
Improved Computational Methods for Ray
Tracing

HANK WEGHORST, GARY HOOPER, and DONALD P. GREENBERG

Comell University

This paper describes algorithmic procedures that have been implemented to reduce the computational
expense of producing ray-traced images. The selection of bounding volumes is examined to reduce
the computational cost of the ray-intersection test. The use of object coherence, which relies on a
hierarchical description of the environment, is then presented. Finally, since the building of the ray-
intersection trees is such a large portion of the computation, a method using image coherence is
described. This visible-surface preprocessing method, which is dependent upon the creation of an
"item buffer," takes advantage of a priori image information. Examples that indicate the efficiency
of these techniques for a variety of representative environments are presented.

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation--d/s-
play algorithms; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism--color,
shading, shadowing, and texture

General Terms: Algorithms

Additional Keywords and Phrases: Computer graphics, ray tracing, visible-surface algorithms, hier-
archical data structures

1. INTRODUCTION

In the traditional ray-tracing algorithm, the global illumination is approximated
by "tracing" rays from the eye, through the viewing plane, and into the environ-
ment. At the closest surface intersected by a ray, reflected and/or refracted rays
may be spawned. Each of these must be recursively generated to establish which
surfaces they intersect. As the ray is traced through the environment, a ray-
intersection tree is constructed for the sample point. The final intensity is
determined by traversing the tree depth first and computing the intensity

This research was performed at the Program of Computer Graphics at Cornell University and
supported by the National Science Foundation under grant MCS 8302979. Additional student support
was provided by the Natural Science and Engineering Research Council of Canada
Authors' address: Program of Computer Graphics, Cornell University, Ithaca, NY 14853
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0730-0301/84/0100-0052 $00.75

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984, Pages 52-69.

Improved Computational Methods for Ray Tracing • 53

contribution of each node according to the reflection model. Although ray tracing
was first suggested by Appel [1] and later used by MAGI [4] to solve the hidden-
surface problem, this approach was first implemented for rendering purposes by
Kay [8] and Whitted [12].

The intensive computational operations in a ray-tracing system are the building
operations of the ray-intersection trees and the traversal of those trees for the
intensity calculation. This latter step, which includes shadow testing, has been
found to be very expensive computationally, particularly for environments that
contain complex lighting schemes.

Since the computational expense of producing ray-traced images is excessive,
it is obvious that new techniques must be found to reduce the calculation time.
These techniques will inevitably utilize both object and image coherence [11].
The term coherence is used to describe the extent to which an environment or
an image is locally constant. Object coherence relies on the known relationship
between objects in an environment, and this information is used to reduce the
visible-surface computations. Image-coherence techniques take advantage of the
fact that the image does not change rapidly from point to point or Scan line to
scan line on the viewing plane. They capitalize on the lateral separation of the
image changes to reduce the depth comparisons. Neither of these two types of
coherence has been used extensively in ray-tracing schemes to date.

The results of several investigations related to reducing the computational
expense of ray tracing have recently been published. To improve the performance
of their ray-tracing system, Rubin and Whitted used both bounding volumes and
a hierarchical description of the environment [9]. According to the authors, the
use of spherical bounding volumes substantially reduced computation time, and
this procedure is now common practice in ray-tracing. The partitioning of an
environment has also improved the efficiency of visible-surface algorithms. In
their implementation, the environment was subdivided into hierarchical, orthog-
onal subspaces, except for the lowest level primitives, which were bounded by
arbitrarily oriented, rectangular parallelepipeds. During picture generation, each
ray was transformed to align with the axes of the parallelepipeds, so that the
intersection tests reduced to simple comparisons against the limits of the bound-
ing boxes. The computational times for their ray traced images were significantly
reduced.

Crow [3] also described an image generation system which determined separ-
ability of objects during scene analysis. The environment is partitioned by crude
overlap and depth tests, and priorities for rendering are established. Although
this partitioning allows different rendering algorithms to be used for each object,
as well as parallel processing, it is difficult to apply to ray-tracing algorithms

which require global information.
More recently, Kajiya published an article improving intersection algorithms

for the ray tracing of three types of procedurally defined objects, namely, fractal
surfaces, prisms, and surfaces of revolution [7]. Since fractal surfaces are defined
recursively, Kajiya determined probabilistic "extents" of the fractal surface,
which, in a sense, act as bounding volumes prior to the fractal surface definition.
0nly after it is known that the ray intersects an extent is the fractal surface

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

54 H. Weghorst, G. Hooper, and D. P. Greenberg

Table I. Definition of Terminology

(a) A light is a geometric entity and an associated list of light attributes. Light attributes describe
the intensity of the light, its goniometric diagram, and color spectrum. Lights are emitters.

(b) An object is a geometric entity and an associated list of object attributes. Object attributes
describe the surface properties of the object, such as surface roughness and reflectance properties.
Objects, in contrast to lights, are not emitters, but they may reflect light.

(c) An item is a light or an object. It consists of a geometric entity and an attribute list. Currently
implemented geometric entities are spheres, cylinders, other quadrics, parametric surfaces, and
polyhedra.

(d) A cluster is an entity which groups together other clusters and/or items in such a way that no
cluster can have a descendant which is also an ancestor. Also, each element in the cluster must
have a unique parent, that being the cluster. This ensures that the structure is a tree. In addition,
each cluster has a unique name associated with it.

(e) The world is a cluster which is the uppermost node in the hierarchical description of the
environment. It has no parent. Only those items contained within the world, either directly or
indirectly, can be rendered.

(f) An element is either a cluster or an item. All elements, with the exception of the world, must
belong to exactly one cluster.

(g) A ray is a vector with a specific origin and arbitrary direction.
(h) A ray-intersection tree is a collection of rays representing the geometric path of light propagation,

starting at the eye, passing through the viewing plane, and extending into the environment.
(i) An intersection list contains elements which are to be tested in determining the closest item

intersected.

generated. His solution to the prism and surface of revolution problems reduced

the three-dimensional ray-intersect ion tests to two dimensions.

Hall utilized adaptive t ree-depth control to reduce computa t ional expense [5]

[6]. Tradit ionally, ray-intersect ion trees for all sample points are const ructed to

an arbitrary, prespecified depth to ensure tha t all relevant reflections and

refractions are captured for the image. However, the upper bound of the contri-

but ion of any node in the ray-intersect ion tree to the final color of the sample

point can be determined according to the diffuse, specular, and transmissive

properites of the intersected surface. Thus, by establishing a contr ibut ion thresh-

old, the depth of the tree can be adaptively controlled. Statistics show the

significant savings tha t can be obtained, even for highly reflective environments.

This paper describes additional procedures which have been implemented to

reduce the computa t ional expense of producing ray- t raced images. In Section 2

the selection of bounding volumes is examined to reduce the computa t ional cost

of the ray-intersect ion test. A hierarchical description of the environment , which

relies on object coherence, is presented in Section 3. Last, since the building of

the ray-intersect ion tree is such a large por t ion of the computat ion, a new

approach using image coherence is described in Section 4. This visible-surface

preprocessing method, which is dependent upon the creation of an "i tem buffer,"

takes advantage of a priori image information, and substantial ly reduces the

computa t ional time. Examples tha t indicate the efficiency of these techniques

for a variety of representat ive envi ronments are p resen ted .

For clarification of the following discussion, specific definitions of the termi-

nology used are presented in Table I.

ACM Transactions on Graphics, Vol. 3, No. i, January 1984

ed

5]
to

ad

ri-
)le
v e

,h -

he
t s .

to
t 2
) s t

ch
of

e w

tce
r,"
~he
les

ni-

Improved Computational Methods for Ray Tracing • 55

2. BOUNDING VOLUMES

In creating a node in the ray-intersection tree, and during shadow testing for
color calculation, it is necessary to determine which intersected item, if any, is
nearest to the origin of the ray. The item that is the closest is the one visible.
Since the origin and direction of the ray are arbitrary, all items in the environment
must be considered during the intersection process.

The amount of time needed to test an item for intersection depends on its
geometric description. Typically, a sphere is the simplest of shapes to intersect.
The intersection time for a polyhedron generally depends on the number of faces
that it contains although Kajiya has shown an improved intersection test for the
special case of prisms [7]. Other shapes, such as surfaces of revolution and
parametric surfaces, may require more time to test.

Unfortunately, typical environments do not consists of spheres and simple
polyhedra. Instead, the geometries are usually complex and of various definitions.
For this reason, it is often desirable to enclose complex objects with simpler,
abstract ones, such as spheres or rectangular parallelepipeds. These enclosing
shapes are called bounding volumes, as suggested by Clark [2] and implemented
by Whitted [12]. Only if a ray happens to intersect the simpler bounding volume
is the enclosed complex item tested. However, if the ray does not intersect the
bounding volume, then there is no need to test the complex item within. If the
bounding volumes are chosen wisely, this scheme can greatly reduce the cost of
intersection testing.

Defining the optimal bounding volume, however, is difficult. The common
practice of selecting bounding volumes on the basis of the simplicity of their
intersection tests should not be the only consideration. Other factors, such as
the projected void area, should also be examined.

The void area is the difference in the projected areas of the bounding volume
and the item (Figure 1). If the cost of intersecting the bounding volume is, for
the moment, ignored, then, for a given ray, the best bounding volume is the one
that produces the least void area when orthogonally projected onto a plane
perpendicular to the ray and passing through the origin of the ray. Minimizing
the void areas for all rays produces a bounding volume that is identical to the
item itself. If restricted to a given shape of bounding volume, minimizing these
void areas results in the selection of the optimal bounding volume of that
geometry.

Obviously, one cannot ignore the cost of intersecting the bounding volume in
this selection process, as it is definitely not advantageous to select the item itself.
For many environments, one should consider the void area of the item for rays
of specific origin a n d direction. Initially, consider an environment containing
only surfaces that are totally diffuse, and having either light emanating from the
viewer position or ambient lighting. Because there are no reflected or refracted
rays, all rays emanate from the eye and pass through the viewing plane. Thus
the origin and direction for all rays are known, and the void areas should be used
in the selection of bounding volume. However, in the general case, as the
illumination becomes more complex, or the environment becomes specular or
transparent, this factor becomes more difficult to consider since rays are more
likely to arrive in any direction.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

56 H. Weghorst, G. Hooper, and D. P. Greenberg

Plane Perpendicular to Ray

Item a

Boundi

Fig. 1. Projected area of i t em and i ts bound ing volume.

To illustrate the concept of void area, three different views of the same item
are shown {Figure 2). The front and side views were each rendered using
alternately a bounding sphere and a bounding rectangular parallelepiped. In the
case of the front view, the image using the bounding sphere was rendered in 88
percent of the time of that using the parallelepiped. This reduction arises from
the fact that the void area is slightly less for the sphere. However, the side view
using the parallelepiped was rendered in only 47 percent of the time needed to
render the image using the bounding sphere. For this view, even though the
sphere is less costly to test for intersection, the void area of the parallelepiped is
a mere fraction of that of the sphere. Thus, the optimal choice is ray dependent.

Another important criterion in the selection of a bounding volume is the
complexity of the item being enclosed. The total cost function of the intersection
test for an item is

where

T
b
B
i

T = b . B + i . I, (1)

is the total cost function;
is the number of times that the bounding volume is tested for intersection;
is the cost of testing the bounding volume for intersection;
is the number of times that the item is tested for intersection, which is
equivalent to the number of times that the bounding volume is intersected (i
(-- b);
is the cost of testing the item for intersection.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

Improved Computational Methods for Ray Tracing • 57

I I

I I

I 1

I I i' I I I

l}, D r

A

~ ~ ~ ~ ~ . b I

- - - I . - - ~ ap ~ ,,.+ ~.

A / / I ~ I ' l \ ~

/ + ' - ' - - ' ' ' 2 ,
I A I I

I i i .

+__+_~__

t I I

' ']
- - - - - - 4 - - - - - 4 -

"l! "~ " _ _ .-¢.,
/ j ~

Fig. 2. Bounding volume selection.

It is desirable to minimize this function for all items. For a specific item, in a

given environment, with a given view, b and I are constant. However, by

manipulating the shape and size of the bounding volume, B and i can be varied

to reduce the total cost function T. Reducing the complexity of the bounding

volume generally results in a decrease of its cost function B, but an increase in i.

Alternatively,:increasing the complexity generally results in an increase of B and

a decrease in the number of item intersection tests i. Neither adjustment

guarantees a decrease in the total cost function T.

Bounding volumes are automatically assigned, but only to those items whose

intersection tests are sufficiently complex to warrant one. Certain items, such as

spheres, cylinders, and rectangular parallelepipeds, do not require the addition

of this entity. The first step in this assignment is the determination of a set of

three-dimensional points which "surrounds" the item. These coordinates define

the vertices of some convex polyhedron which completely encloses the item.

There are obviously many choices for this set, but it is optimally selected in such

a way that the volume of the polyhedron less the volume of the item is minimal.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

58 • H. Weghorst, G. Hooper, and D. P. Greenberg

For a polyhedral item, these points are simply its vertices. (The inclusion of
interior points of concave shapes is not detrimental.) For nonplanar surfaces,
these points represent a polyhedral approximation which at least surrounds the
item.

Having determined this set, a bounding volume is now selected. Three candi-
dates currently exist for the shape of the bounding volume, namely, a sphere, a
rectangular parallelepiped, and a cylinder. Associated with each candidate is a
factor that is indicative of the relative complexity of its intersection test, with
the sphere having the lowest factor, and the cylinder, the highest. A potential
bounding volume of each shape is created for the set of points to be enclosed.
The selection is made by minimizing the product of the associated complexity
factor and the volume of the potential bounding shape. Volume is considered,
since it intuitively considers the projected void areas for all directions. Although
it is not accurate, it is representative and easy to calculate. To compensate for
the item complexity factor being ignored, an interactive program is provided to
allow the user to override any automatic bounding volume selection.

3. HIERARCHICAL ENVIRONMENT

The concept of bounding volumes is extended to exploit properties of the
environment which are independent of the observer's position. Groups of items,
which are in close proximity to each other, can be clustered within a single
bounding volume. Higher level clusters can be created by grouping clusters and/
or items together. Thus, in addition to the geometric information, a hierarchical
description of the environment can be created where the leaves are items, and
the interior nodes are clusters (e.g., Figure 3 shows the hierarchy for the
environment of Table VII).

When intersecting a ray with the environment, one first tests the top level and
recursively descends the hierarchy only along those branches where intersections
occur (Figure 4). Computational savings occur because the algorithm can save
ancestral information and thus avoid needless intersection tests. That is, it is
only necessary to test individual elements in a group if the parent bounding
volume is intersected.

Care must be taken in creating the hierarchy for an environment. Elements
that are not near each other should not be placed in a cluster. If they are, then
many rays will intersect the cluster's bounding volume but not the elements
within, thereby defeating the purpose of the cluster. Also, if clusters have few
children and the hierarchy is deep, excessive bounding volume tests and inter-
sections may occur.

The hierarchical structuring assigned to an environment is basically the one
defined by the user during the modeling process. The only difference is that
clusters containing only one element are removed from the hierarchy. Although
the structuring used during modeling is not necessarily ideal for ray tracing, it is
often sufficient, since users naturally tend to cluster elements within close
proximity to each other. In either case, a user seldom creates a cluster that is
very detrimental to the performance of the ray-tracing renderer. Bounding
volumes are automatically assigned to clusters by considering all descendent
items.

ACM Transactions on Graphics, Vol. 3, No. i, January 1984

[on of
'faces,
5s the

3andi-

Lere, a

;e is a
, with

;ential

',losed.
flexity

dered,

hough

ite for
ded to

of the

items,
single

!s and /

rchical

is, and
br the

vel and

ections

tn save

is, it is
unding

ements

e, t hen

ements

Lve few
| inter-

;he one

is t ha t

~though
ng, it is

n close

that is

~unding

~'endent

I

w , L
I

I
!

I

I
I
I

I

I

1
I

!

E 3

[[

\

\ \

.8
e~

¢g
d~

60 H. Weghorst, G. Hooper, and D. P. Greenberg

function closest(world: bv; r: ray): item;

var

c, e:
distance:

elements:

inside_by:

begin

element;

real;
list_of_bv;

boolean;

elements := world.children;
while (elements is non_empty) do

begin
whi l e not (at end of elements) do

begin

c := current element;
i f (c has been tested) then

advance to next element in elements

else

begin
i f (intersect(c, ray, distance, inside_by)) then

begin

i f (inside_by) then

replace c with c.children
else i f (distance > 0.0) then

advance to next element in elements
else

return(c); § This is the closest elementt

end

else
remove c from elements as it was not intersected;

end;
end;

i f (elements is non_empty) then

begin

e := element in elements with least intersection distance;

i f (e.category is BOUNDING_VOLUME) then

replace e with e.children
else

re turn(e) ; § This is the closest item intersected t

end;

end;

re turn(NIL); § No item intersected t

end;

Fig. 4. Hierarchical intersection algorithm.

4. VISIBLE-SURFACE PREPROCESS

In past ray-tracing algorithms, the procedure for determining an intersection and
the cost of that intersection are similar for all nodes in the ray-intersection tree.
Although handling all rays similarly has obvious conceptual advantages in the
implementation of the algorithm, it is not the most efficient approach to use

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

and
tree.

a the
o use

Improved Computational Methods for Ray Tracing ° 61

when considering computational optimization. An alternate technique, which
distinguishes the first node in the ray-intersection tree from the remaining nodes,
has been developed. When using the adaptive tree-depth method described earlier
and noting that in most environments the average depth of the ray-intersection
tree is not much greater than one, the computation reduction that could be
achieved by reducing the time spent computing the first level of the tree becomes
evident.

In the ray tracing of an image, the only rays whose origin and direction are
easily determined, are those emerging from the eye and piercing the image plane.
By taking advantage of this known information, the amount of time spent
determining the first ray's intersection with the environment can be decreased.
It is evident that a reduction in the number of items tested would proportionately
reduce the computational expense. By utilizing image-space coherence for those
rays originating at the eye, a reduction in the size of the intersection list can be
realized.

The perspective transformation of all items in the environment results in a
two-dimensional projection of each onto the image plane. If an intersection list
is constructed on a pixel-to-pixel basis, only those items that partially or fully
cover the pixel area will be included. This abbreviated list can be used when
testing for the closest item. In order to reduce this list to a single entry, typical
visible-surface algorithms can be invoked.

The determination of visible surfaces within an environment, given a viewer
position and frustum, can be performed in a variety of ways, each having its own
advantages [11]. Unlike the ray-tracing technique, the computational expense of
most image-space visible-surface algorithms is much less than directly propor-
tional to the resolution of the image. This can be inferred from the fact that
during ray tracing, all objects are tested at every pixel to determine the closest
intersection. However, traditional image-space, visible-surface algorithms sort
all items by depth only over their areas as projected onto the image plane.

Specifically, the algorithm is implemented as follows. As a preprocess before
ray tracing, a z-buffer algorithm is executed using the same viewing parameters.
The z-buffer algorithm is used since it can accommodate a wide range of geometric
primitives. Instead of producing the traditional display buffer, the algorithm is
modified to produce an item buffer. Each entry within the item buffer corresponds
to some location on the image plane and contains an index to a list of the items
within the environment. This index is simply the indirect storage of the identical
information that would have been produced by the ray tracer at this level. The
ray-tracing process may then substitute a simple indexing operation into the
item buffer for the first ray-intersection test.

The visible-surface preprocess determines the visible item at discrete locations
corresponding to the corners of the pixels of the image plane. If a ray passes
through the corner of some pixel, then it is assumed to hit the item that has been
deemed visible by the preprocess. However, when subdivision occurs, to sample
a pixel more accurately, the ray passes through either an edge or the interior of
the pixel. In either case, the abbreviated intersection list used by the ray tracer
contains those item indices lying within a desired radius of the sample location.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

62 • H. Weghorst, G. Hooper, and D. P. Greenberg

5. RESULTS

In order to show the computational efficiency of the procedures described, various
environments have been modeled and rendered (Tables II-VIII) and Figures 5-
9. These environments differ greatly in complexity, and contain varying shapes
of items, numbers of light sources, and specular and transmissive properties. For
each ray-traced image generated, statistics are presented that indicate the reduc-
tion in the computational time when one or more of the techniques are invoked.

To indicate where the computationally intensive operations lie, and to show
the benfits of the algorithms, the relative processing times for each image is
divided into the following categories: the percentage of the total time required to
produce the ray-intersection trees (tree generation); the percentage of time spent
determining direct illumination (shadow testing); the percentage of time used in
generating the item buffer (visible-surface preprocess); the percentage of time
spent calculating color according to the reflection model (color calculation); and,
total miscellaneous time, such as file handling (miscellaneous).

For each environment, a control image consisting of items enclosed only by
spherical bounding volumes was generated. Similar images using all combinations
of the improvement techniques were statistically measured. Tables II-VIII illus-
trate the results for the following cases:

C control image, using only spherical bounding volumes;
CZ spherical bounding volumes with visible-surface preprocess;
CH spherical bounding volumes with hierarchy;
CHZ spherical bounding volumes, hierarchy, and visible-surface preprocess;
S selected bounding volumes;
SZ selected bounding volumes with visible-surface preprocess;
SH selected bounding volumes with hierarchy;
SHZ selected bounding volumes, hierarchy, and visible-surface preprocess.

A composite table showing the reductions in computational times is presented
in Table IX.

6. CONCLUSIONS

Previously published articles have described the advantages of using bounding
volumes and adaptive tree-depth control. This paper has presented a variety of
methods to further reduce the computational expense of producing ray-traced
images. An improvement in the selection of bounding volumes has been discussed.
To determine optimal bounding volumes, specific characteristics examined in-
clude the cost of intersecting the volume, the item complexity, and the projected
void areas. A method of using the topological information of a hierarchically
defined environment to reduce computational time has been presented, and the
concept of an item buffer introduced. A visible-surface preprocess utilized image
coherence to reduce the ray-intersection tree generation time. This improvement
is most significant when the number of rays emanating from the eye and passing
through the image plane represents a large portion of the total number of rays

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

g

ff
d

~1.
l -

!d
[y

le

;e

it

lg

Cs

Improved Computational Methods for Ray Tracing • 63

Fig. 5. Penci ls .

Table II. Image T i m i n g T e s t for Penci ls I (Figure 5) "b

C CZ CH CHZ S SZ SH SHZ

Tree generat ion ¢ 48.4 14.3 46.7 16.5 43.7 21.5 39.8 30.1

Shadow tes t ing ~ 44.8 75.3 45.5 70.7 43.9 61.3 40.2 46.1

Visible surface preprocess c - - 0.3 - - 0.3 - - 0.3 - - 0.7

Color calculation c 3.5 5.2 4.0 6.4 6.4 8.4 10.4 11.5

Miscellaneous c 3.3 4.9 3.8 6.1 6.0 8.3 9.6 11.6

Total relative t ime 1.00 0.67 0.86 0.54 0.54 0.40 0.32 0.28

"Specifications: 38 i t ems (1806 polygons); 1 l ight source; nonref lect ive env i ronmen t ; ray- in te rsec t ion

tree depth of one.

b C: Spherical bound i ng vo lumes (control); S: Selected bound ing volumes; H: Hierarchical envi ron-

ment structure; Z: Visible surface preprocess .

Shown as a percentage of to ta l t ime

Note:

(1) The i m p r o v e m e n t of selected bv's versus control bv's due to the e longated na tu r e of t he i tems.

(2) The i m p r o v e m e n t clue to a h ie ra rchy t h a t t akes advan tage of t he proximi ty o f the i tems. E a c h

pencil is grouped wi th its th ree closest neighbors , c rea t ing n ine clusters .

(3) The i m p r o v e m e n t of t he visible surface preprocess dur ing tree generat ion. T h i s is due to the

high ratio between the n u m b e r of f irst level rays ve r sus to ta l n u m b e r o f rays.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

64 H. Weghorst, G. Hooper, and D. P. Greenberg

Table III. Image T i m i n g T e s t for Penci l s II (s imilar to Figure 5) ~b

C CZ C H C H Z S SZ SH SHZ

Tree genera t ion ~ 52.5 39.9 53.6 40.0 46.6 40.4 43.5 40.0

Shadow tes t ing ~ 40.6 51.0 37.'7 48.9 44.0 48.9 38.2 39.8

Visible surface preprocess ~ - - 0.2 - - 0.2 - - 0.2 - - 0.3

Color ca lcula t ion c 5.2 6.6 6.5 8.2 6.8 7.8 13.7 14.8

Misce l laneous c 1.7 2.3 2.2 2.7 2.3 2.7 4.6 5.1

Tota l relative t ime 1.00 0.79 0.79 0.62 0.76 0.65 0.37 0.34

a Specificat ions: 38 i t ems (1806 polygons); 1 l ight source; reflective env i ronmen t ; ray- in tersec t ion

tree dep th of three.

b C: Spherical bound i ng vo lumes (control); S: Selected bound ing volumes; H: Hierarchica l environ-

m e n t s t ructure ; Z: Visible surface preprocess .

Shown as a percentage o f to ta l t ime

Note:

(1) T h e i m p r o v e m e n t of selected bv's and the h ie ra rchy in t he tree genera t ion process. In

re la t ionship to Table II, t h e i m p r o v e m e n t r ema i ns propor t ional wi th t he increased dep th of t he tree.

(2) T h e i m p r o v e m e n t ga ined f rom t he visible surface preprocess is t he same as Table II. The

percentage of the i m p r o v e m e n t decreases a long wi th t he f irst ray ve r sus to ta l ray ratio.

Table IV. Image T i m i n g T e s t for Penci l s III (s imilar to Figure 5) ~b

C CZ C H CHZ S SZ SH SHZ

Tree genera t ion c 23.7 4.5 23.7 5.3 22.1 8.2 19.9 13.6

Shadow tes t ing ~ 70.8 88.5 69.9 86.5 67.6 79.6 62.3 66.4

Visible surface preprocess c - - 0.1 - - 0.1 - - 0.2 - - 0.3

Color ca lcula t ion ~ 4.0 5.0 4.7 5.9 7.5 8.7 13.0 14.3

Misce l laneous c 1.5 1.9 1.7 2.2 2.8 3.3 4.8 5.4

Tota l relative t ime 1.00 0.78 0.82 0.66 0.51 0.44 0.28 0.26

a Specifications: 38 i t ems (1806 polygons); 3 l ight sources; nonref lect ive env i ronmen t ; ray- in te rsec t ion

tree dep th of one.

b C: Spherical bound ing vo lumes (control); S: Selected bound ing volumes; H: Hierarchica l environ-

m e n t s t ructure; Z: Visible surface preprocess .

¢ Shown as a percentage of total t ime

Note:

(1) T h e i m p r o v e m e n t of selected bv's and the h ie ra rchy in t he shadow tes t ing process. In

re la t ionship to Table II, t he i m p r o v e m e n t r ema i ns propor t ional wi th t he increased n u m b e r of shadow

tests .

in the environment. Statistics for a variety of environments that differ in
complexity, item geometries, numbers of light sources, and specular and trans-
missive properties consistently indicate improvement.

Further work must include the extension of the item buffer concept to individ-
ual light sources, as shadow testing still represents the dominant portion of
computational expense. Improved bounding volume selection, including the use
of multiple bounding volumes for single elements, is being investigated. Also, a
means of automatically generating the hierarchy must be found.

ACM Transactions on Graphics, Vol. 3, No, 1, January 1984

t

o n

~n-

~e

In
ee.

'he

B

i

m

Lon

) n -

In
O W

in

S -

of

De

a

Improved Computational Methods for Ray Tracing • 65

d

b

Fig. 6. Polygons.

Table V. Image Timing Tes t for Polygons (Figure 6) a'b

A B C D

C SHZ C SHZ C SHZ C SHZ

Tree generation c 46.5 36.2 45.4 38.3 52.0 22.0 43.9 35.0

Shadow test ing ~ 42.2 49.0 45.9 51.1 2.8 3.9 39.4 44.2
Visible surface preproeess c - - 1.0 - - 0.6 - - 5.0 - - 1.4
Color calculation c 5.2 6.4 5.5 6.2 9.7 13.8 6.1 7.0

Miscellaneous c 6.1 7.4 3.2 3.8 35.5 55.3 10.6 12.4

Total relative t ime 1.00 0.82 1.00 0.86 1.00 0.66 1.00 0.86

"Specifications: 21 i tems (1980 polygons, 3 spheres); 3 light sources; adaptive ray-intersect ion t ree

depth.
b C: Spherical bounding volumes (control); S: Selected bounding volumes; H: Hierarchical environ-

ment structure; Z: Visible surface preprocess.
c Shown as a percentage of total t ime

Note:

(1) In order to isolate the effect of the visible surface preprocess, the background was not modeled
as a polygon, and thus does not receive shadows or require shadow testing. Thus shadow tes t ing t ime

is a function of the number of tree nodes t ha t are not background nodes.
(2) The tree generat ion t ime is view dependent and a funct ion of the nonbackground screen area.

(3) The decrease in computa t ion t ime result ing from the visible surface preproeess takes place
entirely in the tree generation. Wi th in this stage, relative improvements on all four images are
approximately equal.

(4) Total C P U t ime for control images: (a) 1.57 hours; (b) 3.12 hours; (c) 0.24 hour; (d) 0.89 hour.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

66 • H. Weghorst, G. Hooper, and D. P. Greenberg

Fig. 7. Camera .

Table VI. Image T i m i n g T e s t for C a m e r a (Figure 7) a'b

C CZ C H CHZ S SZ SH SHZ

Tree genera t ion ¢ 60.9 56.0 60.6 56.4 57.3 51.9 56.1 52.5

Shadow tes t ing ~ 30.6 34.6 30.0 33.0 30.1 33.7 28.1 30.2

Visible surface preprocess c - - 0.2 - - 0.2 - - 0.3 - - 0.3

Color calculat ion c 3.0 3.2 3.3 3.7 4.4 4.9 5 .5 5.9

Misce l laneous c 5.5 6.0 6.1 6.7 8.2 9.2 10.3 11.1

To ta l relat ive t ime 1.00 0.92 0.90 0.80 0.67 0.60 0.53 0.49

a Specifications: 39 i t ems (1392 polygons, 1 sphere); 1 l ight source; adapt ive ray- in te rsec t ion tree

depth.
b C: Spherical b o u n d i n g vo lumes (control); S: Selected bound ing volumes; H: Hierarchical environ-

m e n t s t ructure ; Z: Visible surface preprocess .

c Shown as a percentage of to ta l t ime

Note:

(1) T h e i m p r o v e m e n t gained us ing the visible surface preprocess. In th i s case, due to the re being

only one l ight source, the rat io of f irst level rays ve r sus total n u m b e r of rays is high.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

Improved Computational Methods for Ray Tracing • 67

Fig. 8. Office Scene.

Table VII. Image T i m i n g T e s t for Office Scene (Figure 8) "-b

C CZ C H CHZ S SZ SH SHZ

Tree generation c 21.5 9.6 21.8 10.5 21.3 10.4 22.3 12.3

Shadow tes t ing ~ 74.1 85.0 72.3 82.9 73.8 83.8 70.2 78.9

Visible surface preprocess c - - 0.2 - - 0.2 - - 0.2 - - 0.3

Color calculation c 3.4 3.9 4.6 4.9 3.8 4.3 5.8 6.5

Miscellaneous c 1.0 1.4 1.3 1.5 1.1 1.3 1.7 2.0

Total relative t ime 1.00 0.87 0.74 0.67 0.90 0.79 0.56 0.49

• Specifications: 63 i t ems (2101 polygons, 8 spheres) ; 5 l ight sources; adapt ive ray- in te rsec t ion tree

depth.

b C: Spherical bound i ng vo lumes (control); S: Selected bound ing volumes; H: Hierarchica l envi ron-

ment structure; Z: Visible surface preprocess .

' Shown as a percentage of to ta l t ime

Note:

(1) The i m p r o v e m e n t ga ined f rom the use of t he hierarchical da ta s t ruc ture for which th i s
environment lends itself.

(2) Shadow tes t ing emerg ing as t he d o m i n a n t a rea of computa t ion . T h i s will be t he case in m o s t

images of modera te complexi ty, i l lumina ted wi th mul t ip le l ight sources.

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

68 • H. Weghorst, G. Hooper, and D. P. Greenberg

Fig. 9. Pool Room.

Table VIII. Image T i m i n g T e s t for Pool Room (Figure 9) ~b

C CZ C H CHZ S SZ SH SHZ

Tree genera t ion c 21.7 10.3 21.5 10.6 22.5 14.0 21.8 15.8

Shadow t e s t i ng ~ 75.2 86.1 74.9 85.3 72.9 81.0 71.3 76.8

Visible surface preprocess ¢ - - 0.1 - - 0.1 - - 0.1 - - 0.2

Color ca lcula t ion c 2.2 2.6 2.5 2.9 3.4 3.5 5.0 5.3

Misce l laneous c 0.9 0.9 1.1 1.1 1.2 1.4 1.9 1.9

Tota l relative t ime 1.00 0.84 0.87 0.74 0.65 0.60 0.45 0.41

"Specif icat ions: 38 i t ems (835 polygons, 13 spheres , 15 cylinders); 5 l ight sources; adapt ive ray-

in tersec t ion t ree depth.
b C: Spherical bound i ng vo lumes (control); S: Selected bound ing volumes; H: Hierarchica l envi ron-

m e n t s t ructure ; Z: Visible surface preprocess .

¢ Shown as a percentage of to ta l t ime

Note:
(1) T h e i m p r o v e m e n t as a resul t of u s i ng selected bound ing volumes.

(2) Shadow tes t ing once again becoming t he d o m i n a n t por t ion of the compu ta t iona l expense .

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

Improved Computational Methods for Ray Tracing

Table IX. Total Time Comparisons"

69

Total b C CZ CH CHZ S SZ SH SHZ

Pencils I 6.02 1.0 0.67 0.86 0.54 0.54 0.40 0.32 0.28
Pencils II 11.94 1.0 0.79 0.79 0.62 0.76 0.65 0.37 0.34

"Pencils III 17.07 1.0 0.78 0.82 0.66 0.51 0.44 0.28 0.26
Camera 6.61 1.0 0.92 0.90 0.80 0.67 0.60 0.53 0.49
Office 14.6 1.0 0.87 0.74 0.67 0.90 0.79 0.56 0.49
Pool Room 14.33 1.0 0.84 0.87 0.74 0.65 0.60 0.45 0.41

'C: Spherical bounding volumes (control); S: Selected bounding volumes; H: Hierarchical environ-
ment structure; Z: Visible surface preprocess.
bCPU time in hours for control image (C) on VAX 11/750 computed at a resolution of 256 × 240.

ACKNOWLEDGMENTS

The authors wish to thank Roy Hall for his groundwork, Channing Verbeck for
his implementation of light sources, Gary Meyer for his assistance in color
science, and Dave Immel for testing environments.

REFERENCES

1. APP-.L, A. The notion of quantitative invisibility and the machine rendering of solids. In
Proceedings of the ACM National Conference (Oct.), ACM, New York, 1967, pp. 387-393.

2. CLARK, J.H. Hierarchical geometric models for visible surface algorithms. Commun. ACM 19,
10 (Oct. 1976), 547-554.

3. CRow, F.C. A more flexible image generation environment. In SIGGRAPH '82 Conference
Proceedings (Boston, Mass., July 20-30). ACM, New York, 1982, pp. 9-18.

4. GOLDSTEIN, R.A., AND NAGEL, R. 3-D visual simulation. Simulation (Jan. 1971), 25-31.
5. HALL, R.A. A methodology for realistic image synthesis. Master's thesis, Cornell University,

Ithaca, New York. 1983.
6. HALL, R.A., AND GREENBER6, D.P. A testbed for realistic image synthesis. IEEE Computer

Graphics and Applications 3, 10 (Nov. 1983), 10-20.
7. ~ A , J.T. New techniques for ray tracing procedurally defined objects. ACM Trans. Grapl~

2, 3 (July 1983), 161-181.
8. KAY, D., AND GREZNB~gG, D. Transparency for computer synthesized images. In ~IGGRAPH

'79 Conference Proceedings (Chicago, Ill., Aug. 8-10). ACM, New York, 1979), 158-164.
9. RUmN, S.M., AND WHITTED, T. A three-dimensional representation for fast rendering of

complex schemes. In SIGGRAPH "80 Conference Proceedings (Seattle, Wash., July 14-18). ACM,
New York, 1980, pp. 110-116.

10. SCHUMACKER, R., BRAND, B., GILLIIAND, M., AND SHARP, W. Study for applying computer
generated images to visual stimulation. AFHRL-TR-69-14, United States Air Force Human
Resources Laboratory, 1969.

11. SUTHERLAND, I.E., SPROULL, R.F., AND SCHUMACKER, R.A. A characterization of ten hidden-
surface algorithms. Comput. Surv. 6, 1 (Mar. 1974), 1-55.

12. WHITTED, T. An improved illumination model for shaded display. Commun~ ACM 23, 6 (June
1980), 343-349.

Received April 1984; revised July 1984; accepted July 1984

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984

