properties of drugs [see e.g., (Clancy et al., 2007;

Tveito et al., 2011; Tveito and Lines, 2016; Tveito et al., 2018)].

Although Markov model representations of drug effects are more

versatile and realistic than the simple blocking assumption

employed here (Tveito et al., 2017), it would greatly increase
the complexity of the inversion process, as many more

parameters would have to be computed.

From (26), we see that for a given drug doseD > 0, the effect of

the drug would increase if the IC50 value were decreased, and the

effect of the drug would be very small if the IC50 value were

much larger than the considered dose. In the continuation-based

minimization method applied in our computations (see the
section A Continuation-Based Minimization Method below), it

is most practical to deal with parameters that are small when no

change occurs and large when large changes occur. Therefore, we

introduce the parameters

ei =
1

IC50i
: (27)

Here, a small value of ei represents small effects of a drug

while a large value of ei represents large effects, and channel

blocking is given by

gDi =
1

1 + Dei
gCi : (28)

In our computations, we assume that the considered drugs

block either ICaL, INaL, IKr, or a combination of these currents,

and we therefore only consider the e-parameters eCaL, eNaL, eKr.

Coupled Inversion of Data From Several Doses
The control data obtained from different optical experiments
tend to vary significantly, and in order to be able to accurately

estimate the drug effect from these measurements, the l-

parameters must be tuned so that the control model fits the

control data as best possible. In addition, we want the l

parameters to be constructed such that that the scaling (28) for

eCaL, eNaL, and eKr is sufficient to fit the model to the drug doses
under consideration. In order to increase the chance of obtaining

such a control model, we fit the control parameters, l, and the

drug parameters, e, simultaneously, instead of first finding the

optimal control parameters, l, by fitting the base model to

the control data, and then subsequently finding appropriate

drug parameters, e, for each dose. In addition, all doses are

included in the inversion, so that the estimated values of e are

based on all the drug doses included in the data set.

In order to illustrate the role of the l- and e-parameters more

clearly, consider a simplified model consisting of just two

currents, and assume that the base model is given by (see the
section Modeling the Membrane Currents)

dv

dt
= −g1o1(v − E1) − g2o2(v − E2) : (29)

Assume further that we have data from cells with both no
drug present and with different doses of a drug (e.g., one low dose

and one high dose). We assume that the drug may block any of

the two model currents. In the inversion procedure, we try to find

optimal values of the four parameters l1, l2, e1, and e2 so that the
adjusted model of the form

dv

dt
= −

1 + l1
1 + De1

g1o1(v − E1) −
1 + l2
1 + De2

g2o2(v − E2) (30)

fits the data both for the control case (D = 0) and for the

considered drug doses. In other words, for a given parameter set

l1, l2, e1, and e2, we need to compute the solution of the model

(30) both for the control case (D = 0) and for the considered drug
doses and compare the obtained solutions to the corresponding

experimental data.

The more general case considered in our computations is

conceptually identical; however, as we also consider scaling of

parameters that are not assumed to possibly be affected by

the drug, we also have some parameters simply scaled by a
factor (1+li) instead of by 1+li

1+Dei
.

Properties of the Cost Function
In order to find the optimal parameters for fitting the model to

data, we need to define a cost function that measures the

difference between a given model solution and the data. This
cost function is defined as

H(l, e) =o
d
o
j

wd,j(Hj(l, e,Dd))
2

: (31)

Here, d runs over each of the considered drug doses, Dd,
including the control case (D0 = 0), and j runs over each cost

function term, Hj, representing various differences between the

data and the model solution. The parameters wd,j represent

weights for each of the cost function terms for each of the

doses. Each of the cost function terms, Hj, are defined in Section

S3.1 of the Supplementary Information.

A Continuation-Based Minimization Method
As outlined above, we wish to adjust the base model to data by

finding l- and e-parameters that minimize a cost function of the

form (31), measuring the difference between the input data and

the model solution. In order to search for the optimal values of l
and e, we apply a continuation-based optimization method [see

e.g., (Keller, 1987; Allgower and Georg, 2012)]. Briefly,

continuation is used to simplify the solution of equations or of
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optimization problems by introducing a q-parameterization such

that the solution is known for one value of q. Suppose, for

instance, that the parameterization is defined such that the

solution is known for q = 0 and the problem we want to solve

is defined by q = 1. Then the solution at q = 1 can be found by

starting at q = 0 and carefully step towards the solution at q = 1.
One advantage with this method is that we can start at a solution

that we know is correct (at q = 0) and then take small steps

towards the goal at q = 1. For the problem of inverting

membrane potential and Ca2+ traces, this method has proven

to be useful.

Cost function in the continuation case
More specifically, we assume that, for each drug dose, Dd,

(including the control case) the data we are trying to invert are

given by some vector pair [v1(Dd), c
1(Dd)], where v1(Dd) is the

membrane potential and c1(Dd) is the Ca2+ concentration. In
addition, from the default base model specified by l = e = 0, we

can compute a vector pair (v0, c0) for the membrane potential

and Ca2+ concentration as the starting point of the inversion.

The goal of the continuation method is to compute a path for

l and e from l = e = 0, which fit (v0, c0) perfectly, to some l and e
that fit the final data [v1(Dd), c

1(Dd)] for each of the drug doses,

Dd, as best as possible. This is done by defining a cost function of
the form

H(q, l, e) =o
d
o
j

wd,j(Hj(q, l, e,Dd))
2, (32)

for the intermediate steps in the algorithm. Here, q is a
parameter that is gradually increased from zero to one. In the

definition (32), the terms H j(q, l, e,Dd) correspond to each of

the terms H j(l , e , Dd) defined in Section S3.1 of the

Supplementary Information. Specifically, the terms take the form

Hj(q, l, e,Dd) =
jRj(v(l, e,Dd), c(l, e,Dd)) − Rq

j (Dd)j

jRq
j (Dd)j

, (33)

Rq
j (Dd) = (1 − q)Rj(v

0, c0) + qRj(v
1(Dd), c

1(Dd)), (34)

where Rj(v,c) represent different characteristics of the AP or Ca2+

transient, e.g., the AP duration at some percentage or the

upstroke velocity (see Section S3.1 of the Supplementary

Information1). In the case q = 0,  Rq

j (Dd) is equal to the terms
defined by the default model (l = e = 0) for all the doses Dd.

Therefore, H(0, 0, 0,Dd) = 0,2 so the optimal solution for q = 0 is

l = e = 0. In the case q = 1, the terms Rq

j (Dd) are equal to the

characteristics computed for the data we wish to invert. In other

words, H(1, l, e) = H(l, e), where H(l, e) is defined in (31). For

the intermediate values of q, the characteristics Rq

j (Dd) represent

weighted averages of characteristics of the model used as a
staring point for the inversion (l = e = 0) and the data we are

trying to invert. Therefore, we expect the optimal values of l and

e to gradually move from zero to the optimal values for the data

as q is increased from zero to one.

The minimization algorithm
In the minimization algorithm, we find the optimal solution in M
iterations. We define qm = Dq·m for m = 0,…,M, where Dq = 1/M.

For m = 1,…,M, we assume that the optimal values l(qm˗1) and

e(qm˗1) have been computed, and we want to find l(qm) and e(qm)

by finding the minimum of H(qm, l, e). Since the step in q is small,

we assume that the changes in l and e are also relatively small. We

use the Nelder-Mead algorithm (Nelder and Mead, 1965) to
minimize H(qm, l, e), and we use l(qm˗1) and e(qm-1) as

suggestions for the starting vectors to find l(qm) and e(qm).

However, in order to increase the chance of finding the true

optimal value in every iteration, we start the Nelder-Mead

algorithm from several randomly chosen starting vectors in the

vicinity of l(qm˗1) and e(qm˗1). Figure S3 in the Supplementary

Information illustrates the development of the e-values in an

inversion aiming to characterize a drug.

Technical specifications
In the applications presented below, we useM = 20, and in each

iteration m, we draw 63 guesses (as the specific computer used

for these simulations has 64 cores) for the starting vectors for
the Nelder-Mead algorithm from [l(qm-1)−0.2, l(qm-1)+0.2]

and ½e(qm−1)
5

, 5 � e(qm−1)� for l and e, respectively. In the first 15

iterations, we use five iterations of the Nelder-Mead algorithm

for each guess, and for the last five iterations we use 25

iterations of the Nelder-Mead algorithm. For each new

parameter set, we generally run the simulation for 15 AP
cycles using 1 Hz pacing before measuring the AP and Ca2+

transient, unless otherwise specified. The choice of 15 AP cycles

is selected as a compromise between the desire of minimizing

the computational efforts required for each cost function

evaluation and the desire of reaching new stable steady state

values for the state variables following a parameter change.

Presently, each cost function evaluation requires about 14 sec of
computing time for a data set including four doses in addition

to the control case.

Identifiability of the Base Model Based on
Singular Value Decomposition of Currents
In the inversion procedure outlined above, we try to find the optimal

adjustment factors l and e for the model so that the AP and cytosolic

Ca2+ transient in the model solution match measurements of the AP

and Ca2+ transient as best possible. An important element to consider
in this process is whether the identified adjustment factors found by

the inversion procedure are the only combination of adjustment

factors that fit the data, or whether other adjustment factors might

exist which fit the data equally well.

In order to investigate the identifiability of the adjustment

factors for the currents in the base model, we apply a method
based on singular value decomposition [see, e.g., (Liesen and

Mehrmann, 2015; Lyche, 2017)] of the currents. This approach is

described in detail in (Jæger et al., 2019a). In short, the

identifiability of the currents is investigated by collecting the

model currents at time points tn = nDt, for n = 1, …, Nt into a

1Note that this does not apply to the regularization terms of the cost function.

These terms are assumed to be the same for all values of q.
2Note that this relies on either the flux balance term HCa,b being zero for the

default base model or on the weight for this term being zero (see Section S3.1.8 in

the Supplementary information).
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matrix A ∈ RNt ,Nc , where Nc is the number of model currents.

Then, the singular value decomposition of the matrix

A = USVT

is computed. Here, the matrices U ∈ RNt ,Nt and V ∈ RNc ,Nc are
unitary matrices, and the matrix S ∈ RNt ,Nc is a diagonal matrix

with singular values si along the diagonal. The columns ui and vi
of U and V, respectively, are the associated singular vectors.

From the properties of the singular value decomposition it

can be shown that perturbations of the adjustment factors along

singular vectors vi associated with large singular values si are
expected to result in significant changes in the AP, whereas

perturbations of the adjustment factors along singular vectors vi
associated with small singular values are, accordingly, expected

to result in small changes in the AP.

In (Jæger et al., 2019a) it was shown that this expected result

seemed to hold in the case of three well-known AP models of
adult ventricular cardiomyocytes. In addition, it was

demonstrated how this analysis could be used to define an

identifiability index for individual model currents. This index

was defined for each current j=1,...,Nc as

k(ej) = jjej − PNej jj2, (35)

where ej ∈ RNc is the vector that is one in element number j and

zero elsewhere. Moreover, PNej ∈ RNc is the projection of ej onto

the unidentifiable space spanned by the singular vectors vi
associated with small singular values (or small perturbation

effects). In other words, if k(ej) is close to zero, almost the

entire current Ij is in the unidentifiable space, and we cannot
be sure that the value of the associated adjustment factors lj or ej
are the only values that fit the data (i.e., result in the same AP).

On the other hand, if k(ej) is close to one, we expect that other

values of lj or ej would not fit the data as well as the currently

assumed values, as perturbations of the adjustment factors would

result in large changes in the AP.

Note that this approach only aims to determine the
identifiability of the adjustment factors for the membrane

currents. The analysis could be extended to include other state

variables than just the membrane potential (e.g., the Ca2+

concentrations). In this case, the identifiability of the remaining

adjustment factors might also be suggested. However, at this stage

primary focus is on identifying drug effects on membrane ion
channels, so we are principally interested in ensuring that the

adjustment factors for the currents are unique.

RESULTS

Below, we demonstrate a few applications of the method outlined

above. First, in the section The Base Model, we define the default

hiPSC-CM and adult parameterizations of the general basemodel
formulation. We also demonstrate that these models exhibit high

gain and graded release of the Ca2+ fluxes. In addition, we

illustrate the identifiability of the model currents using SVD

analysis, as described above. This analysis is used to determine

which model currents should be fixed in the applications of the

inversion procedure. Next, in the section Identification of Drug

Effects on hiPSC-CMs Based on Simulated Data, we use the

inversion procedure to identify drug effects for data generated

by simulations. Finally, in the section Identification of Drug Effects

on hiPSC-CMs Based on Optical Measurements, we apply the
inversion procedure to identify drug effects from data obtained

from optical measurements of hiPSC-CMs.

The Base Model
Here, we set up the default adult and hiPSC-CM base model

formulations used in the inversion procedure in the

following sections.

Base Model Approximation of the Grandi Model
The adult base model is fitted to approximate the Grandi et al.
model using the inversion procedure described above. The upper

right panel of Figure 3 shows the AP and Ca2+ transient of the

Grandi et al. (2010) model for healthy adult ventricular

cardiomyocytes and the AP and Ca2+ transient of the adult

version of the base model. In the lower right panels, we compare

a number of major ionic currents in the base model to those in

the Grandi et al. (2010) or the O’Hara et al. (2011) models.
In the inversion, the cost function includes all the terms

specified in Section S3.1 of the Supplementary Information,

except for the regularization terms. For the cost function terms

involving information about currents and fluxes, we have

included INa, ICaL, Ito, IKr, IKs, IK1, INaCa, IpCa, and IbCa, as well

as the fluxes JRyR and JSERCA (see Section S3.1.7 of the
Supplementary Information). All terms measuring the

difference in membrane potential or Ca2+ concentration are

given the weight wj = 1 and the terms measuring differences in

the currents are given the weight wj = 0.5. The initial conditions

for the parameters included in the inversion are specified in

Table S9 of the Supplementary Information.

As mentioned above, we define the default base model as the
adult base model because this model will remain fixed, whereas

the hiPSC-CM models will change depending on experimental

data. The parameter values obtained in the inversion procedure

therefore define the default base model and are specified in

Section S1 of the Supplementary Information.

Default Base Model for hiPSC-CMs
The left panel of Figure 3 shows the solution of the default base

model for hiPSC-CMs fitted to optical measurements of the AP

and Ca2+ transient. In this case, the cost function consists of the

terms HAPD30, HAPD50, HAPD80, HCaD20-HCaD80, Hint30, Hdvdt,

Hdcdt, HCa, HCa,b, HImax
Na
, HImax

CaL
, HImax

Kr
, HImax

Ks
, HImax

K1
, HImax

to
, HImax

f
(see

the Supplementary Information), where the information about

the currents is obtained from the Paci et al. model (Paci et al.,
2013) which is based on patch-clamp recordings of the ionic

currents of hiPSC-CMs from (Ma et al., 2011). The terms

HCaD20-HCaD75 are given the weight 0.5, and HAPD80 and

HCaD80 are given the weight 5. Furthermore, HImax
Na

, HImax
Ks

, HImax
K1
,

HImax
to

, and HImax
f

are given the weight 0.5 and HImax
CaL

and HImax
Kr

are

given the weight 5. The remaining terms are given the weight 1.
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The mapping between hiPSC-CMs and adult cardiomyocytes

returned by the inversion procedure are reported in Table 1.

Note that these factors represent the default hiPSC-CM base

model to be used as a starting point for the inversion of the

remaining control data sets. In other words, the specific

adjustment factors between the hiPSC-CM and adult models

will differ for each new data set. Note also that in our applications

of the inversion procedure, we consider data from stimulated

hiPSC-CMs, and therefore, the hiPSC-CMs are not required to
be spontaneously beating. The default hiPSC-CM version of the

base model in Figure 3 is not spontaneously beating, and

whether the model fitted to a specific data set is spontaneously

beating or not will depend on the fitted parameter values. In

Figure S4 in the Supplementary material, we report how some of

the AP and Ca2+ transient features depend on the pacing

frequency for the default hiPSC-CM and adult base models
and compare the results to those of the Grandi et al. (2010),

O’Hara et al. (2011), Paci et al. (2013), and Kernik et al. (2019)

models for adult and hiPSC-derived cardiomyocytes.

High Gain and Graded Release of the Base Model
As mentioned above, the base model formulation of Ca2+ release

is designed to exhibit both high gain and graded release. This has
proved impossible to achieve using common pool models [see,

e.g., (Rice et al., 1999; Dupont et al., 2016)], as discussed in more

detail in the Supplementary Information. The Ca2+ release

TABLE 1 | Values defining the maturation map between the default hiPSC-CM

and adult base models illustrated in Figure 3.

lNa 2.00 lNaK -0.16
l

c

sl
–0.14

lNaL -0.08 lCaL -0.53
l

s

n
–0.10

lKr -0.54 lbCa 3.90
l

c

d
–0.61

lKs 0.68 lpCa -0.85
l

c

B
–0.56

lK1 2.23 lNaCa -0.69
l

d

B
–0.72

lto 8.45 lRyR -0.20
l

sl

B
–0.60

lf -0.99 lSERCA -0.53
l

s

B
–0.58

lbCl 42.43 l

c

-0.33

The adult parameters, pA, are related to the hiPSC-CM parameters, phiPSC, by the relation

pA = (1+l)phiPSC. See the sections Modeling the Membrane Currents, Modeling Intra-

cellular Ca2+ Dynamics and Section S2.1 in the Supplementary Information for more

detailed definitions of each of the l-values.

FIGURE 3 | AP, cytosolic Ca2+ transient and major ionic currents in the hiPSC-CM and adult versions of the base model. In the left panel, the base model is

adjusted to fit data obtained from optical measurements of the AP and Ca2+ transient of hiPSC-CMs. In the right panel, the base model is adjusted to approximate

the Grandi et al. (2010) model of adult cardiomyocytes.
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model we have designed differs from the classical common pool

models in two ways: first, release of Ca2+ from the SR is not

directed into the dyad (d), but rather directly to the

subsarcolemmal (SL) space (see Figure 2), and, second; the

release mechanism is formulated in terms of both an

availability rate and open probability for the RyRs [see (16)].
In Figure 4, we show that this model exhibits high gain and

graded release both when the hiPSC-CM and adult parameters

are applied. In the figure, we report the peak of the JCaL and JRyR
fluxes as well as the integrated fluxes for simulations in which the

membrane potential is fixed at specific values. The remaining

state variables of the model start at the default initial conditions
corresponding to the default resting membrane potential of the

model, and the simulations record the JCaL and JRyR fluxes

resulting from the clamped membrane potential.

We observe that for most values of v, the JRyR flux is

considerably larger than the JCaL flux, indicating high gain.

Furthermore, a small JCaL flux seems to be associated with a
small JRyR flux, whereas a large JCaL flux is associated with a large

JRyR flux, indicating graded release.

Identifiability of the Currents in the hiPSC-CM

Base Model
In order to investigate the identifiability of the individual model

currents, we apply the singular value decomposition analysis
from (Jæger et al., 2019a) described in the section Identifiability

of the Base Model Based on Singular Value Decomposition

of Currents.

In Figure 5, titles above each plot indicate the value of each of

the singular values of the current matrix, A. The upper plots

below the singular values show the singular vectors

corresponding to each of the singular values. Here, each letter

corresponds to a single current specified in the table on the right-

hand side. The below left plots show the values of the cost
function (31) evaluated using the default base model for hiPSC-

CMs as data and a perturbed model as the model solution. In the

perturbed model, the maximum conductances are perturbed

with l-values [see (5)] equal to w ∙vi, where vi is the considered

singular vector and w is varied between zero and one. The cost

function includes the terms HAPD30, HAPD50, HAPD80, and HInt30

with weight 1 for all terms except HAPD80, which is given the

weight 5 (see the Supplementary Information for definitions).

The maximum values of H are given in the top of the plots. The

right plots show the solutions resulting from the perturbations

for a few selections of w.
In (Jæger et al., 2019a) it was shown that perturbations of the

maximum conductances along singular vectors corresponding to

large singular values generally resulted in large perturbation

effects, whereas perturbations along singular vectors

corresponding to small singular values generally resulted in

small perturbation effects for the Ten Tusscher and Panfilov,

(2006), the Grandi et al. (2010) and the O’Hara et al. (2011) AP

models. Figure 5 shows correspondence to this result for the
hiPSC-CM base model; the main discrepancy is observed for s2,
which corresponds to a singular vector consisting almost

exclusively of the fast sodium current, INa. The perturbation

FIGURE 4 | Graded release for the hiPSC-CM (left) and adult (right) versions of the base model. In the upper panel, we report the peak of the JCaL and JRyR fluxes

for simulations in which the membrane potential is fixed at specific values between −50 mV and 80 mV. In the lower panel, we show the fluxes integrated with

respect to time from t = 0 ms to t = 100 ms. After 100 ms, both JCaL and JRyR have roughly returned to their resting levels.
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effects may be very small for this singular value because the

upstroke velocity, physiologically governed by INa, is not

included in the cost function [cf. (Jæger et al., 2019a)].

In order to quantify the identifiability of the individual

currents, we compute the identifiability index, k, defined in

(35). The unidentifiable space is defined as the space spanned
by the singular vectors vi whose maximum value of H(w·vi) for
0≤w≤1 is smaller than 0.05. The computed values of the

identifiability index for each of the model currents are given in

the orange box on the right-hand side of Figure 5. A value of k

close to 1 indicates a high degree of identifiability, while a value

of k close to 0 indicates an unidentifiable current.

From the indices in Figure 5, we see that ICaL, IKr, and INaCa
are highly identifiable, but that the currents INaL, INa, IbCa, IKs,

and IbCl has an identifiability index below 0.5. As a consequence,
we fix the conductance of INa, IbCa, IKs, and IbCl in the

applications of the inversion procedure presented below. In

addition, we are aware that the INaL current might be hard to

FIGURE 5 | SVD analysis of the currents in the default base model for hiPSC-CMs. The titles above each plot give the singular values of the current matrix A, and

the upper plots show the corresponding singular vectors. The below plots show how a perturbation of the currents corresponding to the singular vector affects the

computed AP for a few examples (right) and measured by a cost function (left). The identifiability index (35) of each current is given in the orange panel.
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identify, and that estimated drug effects for this current are

associated with a level of uncertainty [see also (Poulet

et al., 2015)].

Identification of Drug Effects on
hiPSC-CMs Based on Simulated Data
Our first application of the inversion procedure is to identify

drug effects as based on simulated data. To generate these data,

we set lCaL = lNaL = lKr = 0.1 in the default hiPSC-CM base

model. In addition, we apply a set of e-values to represent five

specific drugs—Nifedipine, Lidocaine, Cisapride, Flecainide, and

Verapamil. We assume that Nifedipine is a pure ICaL-blocker
with an IC50 value of 10 nM, that Lidocaine is a pure INaL-

blocker with an IC50 value of 10 mM, and that Cisapride is a pure

IKr-blocker with an IC50 value of 10 nM. Furthermore,

Flecainide is assumed to block a combination of all three

currents with IC50 values of 25 mM, 20 mM and 10 mM for

ICaL, INaL, and IKr, respectively. Verapamil is assumed to block

ICaL with an IC50 value of 200 nM and IKr with an IC50 value of

500 nM. Both when the data is generated and in the inversion

procedure, we record the sixth generated AP following each

parameter change.

Figure 6 shows the result of the inversion procedure using the

l-values lCaL, lNaL, and lKr and the e-values eCaL, eNaL, and eKr
as free parameters in the inversion procedure. The left panel

shows the e-values used to generate the data (yellow) and the

corresponding e-values returned by the inversion procedure

(pink). The center and right panels show the AP and Ca2+

transient, respectively, for the control case and for each of the

drug doses included in the data sets. The solid lines show the
simulated data and the dotted lines show the solutions generated

by the model using the l- and e-values returned by the inversion

procedure. Note that to clearly see differences in theCa2+ transient

amplitude, the Ca2+ transients are adjusted so that the Ca2+

transient amplitude is preserved, but the minimum Ca2+

concentration is set to zero. We observe that the inversion

FIGURE 6 | Identification of drug effects for five drugs based on simulated data. The l-values lCaL, lNaL, and lKr and the e-values eCaL, eNaL, and eKr are allowed to

vary in the inversion. The left panel shows the e-values used to generate the simulated drug data (yellow) and the corresponding e-values estimated by the inversion

procedure (pink). The center and right panels show the AP and Ca2+ transients, respectively, for each of the drug doses included in the data sets. Solid lines

represent the simulated data and dotted lines show the fitted model solutions returned by the inversion procedure. Note that to clearly see changes in the Ca2+

transient amplitude, the Ca2+ transients are adjusted so that the Ca2+ transient amplitude is preserved, but the minimum value is set to zero in all cases.
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procedure is able to identify the correct e-values accurately,

excepting the e-value for Lidocaine, which is predicted to be

considerably lower than the value used to generate the data.

Identification of Drug Effects on hiPSC-
CMs Based on Optical Measurements
Below, we present use of the inversion procedure to identify drug

effects on hiPSC-CMs from optical measurements of the AP and

Ca2+ transient.

Nifedipine
Figure 7 shows the result of the inversion procedure applied to
data from optical measurements of hiPSC-CMs exposed to the

drug Nifedipine. The data includes the control case with no drug

present and four different drug doses (3 nM, 30 nM, 300 nM, and

3,000 nM). The left panel of Figure 7A shows the membrane

potential and Ca2+ traces obtained from optical measurements,

and the center panel shows the corresponding solutions of the

hiPSC-CM version of the base model fitted to the optical

measurements. Note that the values of the data are mapped so

that the maximum and minimum values of the membrane

potential and Ca2+ concentration match those of the fitted

hiPSC-CM model. Panel C of Figure 7 compares the
experimentally measured data and the fitted model for each of

the doses. We observe that the model seems to fit the data quite

well for most of the doses, but that the Ca2+ transient appears to

last a bit longer in the model than in the data for the highest

considered drug doses.

The dose-dependent effect of the drug on the ICaL, INaL, and
IKr currents are modeled using IC50 values (see Section IC50

Modeling of Drug Effects). The values of ei =
1

IC50i
for i = CaL,

NaL, and Kr are given in Figure 7B. A large value of ei

corresponds to a large drug effect on the current i, and a small

value of ei corresponds to a small drug effect on the current i.

FIGURE 7 | Identification and mapping of drug effects for the drug Nifedipine based on optical measurements of the AP and Ca2+ transient of hiPSC-CMs. (A) AP

and Ca2+ transient in the control case and for four drug doses for the data (left) and the fitted hiPSC-CM model (center). The predicted drug effects for adult

cardiomyocytes are given in the right panel (note that the scaling of the axes is adjusted for the adult case). Note also that, to clearly see differences in the Ca2+

transient amplitude, the displayed Ca2+ concentrations are adjusted so that the Ca2+ transient amplitude is preserved, but the resting concentration is set to zero in

each case. (B) Drug effect on ICaL, INaL and IKr in the form of e-values estimated by the inversion procedure. (C) Comparison between the measured membrane

potential and Ca2+ traces and the fitted model solutions for each of the doses in the data set.
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From Figure 7B, we observe that the inversion procedure

predicts that Nifedipine primarily blocks ICaL.

The IC50 values corresponding to the estimated e-values for
ICaL, INaL and IKr are given and compared to literature values in

Table 2 for all the five considered drugs of this section (see the

Discussion section for a discussion of these results).

Lidocaine
Figure 8 shows similar results for inversion of measurements of

hiPSC-CMs exposed to the drug Lidocaine. In panel A, we

observe that the AP duration is reduced by the drug, and in

panel B, we observe that the inversion procedure predicts that the

drug primarily blocks the INaL current.

Cisapride
Figure 9 shows the result of the inversion procedure applied to a

data set for hiPSC-CMs exposed to the drug Cisapride. In panel

A, we observe that the drug increases the AP duration. In panel

B, we observe that the inversion procedure predicts that

Cisapride primarily blocks the IKr current.

Flecainide
Figure 10 shows the result for the inversion procedure applied to

optical measurements of hiPSC-CMs exposed to the drug

Flecainide. In panel A, we observe that the drug causes increased

AP duration. In panel C, we observe that the fitted model fits the

data quite well, excepting that the AP duration at high percentages

of repolarization is longer for the data than for the model for the

highest considered dose. In addition, the shape of theCa2+ transient
for the lowdoses is not entirely captured in themodel. InpanelB,we

observe that the inversion procedure estimates that the drug

primarily blocks IKr and, to some degree, ICaL.

Verapamil
Figure 11 shows the result of the inversion procedure applied to

measurements of hiPSC-CMs exposed to the drug Verapamil. In
panel A, we observe that the drug leads to decreased AP duration.

Panel B shows that the inversion procedure predicts that

Verapamil primarily blocks ICaL and, to some extent, IKr.

Mapping of Drug Effects From hiPSC-CMs
to Adult Cells
The rightmost plots of panel A of Figures 7–11 show the

predicted drug effects for adult cells for each of the drugs

considered. More specifically, the plots show the solution of

the adult base model exposed to each drug’s effect (e-values) as
estimated by the inversion procedure for each of the drug doses

included in the data set. To review, this represents the predicted
drug response for an adult AP and Ca2+ transient exposed to

each of the drugs, based on the optical measurements of the AP

and Ca2+ transient as obtained in a microphysiological system of

hiPSC-CMs. The predictions are made by first using the

inversion procedure to estimate the effect of the drug on the

ICaL, INaL, and IKr currents in the hiPSC-CM case and then
mapping the corresponding drug effects to an adult cell using the

determined maturation map based on the assumptions of

differences in the channel densities and geometry between

hiPSC-CMs and adult cardiomyocytes (see theMethods section).

DISCUSSION

Here, we have presented an improved version of the methods
presented in (Tveito et al., 2018) for estimating drug effects for

adult human cardiomyocytes based on optical measurements of

the AP and Ca2+ transient of hiPSC-CMs in a microphysiological

system. First, we introduce a new base model formulation for

representing both adult cells and hiPSC-CMs via different

parameter sets. A model for intracellular Ca2+ dynamics is

updated to a formulation constructed for stability with respect
to parameter changes. In addition, we use IC50-based modeling

of dose-dependent drug effects and find optimal parameters by

running a coupled inversion of both the control data and the

drug data for several different doses. The cost function measuring

TABLE 2 | Comparison between the IC50 values obtained from the inversion procedure and values found in literature.

Nifedipine Lidocaine Cisapride Flecainide Verapamil

CaL Inversion 38 nM 3400 mM 775 nM 9 mM 495 nM

Literature 12 nM (Kramer et al., 2013) 11 800 nM (Kramer et al.,

2013)

26 mM (Crumb et al.,

2016)

202 nM (Crumb et al.,

2016)

60 nM (Di Stilo et al., 1998) 27 mM (Kramer et al.,

2013)

200 nM (Kramer et al.,

2013)

100 nM (Mirams

et al., 2011)

NaL Inversion 23 600 nM 4.3 mM 120 nM 47 mM 23 000 nM

Literature 11 mM (Crumb et al.,

2016)

19 mM (Crumb et al.,

2016)

Kr Inversion 40 200 nM 50 000 mM 13 nM 1.9 mM 2150 nM

Literature 440 000 nM (Kramer et al., 2013) 12 nM (Crumb et al.,

2016)

0.7 mM (Crumb et al.,

2016)

499 nM (Crumb et al.,

2016)

275 000 nM (Zhabyeyev et al.,

2013)

20 nM (Kramer et al.,

2013)

1.5 mM (Kramer et al.,

2013)

250 nM (Kramer et al.,

2013)

6.5 nM (Mohammad et al.,

1997)

143 nM (Zhang et al.,

1999)
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the difference between the data and the model has also been

redefined, and we now apply a continuation-based minimization

method to minimize the cost function.

Summary of Method Performance and
Main Results: Identification of Drug Effects
Based on Simulated Data and Optical
Measurements of hiPSC-CMs
Figure 6 shows the result of the inversion procedure applied to

simulated data. As noted above, we observe that the inversion

procedure is able to identify the correct e-values accurately,

excepting the e-value for Lidocaine, which is predicted to be

considerably lower than the value used to generate the data. This
suggests that it might be difficult to obtain correct values of eNaL,

as also supported by the low identifiability index for INaL

reported in Figure 5. In addition, we observe that the

inversion procedure predicts some block of INaL for the drug

Cisapride, even though only IKr was blocked when the data

was generated.

We additionally presented the use of the inversion procedure

to identify drug effects on hiPSC-CMs from optical

measurements of the AP and Ca2+ transients.

Panel C of Figure 7 compares the experimentally measured
data and the fitted model for each of the doses of Nifedipine

applied to the microphysiological system. The model fits both the

membrane potential and the Ca2+ data well for most doses

applied, although the Ca2+ transient duration is longer in the

model than in the data for the highest drug doses considered.

Furthermore, in panel B, we observe that the inversion procedure
predicts that Nifedipine primarily blocks ICaL. In Table 2, we

observe that the IC50 value for ICaL is estimated to be 38 nM, in

agreement with values found in literature (12 nM–60 nM (Di

Stilo et al., 1998; Kramer et al., 2013)]. The IC50 value for INaL
and IKr are estimated to be 23 600 nM and 40 200 nM,

respectively—considerably larger than the doses considered in

the data set. We have not found an IC50 value for INaL for
comparison in literature, but the IC50 values found for IKr
support the claim that the IC50 value is much larger than the

drug doses included in the data set, although the literature

FIGURE 8 | Identification and mapping of drug effects for the drug Lidocaine based on optical measurements of the AP and Ca2+ transient of hiPSC-CMs following

the same structure as Figure 7.
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values [275,000–440,000 nM (Zhabyeyev et al., 2000; Kramer

et al., 2013)] are higher than the value predicted by the

inversion procedure.
Figure 8 shows similar results for inversion of measurements

of hiPSC-CMs exposed to the drug Lidocaine. The AP duration is

reduced by the drug and the inversion procedure predicts that

the drug primarily blocks the INaL current. The IC50 value

estimate for INaL is 4.3 mM (see Table 2), in rough agreement

with values found in literature [11 mM (Crumb et al., 2016)]. We

observe that the model fits the data quite well, but that the AP
duration for the drug dose of 10 mM is longer in the model than

in the data.

Figure 9 shows the result of the inversion procedure applied

to a data set for hiPSC-CMs exposed to the drug Cisapride.

Considering the leftmost and center panels of Figure 9A, we

observe that the prolongation of the AP duration is much more
prominent in the data as compared to the fitted hiPSC-CM

model for a drug dose of 1 nM. This is also confirmed in Figure

9C, where we observe that the model does not fit the membrane

potential data for the control case and the 1 nM dose case well.

The fit for the largest dose, however, is quite good. In Figure 9B,

we observe that the inversion procedure predicts that Cisapride

primarily blocks IKr. In Table 2, we observe that the IC50 value
for IKr is estimated to be 13 nM, in good agreement with values

found in literature [6.5 nM–20 nM (Mohammad et al., 1997;

Kramer et al., 2013; Crumb et al., 2016)].

Figure 10 shows the result for the method as applied to

measurements of hiPSC-CMs exposed to the drug Flecainide,

know to prolong the AP duration. In Table 2, we observe that the

IC50 value for IKr predicted by the inversion procedure (1.9 mM)
is in quite good agreement with literature values [0.7–1.5 mM
(Kramer et al., 2013; Crumb et al., 2016)], but that the predicted

IC50 value for ICaL (9 mM) is too low compared to the reported

literature values [26–27 mM (Kramer et al., 2013; Crumb et al.,

2016)]. In addition, the estimated IC50 value for INaL (47 mM) is

larger than the literature value of 19 mM (Crumb et al., 2016).
In Figure 11, the method is applied to measurements of

hiPSC-CMs exposed to Verapamil. In panel A, the effect on the

AP duration for the smallest dose (100 nM) appears to be more

prominent in the data than in the fitted model. This is confirmed

FIGURE 9 | Identification and mapping of drug effects for the drug Cisapride based on optical measurements of the AP and Ca2+ transient of hiPSC-CMs following

the same structure as Figure 7.
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in panel C, where we observe that the fitted model seems to fit the

Ca2+ data considerably better than the membrane potential data.

In particular, the AP duration is too short in the control case and
too long for the smallest dose of 100 nM. Panel B shows that the

inversion procedure predicts that Verapamil primarily blocks

ICaL and to some extent IKr. The predicted IC50 values from

Table 2 (495 nM for ICaL and 2150 nM for IKr) are both higher

than the corresponding values from literature [100–202 nM for

ICaL (Mirams et al., 2011; Kramer et al., 2013; Crumb et al.,
2016)] and 143–499 nM for IKr (Zhang et al., 1999; Kramer et al.,

2013; Crumb et al., 2016)].

The rightmost plots of panel A of Figures 7–11 show the

predicted drug effects for adult cells for each of the drugs

considered. We observe that for some drugs (e.g., Nifedipine

and Lidocaine), the drug effects for adult cells are predicted to

be approximately as severe as for the hiPSC-CMs. For other
drugs, on the other hand, (e.g., Flecainide), the drug effect is

predicted to be less severe for the adult cells than for hiPSC-

CMs, highlighting the critical importance of maturation

phenotype in predictive biophysical models of hiPSC-CMs in

pharmacological studies.

Note on Ongoing Complementary Studies
Other recent work has made strong progress in terms of enabling

biophysical modeling approaches to assimilate and otherwise

make best use of tailored experimental measurements of hiPSC-

CMs. For example, in (Gong and Sobie, 2018), the authors
address the need to bridge the gap between the effect of drugs

on human adult ventricular cardiomyocytes and the effect on

animal or hiPSC experimental models often used in drug

screening. This work also successfully generated accurate

predictions of the effect of ion channel blocking drugs on

human adult ventricular cardiomyocytes as based on

simulations of hiPSC-CMs via a regression strategy.
Additional recent studies have advanced specific models and

methodological approaches for hiPSC-CMs which incorporate

experimental variability from multiple data sources [see, e.g.,

(Kernik et al., 2019)] with the goal of identifying phenotypic

FIGURE 10 | Identification and mapping of drug effects for the drug Flecainide based on optical measurements of the AP and Ca2+ transient of hiPSC-CMs

following the same structure as Figure 7.
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mechanisms and identify key parameter sensitivity. The authors

introduce a computational whole-cell electrophysiological model

of hiPSC-CMs, composed of single exponential voltage-

dependent gating variable rate constants, which are then
parameterized to fit experimental measurements of hiPSC-CMs

from multiple laboratories (and thus incorporate variability in

the single-cell measurements of ionic currents observed

experimentally). The authors compare hiPSC-CM and adult

cell models to elucidate the primary properties underpinning

the phenotype, a mechanistically central goal that was not an aim

of our present study.

Limitations and Notes on Future Work
The model for the intracellular Ca2+ dynamics in the base model

exhibits both high gain and graded release for the hiPSC-CM and

adult parameter sets (see Figure 4). However, the assumptions
underlying the release model are introduced to obtain a stable

model, and not necessarily to represent the underlying

physiological mechanisms accurately. Future work necessitates

assessment of the Ca2+ machinery in the base model and

potential redevelopment to more accurately represent

physiological Ca2+ release from the SR, as relevant.

In addition, the intracellular Na+ and K+ concentrations are
assumed to be constants in the base model formulation. This was

done in order to avoid problems with drift of the concentrations

following from parameter changes [see, e.g., (Hund et al., 2001;

Wilders, 2007; Tveito et al., 2018)]. Moreover, freezing the

intracellular Na+ and K+ concentrations during an action

potential had very limited effects of the computed membrane

potential and cytosolic Ca2+ concentration. However, in some
cases, drugs are believed to lead to significant changes in, e.g., the

intracellular Na+ concentration, which could affect the AP shape

[see, e.g., (Brill and AndrewWasserstrom, 1986; Faber and Rudy,

2000)]. Freezing the Na+ and K+ concentrations could therefore

potentially make the base model less suitable for detecting such

drug effects.
Note also that the terms included in the cost function (31)

applied in the inversion procedure may in future work be adapted

FIGURE 11 | Identification and mapping of drug effects for the drug Verapamil based on optical measurements of the AP and Ca2+ transient of hiPSC-CMs,

following the same structure as Figure 7.
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as required by the specific application under consideration. For

example, the cost function could be extended to include

information about the frequency dependence of important

action potential and Ca2+ transient features (see Figure S4 in

the Supplementary Information) or to include information

about the spontaneous activity of the hiPSC-CMs used in
the experiments.

In the construction of the maturation map, we currently

assume that the function of a single channel is the same for

different levels of maturity and that only the geometry of the cell

and the number of channels change with maturation. It is,

however, perhaps possible for the function of some channels to
change during maturation as well. If the conductance of a

channel changes during maturation, the same adjustment

factors as we have considered may still be applied, but if the

dynamics governing the open probability of the channel change,

additional adjustment factors would have to be included in the

models for the channel open probability.
In addition, we have only looked at a single dose escalation

study for each of the drugs investigated, as well as only tested the

method on tissues derived from a single stem cell line. Future

work will assess the variability of the inversion methodology in

combination with noisy and incomplete experimental data

obtained through these systems across a range of biological

maturation approaches and starting stem cell lines.
Furthermore, we have only considered data of the drug

response for hiPSC-CMs in microphysiological systems, and

we have not been able to obtain corresponding data for adult

human cardiomyocytes. Drug response data for isolated healthy

adult human cardiomyocytes are generally very limited for both

technical and ethical reasons (Rodriguez et al., 2015; Sala et al.,
2017). We have therefore not been able to validate the predicted

adult drug effects against experimental data.

Further validation of the methodology will primarily be based

on further analysis of optical data. Hopefully, we will be able to

perform analysis of many drugs and also include blind testing for

drugs with well-known properties. When more data from patch-

clamp measurements become available, that will also be very
useful for improvements and validation of our methods.

In future work, we will seek to find ways to estimate the

sodium current which is not possible to estimate today because

of low time resolution in the optical data. Furthermore, we will

combine the base model with the bidomain model [see e.g.,

(Franzone et al., 2014)] to study extracellular waveforms in

the chips, and also the more detailed EMI model [see e.g.,

(Tveito et al., 2017; Jæger et al., 2019b)] where individual cells

can be represented. Hopefully, the spatially resolved models

can provide improved accuracy of the inversion process as

well as test important considerations such as the effect of
tissue composition.
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