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This paper describes algorithmic procedures that have been implemented to reduce the computational 
expense of producing ray-traced images. The selection of bounding volumes is examined to reduce 
the computational cost of the ray-intersection test. The use of object coherence, which relies on a 
hierarchical description of the environment, is then presented. Finally, since the building of the ray- 
intersection trees is such a large portion of the computation, a method using image coherence is 
described. This visible-surface preprocessing method, which is dependent upon the creation of an 
"item buffer," takes advantage of a priori image information. Examples that indicate the efficiency 
of these techniques for a variety of representative environments are presented. 

Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture/Image Generation--d/s- 
play algorithms; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism--color, 
shading, shadowing, and texture 

General Terms: Algorithms 

Additional Keywords and Phrases: Computer graphics, ray tracing, visible-surface algorithms, hier- 
archical data structures 

1. INTRODUCTION 

In the traditional ray-tracing algorithm, the global illumination is approximated 
by "tracing" rays from the eye, through the viewing plane, and into the environ- 
ment. At the closest surface intersected by a ray, reflected and/or refracted rays 
may be spawned. Each of these must be recursively generated to establish which 
surfaces they intersect. As the ray is traced through the environment, a ray- 
intersection tree is constructed for the sample point. The final intensity is 
determined by traversing the tree depth first and computing the intensity 
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contribution of each node according to the reflection model. Although ray tracing 
was first suggested by Appel [1] and later used by MAGI [4] to solve the hidden- 
surface problem, this approach was first implemented for rendering purposes by 
Kay [8] and Whitted [12]. 

The intensive computational operations in a ray-tracing system are the building 
operations of the ray-intersection trees and the traversal of those trees for the 
intensity calculation. This latter step, which includes shadow testing, has been 
found to be very expensive computationally, particularly for environments that 
contain complex lighting schemes. 

Since the computational expense of producing ray-traced images is excessive, 
it is obvious that new techniques must be found to reduce the calculation time. 
These techniques will inevitably utilize both object and image coherence [11]. 
The term coherence is used to describe the extent to which an environment or 
an image is locally constant. Object coherence relies on the known relationship 
between objects in an environment, and this information is used to reduce the 
visible-surface computations. Image-coherence techniques take advantage of the 
fact that the image does not change rapidly from point to point or Scan line to 
scan line on the viewing plane. They capitalize on the lateral separation of the 
image changes to reduce the depth comparisons. Neither of these two types of 
coherence has been used extensively in ray-tracing schemes to date. 

The results of several investigations related to reducing the computational 
expense of ray tracing have recently been published. To improve the performance 
of their ray-tracing system, Rubin and Whitted used both bounding volumes and 
a hierarchical description of the environment [9]. According to the authors, the 
use of spherical bounding volumes substantially reduced computation time, and 
this procedure is now common practice in ray-tracing. The partitioning of an 
environment has also improved the efficiency of visible-surface algorithms. In 
their implementation, the environment was subdivided into hierarchical, orthog- 
onal subspaces, except for the lowest level primitives, which were bounded by 
arbitrarily oriented, rectangular parallelepipeds. During picture generation, each 
ray was transformed to align with the axes of the parallelepipeds, so that  the 
intersection tests reduced to simple comparisons against the limits of the bound- 
ing boxes. The computational times for their ray traced images were significantly 
reduced. 

Crow [3] also described an image generation system which determined separ- 
ability of objects during scene analysis. The environment is partitioned by crude 
overlap and depth tests, and priorities for rendering are established. Although 
this partitioning allows different rendering algorithms to be used for each object, 
as well as parallel processing, it is difficult to apply to ray-tracing algorithms 

which require global information. 
More recently, Kajiya published an article improving intersection algorithms 

for the ray tracing of three types of procedurally defined objects, namely, fractal 
surfaces, prisms, and surfaces of revolution [7]. Since fractal surfaces are defined 
recursively, Kajiya determined probabilistic "extents" of the fractal surface, 
which, in a sense, act as bounding volumes prior to the fractal surface definition. 
0nly after it is known that  the ray intersects an extent is the fractal surface 
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Table I. Definition of Terminology 

(a) A light is a geometric entity and an associated list of light attributes. Light attributes describe 
the intensity of the light, its goniometric diagram, and color spectrum. Lights are emitters. 

(b) An object is a geometric entity and an associated list of object attributes. Object attributes 
describe the surface properties of the object, such as surface roughness and reflectance properties. 
Objects, in contrast to lights, are not emitters, but they may reflect light. 

(c) An item is a light or an object. It consists of a geometric entity and an attribute list. Currently 
implemented geometric entities are spheres, cylinders, other quadrics, parametric surfaces, and 
polyhedra. 

(d) A cluster is an entity which groups together other clusters and/or items in such a way that no 
cluster can have a descendant which is also an ancestor. Also, each element in the cluster must 
have a unique parent, that being the cluster. This ensures that the structure is a tree. In addition, 
each cluster has a unique name associated with it. 

(e) The world is a cluster which is the uppermost node in the hierarchical description of the 
environment. It has no parent. Only those items contained within the world, either directly or 
indirectly, can be rendered. 

(f) An element is either a cluster or an item. All elements, with the exception of the world, must 
belong to exactly one cluster. 

(g) A ray is a vector with a specific origin and arbitrary direction. 
(h) A ray-intersection tree is a collection of rays representing the geometric path of light propagation, 

starting at the eye, passing through the viewing plane, and extending into the environment. 
(i) An intersection list contains elements which are to be tested in determining the closest item 

intersected. 

generated. His solution to the prism and surface of revolution problems reduced 

the three-dimensional  ray-intersect ion tests to two dimensions. 

Hall utilized adaptive t ree-depth control  to reduce computa t ional  expense [5] 

[6]. Tradit ionally,  ray-intersect ion trees for all sample points  are const ructed to 

an arbitrary,  prespecified depth to ensure tha t  all relevant reflections and 

refractions are captured for the image. However,  the upper  bound  of the contri- 

but ion of any node in the ray-intersect ion tree to the final color of the sample 

point  can be determined according to the diffuse, specular, and transmissive 

properites of the intersected surface. Thus,  by establishing a contr ibut ion thresh- 

old, the depth of the tree can be adaptively controlled. Statistics show the 

significant savings tha t  can be obtained, even for highly reflective environments.  

This  paper  describes additional procedures which have been implemented to 

reduce the computa t ional  expense of producing ray- t raced images. In  Section 2 

the selection of  bounding volumes is examined to reduce the computa t ional  cost 

of the ray-intersect ion test. A hierarchical description of  the environment ,  which 

relies on object coherence, is presented in Section 3. Last,  since the building of 

the ray-intersect ion tree is such a large por t ion of  the computat ion,  a new 

approach using image coherence is described in Section 4. This  visible-surface 

preprocessing method,  which is dependent  upon the creation of  an "i tem buffer," 

takes advantage of a priori image information,  and substantial ly reduces the 

computa t ional  time. Examples  tha t  indicate the efficiency of  these techniques 

for a variety of  representat ive envi ronments  are p resen ted .  

For  clarification of  the following discussion, specific definitions of  the termi- 

nology used are presented in Table I. 
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2. BOUNDING VOLUMES 

In creating a node in the ray-intersection tree, and during shadow testing for 
color calculation, it is necessary to determine which intersected item, if any, is 
nearest to the origin of the ray. The item that is the closest is the one visible. 
Since the origin and direction of the ray are arbitrary, all items in the environment 
must be considered during the intersection process. 

The amount of time needed to test an item for intersection depends on its 
geometric description. Typically, a sphere is the simplest of shapes to intersect. 
The intersection time for a polyhedron generally depends on the number of faces 
that it contains although Kajiya has shown an improved intersection test for the 
special case of prisms [7]. Other shapes, such as surfaces of revolution and 
parametric surfaces, may require more time to test. 

Unfortunately, typical environments do not consists of spheres and simple 
polyhedra. Instead, the geometries are usually complex and of various definitions. 
For this reason, it is often desirable to enclose complex objects with simpler, 
abstract ones, such as spheres or rectangular parallelepipeds. These enclosing 
shapes are called bounding volumes, as suggested by Clark [2] and implemented 
by Whitted [12]. Only if a ray happens to intersect the simpler bounding volume 
is the enclosed complex item tested. However, if the ray does not intersect the 
bounding volume, then there is no need to test the complex item within. If the 
bounding volumes are chosen wisely, this scheme can greatly reduce the cost of 
intersection testing. 

Defining the optimal bounding volume, however, is difficult. The common 
practice of selecting bounding volumes on the basis of the simplicity of their 
intersection tests should not be the only consideration. Other factors, such as 
the projected void area, should also be examined. 

The void area is the difference in the projected areas of the bounding volume 
and the item (Figure 1). If the cost of intersecting the bounding volume is, for 
the moment, ignored, then, for a given ray, the best bounding volume is the one 
that produces the least void area when orthogonally projected onto a plane 
perpendicular to the ray and passing through the origin of the ray. Minimizing 
the void areas for all rays produces a bounding volume that is identical to the 
item itself. If restricted to a given shape of bounding volume, minimizing these 
void areas results in the selection of the optimal bounding volume of that  
geometry. 

Obviously, one cannot ignore the cost of intersecting the bounding volume in 
this selection process, as it is definitely not advantageous to select the item itself. 
For many environments, one should consider the void area of the item for rays 
of specific origin a n d  direction. Initially, consider an environment containing 
only surfaces that  are totally diffuse, and having either light emanating from the 
viewer position or ambient lighting. Because there are no reflected or refracted 
rays, all rays emanate from the eye and pass through the viewing plane. Thus 
the origin and direction for all rays are known, and the void areas should be used 
in the selection of bounding volume. However, in the general case, as the 
illumination becomes more complex, or the environment becomes specular or 
transparent, this factor becomes more difficult to consider since rays are more 
likely to arrive in any direction. 
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Plane Perpendicular to Ray 

Item a 

Boundi 

Fig. 1. Projected area  of  i t em and  i ts  bound ing  volume.  

To illustrate the concept of void area, three different views of the same item 
are shown {Figure 2). The front and side views were each rendered using 
alternately a bounding sphere and a bounding rectangular parallelepiped. In the 
case of the front view, the image using the bounding sphere was rendered in 88 
percent of the time of that  using the parallelepiped. This reduction arises from 
the fact that  the void area is slightly less for the sphere. However, the side view 
using the parallelepiped was rendered in only 47 percent of the time needed to 
render the image using the bounding sphere. For this view, even though the 
sphere is less costly to test for intersection, the void area of the parallelepiped is 
a mere fraction of that  of the sphere. Thus, the optimal choice is ray dependent. 

Another important criterion in the selection of a bounding volume is the 
complexity of the item being enclosed. The total cost function of the intersection 
test for an item is 

where 

T 
b 
B 
i 

T = b .  B +  i .  I, (1) 

is the total cost function; 
is the number of times that  the bounding volume is tested for intersection; 
is the cost of testing the bounding volume for intersection; 
is the number of times that  the item is tested for intersection, which is 
equivalent to the number of times that  the bounding volume is intersected (i 
(-- b); 
is the cost of testing the item for intersection. 
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Fig. 2. Bounding volume selection. 

It is desirable to minimize this function for all items. For a specific item, in a 

given environment, with a given view, b and I are constant. However, by 

manipulating the shape and size of the bounding volume, B and i can be varied 

to reduce the total cost function T. Reducing the complexity of the bounding 

volume generally results in a decrease of its cost function B, but an increase in i. 

Alternatively,:increasing the complexity generally results in an increase of B and 

a decrease in the number of item intersection tests i. Neither adjustment 

guarantees a decrease in the total cost function T. 

Bounding volumes are automatically assigned, but only to those items whose 

intersection tests are sufficiently complex to warrant one. Certain items, such as 

spheres, cylinders, and rectangular parallelepipeds, do not require the addition 

of this entity. The first step in this assignment is the determination of a set of 

three-dimensional points which "surrounds" the item. These coordinates define 

the vertices of some convex polyhedron which completely encloses the item. 

There are obviously many choices for this set, but it is optimally selected in such 

a way that the volume of the polyhedron less the volume of the item is minimal. 
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For a polyhedral item, these points are simply its vertices. (The inclusion of 
interior points of concave shapes is not detrimental.) For nonplanar surfaces, 
these points represent a polyhedral approximation which at least surrounds the 
item. 

Having determined this set, a bounding volume is now selected. Three candi- 
dates currently exist for the shape of the bounding volume, namely, a sphere, a 
rectangular parallelepiped, and a cylinder. Associated with each candidate is a 
factor that is indicative of the relative complexity of its intersection test, with 
the sphere having the lowest factor, and the cylinder, the highest. A potential 
bounding volume of each shape is created for the set of points to be enclosed. 
The selection is made by minimizing the product of the associated complexity 
factor and the volume of the potential bounding shape. Volume is considered, 
since it intuitively considers the projected void areas for all directions. Although 
it is not accurate, it is representative and easy to calculate. To compensate for 
the item complexity factor being ignored, an interactive program is provided to 
allow the user to override any automatic bounding volume selection. 

3. HIERARCHICAL ENVIRONMENT 

The concept of bounding volumes is extended to exploit properties of the 
environment which are independent of the observer's position. Groups of items, 
which are in close proximity to each other, can be clustered within a single 
bounding volume. Higher level clusters can be created by grouping clusters and/ 
or items together. Thus, in addition to the geometric information, a hierarchical 
description of the environment can be created where the leaves are items, and 
the interior nodes are clusters (e.g., Figure 3 shows the hierarchy for the 
environment of Table VII). 

When intersecting a ray with the environment, one first tests the top level and 
recursively descends the hierarchy only along those branches where intersections 
occur (Figure 4). Computational savings occur because the algorithm can save 
ancestral information and thus avoid needless intersection tests. That  is, it is 
only necessary to test individual elements in a group if the parent bounding 
volume is intersected. 

Care must be taken in creating the hierarchy for an environment. Elements 
that are not near each other should not be placed in a cluster. If they are, then 
many rays will intersect the cluster's bounding volume but  not the elements 
within, thereby defeating the purpose of the cluster. Also, if clusters have few 
children and the hierarchy is deep, excessive bounding volume tests and inter- 
sections may occur. 

The hierarchical structuring assigned to an environment is basically the one 
defined by the user during the modeling process. The only difference is that 
clusters containing only one element are removed from the hierarchy. Although 
the structuring used during modeling is not necessarily ideal for ray tracing, it is 
often sufficient, since users naturally tend to cluster elements within close 
proximity to each other. In either case, a user seldom creates a cluster that  is 
very detrimental to the performance of the ray-tracing renderer. Bounding 
volumes are automatically assigned to clusters by considering all descendent 
items. 
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function closest(world: bv; r: ray): item; 

var 

c, e: 
distance: 

elements: 

inside_by: 

begin 

element; 

real; 
list_of_bv; 

boolean; 

elements := world.children; 
while  (elements is non_empty) do 

begin 
whi l e  not  (at end of elements) do 

begin 

c := current element; 
i f  (c has been tested) then 

advance to next element in elements 

else 

begin 
i f  (intersect(c, ray, distance, inside_by)) then 

begin 

i f  (inside_by) then 

replace c with c.children 
else i f  (distance > 0.0) then 

advance to next element in elements 
else 

return(c); § This is the closest elementt  

end 

else 
remove c from elements as it was not intersected; 

end; 
end; 

i f  (elements is non_empty) then 

begin 

e := element in elements with least intersection distance; 

i f  (e.category is BOUNDING_VOLUME) then 

replace e with e.children 
else 

re turn(e) ;  § This is the closest item intersected t 

end; 

end; 

re turn(NIL);  § No item intersected t 

end; 

Fig. 4. Hierarchical intersection algorithm. 

4. VISIBLE-SURFACE PREPROCESS 

In past ray-tracing algorithms, the procedure for determining an intersection and 
the cost of that  intersection are similar for all nodes in the ray-intersection tree. 
Although handling all rays similarly has obvious conceptual advantages in the 
implementation of the algorithm, it is not the most efficient approach to use 
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when considering computational optimization. An alternate technique, which 
distinguishes the first node in the ray-intersection tree from the remaining nodes, 
has been developed. When using the adaptive tree-depth method described earlier 
and noting that in most environments the average depth of the ray-intersection 
tree is not much greater than one, the computation reduction that could be 
achieved by reducing the time spent computing the first level of the tree becomes 
evident. 

In the ray tracing of an image, the only rays whose origin and direction are 
easily determined, are those emerging from the eye and piercing the image plane. 
By taking advantage of this known information, the amount of time spent 
determining the first ray's intersection with the environment can be decreased. 
It is evident that  a reduction in the number of items tested would proportionately 
reduce the computational expense. By utilizing image-space coherence for those 
rays originating at the eye, a reduction in the size of the intersection list can be 
realized. 

The perspective transformation of all items in the environment results in a 
two-dimensional projection of each onto the image plane. If an intersection list 
is constructed on a pixel-to-pixel basis, only those items that partially or fully 
cover the pixel area will be included. This abbreviated list can be used when 
testing for the closest item. In order to reduce this list to a single entry, typical 
visible-surface algorithms can be invoked. 

The determination of visible surfaces within an environment, given a viewer 
position and frustum, can be performed in a variety of ways, each having its own 
advantages [11]. Unlike the ray-tracing technique, the computational expense of 
most image-space visible-surface algorithms is much less than directly propor- 
tional to the resolution of the image. This can be inferred from the fact that  
during ray tracing, all objects are tested at every pixel to determine the closest 
intersection. However, traditional image-space, visible-surface algorithms sort 
all items by depth only over their areas as projected onto the image plane. 

Specifically, the algorithm is implemented as follows. As a preprocess before 
ray tracing, a z-buffer algorithm is executed using the same viewing parameters. 
The z-buffer algorithm is used since it can accommodate a wide range of geometric 
primitives. Instead of producing the traditional display buffer, the algorithm is 
modified to produce an item buffer. Each entry within the item buffer corresponds 
to some location on the image plane and contains an index to a list of the items 
within the environment. This index is simply the indirect storage of the identical 
information that would have been produced by the ray tracer at this level. The 
ray-tracing process may then substitute a simple indexing operation into the 
item buffer for the first ray-intersection test. 

The visible-surface preprocess determines the visible item at discrete locations 
corresponding to the corners of the pixels of the image plane. If a ray passes 
through the corner of some pixel, then it is assumed to hit the item that has been 
deemed visible by the preprocess. However, when subdivision occurs, to sample 
a pixel more accurately, the ray passes through either an edge or the interior of 
the pixel. In either case, the abbreviated intersection list used by the ray tracer 
contains those item indices lying within a desired radius of the sample location. 
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5. RESULTS 

In order to show the computational efficiency of the procedures described, various 
environments have been modeled and rendered (Tables II-VIII) and Figures 5- 
9. These environments differ greatly in complexity, and contain varying shapes 
of items, numbers of light sources, and specular and transmissive properties. For 
each ray-traced image generated, statistics are presented that indicate the reduc- 
tion in the computational time when one or more of the techniques are invoked. 

To indicate where the computationally intensive operations lie, and to show 
the benfits of the algorithms, the relative processing times for each image is 
divided into the following categories: the percentage of the total time required to 
produce the ray-intersection trees (tree generation); the percentage of time spent 
determining direct illumination (shadow testing); the percentage of time used in 
generating the item buffer (visible-surface preprocess); the percentage of time 
spent calculating color according to the reflection model (color calculation); and, 
total miscellaneous time, such as file handling (miscellaneous). 

For each environment, a control image consisting of items enclosed only by 
spherical bounding volumes was generated. Similar images using all combinations 
of the improvement techniques were statistically measured. Tables II-VIII illus- 
trate the results for the following cases: 

C control image, using only spherical bounding volumes; 
CZ spherical bounding volumes with visible-surface preprocess; 
CH spherical bounding volumes with hierarchy; 
CHZ spherical bounding volumes, hierarchy, and visible-surface preprocess; 
S selected bounding volumes; 
SZ selected bounding volumes with visible-surface preprocess; 
SH selected bounding volumes with hierarchy; 
SHZ selected bounding volumes, hierarchy, and visible-surface preprocess. 

A composite table showing the reductions in computational times is presented 
in Table IX. 

6. CONCLUSIONS 

Previously published articles have described the advantages of using bounding 
volumes and adaptive tree-depth control. This paper has presented a variety of 
methods to further reduce the computational expense of producing ray-traced 
images. An improvement in the selection of bounding volumes has been discussed. 
To determine optimal bounding volumes, specific characteristics examined in- 
clude the cost of intersecting the volume, the item complexity, and the projected 
void areas. A method of using the topological information of a hierarchically 
defined environment to reduce computational time has been presented, and the 
concept of an item buffer introduced. A visible-surface preprocess utilized image 
coherence to reduce the ray-intersection tree generation time. This improvement 
is most significant when the number of rays emanating from the eye and passing 
through the image plane represents a large portion of the total number of rays 
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Fig. 5. Penci ls .  

Table  II. Image  T i m i n g  T e s t  for Penci ls  I (Figure 5) "b 

C CZ CH CHZ S SZ SH SHZ 

Tree generat ion ¢ 48.4 14.3 46.7 16.5 43.7 21.5 39.8 30.1 

Shadow tes t ing  ~ 44.8 75.3 45.5 70.7 43.9 61.3 40.2 46.1 

Visible surface preprocess  c - -  0.3 - -  0.3 - -  0.3 - -  0.7 

Color calculation c 3.5 5.2 4.0 6.4 6.4 8.4 10.4 11.5 

Miscellaneous c 3.3 4.9 3.8 6.1 6.0 8.3 9.6 11.6 

Total relative t ime  1.00 0.67 0.86 0.54 0.54 0.40 0.32 0.28 

"Specifications: 38 i t ems  (1806 polygons);  1 l ight  source; nonref lect ive env i ronmen t ;  ray- in te rsec t ion  

tree depth of  one. 

b C: Spherical bound i ng  vo lumes  (control);  S: Selected bound ing  volumes;  H: Hierarchical  envi ron-  

ment structure;  Z: Visible surface  preprocess .  

Shown as a percentage  of  to ta l  t ime  

Note: 

(1) The  i m p r o v e m e n t  of  selected bv's versus  control  bv's due to the  e longated  na tu r e  of  t he  i tems.  

(2) The  i m p r o v e m e n t  clue to a h ie ra rchy  t h a t  t akes  advan tage  of  t he  proximi ty  o f  the  i tems.  E a c h  

pencil is grouped wi th  its th ree  closest  neighbors ,  c rea t ing  n ine  clusters .  

(3) The  i m p r o v e m e n t  of  t he  visible surface  preprocess  dur ing  tree generat ion.  T h i s  is due to the  

high ratio between the  n u m b e r  of  f irst  level rays  ve r sus  to ta l  n u m b e r  o f  rays.  
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Table  III. Image  T i m i n g  T e s t  for Penci l s  II (s imilar  to Figure 5) ~b 

C CZ C H C H Z  S SZ SH SHZ 

Tree  genera t ion  ~ 52.5 39.9 53.6 40.0 46.6 40.4 43.5 40.0 

Shadow tes t ing  ~ 40.6 51.0 37.'7 48.9 44.0 48.9 38.2 39.8 

Visible surface preprocess  ~ - -  0.2 - -  0.2 - -  0.2 - -  0.3 

Color ca lcula t ion c 5.2 6.6 6.5 8.2 6.8 7.8 13.7 14.8 

Misce l laneous  c 1.7 2.3 2.2 2.7 2.3 2.7 4.6 5.1 

Tota l  relative t ime  1.00 0.79 0.79 0.62 0.76 0.65 0.37 0.34 

a Specificat ions:  38 i t ems  (1806 polygons);  1 l ight  source; reflective env i ronmen t ;  ray- in tersec t ion  

tree dep th  of  three.  

b C: Spherical  bound i ng  vo lumes  (control); S: Selected bound ing  volumes;  H: Hierarchica l  environ-  

m e n t  s t ructure ;  Z: Visible surface preprocess .  

Shown as  a percentage  o f  to ta l  t ime  

Note: 

(1) T h e  i m p r o v e m e n t  of  selected bv's and  the  h ie ra rchy  in t he  tree genera t ion  process.  In 

re la t ionship  to Table  II, t h e  i m p r o v e m e n t  r ema i ns  propor t ional  wi th  t he  increased dep th  of  t he  tree. 

(2) T h e  i m p r o v e m e n t  ga ined f rom t he  visible surface preprocess  is t he  same  as Table  II. The  

percentage  of  the  i m p r o v e m e n t  decreases  a long wi th  t he  f irst  ray ve r sus  to ta l  ray ratio. 

Table  IV. Image  T i m i n g  T e s t  for Penci l s  III (s imilar  to Figure 5) ~b 

C CZ C H CHZ S SZ SH SHZ 

Tree  genera t ion  c 23.7 4.5 23.7 5.3 22.1 8.2 19.9 13.6 

Shadow tes t ing  ~ 70.8 88.5 69.9 86.5 67.6 79.6 62.3 66.4 

Visible surface preprocess  c - -  0.1 - -  0.1 - -  0.2 - -  0.3 

Color ca lcula t ion ~ 4.0 5.0 4.7 5.9 7.5 8.7 13.0 14.3 

Misce l laneous  c 1.5 1.9 1.7 2.2 2.8 3.3 4.8 5.4 

Tota l  relative t ime  1.00 0.78 0.82 0.66 0.51 0.44 0.28 0.26 

a Specifications: 38 i t ems  (1806 polygons);  3 l ight  sources;  nonref lect ive  env i ronmen t ;  ray- in te rsec t ion  

tree dep th  of  one. 

b C: Spherical  bound ing  vo lumes  (control); S: Selected bound ing  volumes;  H: Hierarchica l  environ-  

m e n t  s t ructure;  Z: Visible surface preprocess .  

¢ Shown as a percentage  of total  t ime  

Note: 

(1) T h e  i m p r o v e m e n t  of  selected bv's and  the  h ie ra rchy  in t he  shadow tes t ing  process.  In 

re la t ionship  to Table  II, t he  i m p r o v e m e n t  r ema i ns  propor t ional  wi th  t he  increased  n u m b e r  of  shadow 

tests .  

in the environment. Statistics for a variety of environments that differ in 
complexity, item geometries, numbers of light sources, and specular and trans- 
missive properties consistently indicate improvement. 

Further work must include the extension of the item buffer concept to individ- 
ual light sources, as shadow testing still represents the dominant portion of 
computational expense. Improved bounding volume selection, including the use 
of multiple bounding volumes for single elements, is being investigated. Also, a 
means of automatically generating the hierarchy must be found. 
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Fig. 6. Polygons. 

Table V. Image Timing Tes t  for Polygons (Figure 6) a'b 

A B C D 

C SHZ C SHZ C SHZ C SHZ 

Tree generation c 46.5 36.2 45.4 38.3 52.0 22.0 43.9 35.0 

Shadow test ing ~ 42.2 49.0 45.9 51.1 2.8 3.9 39.4 44.2 
Visible surface preproeess  c - -  1.0 - -  0.6 - -  5.0 - -  1.4 
Color calculation c 5.2 6.4 5.5 6.2 9.7 13.8 6.1 7.0 

Miscellaneous c 6.1 7.4 3.2 3.8 35.5 55.3 10.6 12.4 

Total relative t ime 1.00 0.82 1.00 0.86 1.00 0.66 1.00 0.86 

"Specifications: 21 i tems (1980 polygons, 3 spheres);  3 light sources; adaptive ray-intersect ion t ree 

depth. 
b C: Spherical bounding volumes (control); S: Selected bounding volumes; H: Hierarchical  environ- 

ment structure; Z: Visible surface preprocess.  
c Shown as a percentage of  total  t ime 

Note: 

(1) In order to isolate the  effect of  the  visible surface preprocess,  the  background was not  modeled 
as a polygon, and  thus  does not  receive shadows or require shadow testing.  Thus  shadow tes t ing  t ime 

is a function of  the  number  of  tree nodes t ha t  are not  background nodes. 
(2) The tree generat ion t ime is view dependent  and a funct ion of  the  nonbackground screen area. 

(3) The decrease in computa t ion  t ime result ing from the  visible surface preproeess takes  place 
entirely in the  tree generation.  Wi th in  this  stage, relative improvements  on all four images are 
approximately equal. 

(4) Total C P U  t ime for control  images: (a) 1.57 hours; (b) 3.12 hours; (c) 0.24 hour; (d) 0.89 hour. 

ACM Transactions on Graphics, Vol. 3, No. 1, January 1984 



66 • H. Weghorst, G. Hooper, and D. P. Greenberg 

Fig. 7. Camera .  

Table  VI. Image  T i m i n g  T e s t  for C a m e r a  (Figure 7) a'b 

C CZ C H CHZ S SZ SH SHZ 

Tree  genera t ion  ¢ 60.9 56.0 60.6 56.4 57.3 51.9 56.1 52.5 

Shadow tes t ing  ~ 30.6 34.6 30.0 33.0 30.1 33.7 28.1 30.2 

Visible surface  preprocess  c - -  0.2 - -  0.2 - -  0.3 - -  0.3 

Color calculat ion c 3.0 3.2 3.3 3.7 4.4 4.9 5 .5  5.9 

Misce l laneous  c 5.5 6.0 6.1 6.7 8.2 9.2 10.3 11.1 

To ta l  relat ive t ime  1.00 0.92 0.90 0.80 0.67 0.60 0.53 0.49 

a Specifications:  39 i t ems  (1392 polygons,  1 sphere);  1 l ight  source; adapt ive  ray- in te rsec t ion  tree 

depth.  
b C: Spherical  b o u n d i n g  vo lumes  (control); S: Selected bound ing  volumes;  H: Hierarchical  environ-  

m e n t  s t ructure ;  Z: Visible surface preprocess .  

c Shown as a percentage  of  to ta l  t ime  

Note: 

(1) T h e  i m p r o v e m e n t  gained us ing  the  visible surface preprocess.  In  th i s  case, due to the re  being 

only one l ight  source, the  rat io of  f irst  level rays  ve r sus  total  n u m b e r  of  rays  is high. 
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Fig. 8. Office Scene. 

Table  VII. Image  T i m i n g  T e s t  for Office Scene (Figure 8) "-b 

C CZ C H CHZ S SZ SH SHZ 

Tree generation c 21.5 9.6 21.8 10.5 21.3 10.4 22.3 12.3 

Shadow tes t ing ~ 74.1 85.0 72.3 82.9 73.8 83.8 70.2 78.9 

Visible surface preprocess  c - -  0.2 - -  0.2 - -  0.2 - -  0.3 

Color calculation c 3.4 3.9 4.6 4.9 3.8 4.3 5.8 6.5 

Miscellaneous c 1.0 1.4 1.3 1.5 1.1 1.3 1.7 2.0 

Total relative t ime  1.00 0.87 0.74 0.67 0.90 0.79 0.56 0.49 

• Specifications: 63 i t ems  (2101 polygons,  8 spheres) ;  5 l ight  sources;  adapt ive ray- in te rsec t ion  tree 

depth. 

b C: Spherical bound i ng  vo lumes  (control); S: Selected bound ing  volumes;  H: Hierarchica l  envi ron-  

ment structure; Z: Visible surface  preprocess .  

' Shown as a percentage  of  to ta l  t ime  

Note: 

(1) The  i m p r o v e m e n t  ga ined f rom the  use  of  t he  hierarchical  da ta  s t ruc ture  for which  th i s  
environment lends  itself. 

(2) Shadow tes t ing  emerg ing  as t he  d o m i n a n t  a rea  of  computa t ion .  T h i s  will be t he  case in m o s t  

images of modera te  complexi ty,  i l lumina ted  wi th  mul t ip le  l ight  sources.  
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Fig. 9. Pool Room.  

Table  VIII. Image  T i m i n g  T e s t  for Pool Room (Figure 9) ~b 

C CZ C H  CHZ S SZ SH SHZ 

Tree  genera t ion  c 21.7 10.3 21.5 10.6 22.5 14.0 21.8 15.8 

Shadow t e s t i ng  ~ 75.2 86.1 74.9 85.3 72.9 81.0 71.3 76.8 

Visible surface preprocess  ¢ - -  0.1 - -  0.1 - -  0.1 - -  0.2 

Color ca lcula t ion c 2.2 2.6 2.5 2.9 3.4 3.5 5.0 5.3 

Misce l laneous  c 0.9 0.9 1.1 1.1 1.2 1.4 1.9 1.9 

Tota l  relative t ime  1.00 0.84 0.87 0.74 0.65 0.60 0.45 0.41 

"Specif icat ions:  38 i t ems  (835 polygons,  13 spheres ,  15 cylinders);  5 l ight  sources;  adapt ive  ray- 

in tersec t ion  t ree  depth.  
b C: Spherical  bound i ng  vo lumes  (control); S: Selected bound ing  volumes;  H: Hierarchica l  envi ron-  

m e n t  s t ructure ;  Z: Visible surface  preprocess .  

¢ Shown as a percentage  of to ta l  t ime  

Note: 
(1) T h e  i m p r o v e m e n t  as  a resul t  of  u s i ng  selected bound ing  volumes.  

(2) Shadow tes t ing  once again  becoming  t he  d o m i n a n t  por t ion  of the  compu ta t iona l  expense .  
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Table IX. Total Time Comparisons" 

69 

Total b C CZ CH CHZ S SZ SH SHZ 

Pencils I 6.02 1.0 0.67 0.86 0.54 0.54 0.40 0.32 0.28 
Pencils II 11.94 1.0 0.79 0.79 0.62 0.76 0.65 0.37 0.34 

"Pencils III 17.07 1.0 0.78 0.82 0.66 0.51 0.44 0.28 0.26 
Camera 6.61 1.0 0.92 0.90 0.80 0.67 0.60 0.53 0.49 
Office 14.6 1.0 0.87 0.74 0.67 0.90 0.79 0.56 0.49 
Pool Room 14.33 1.0 0.84 0.87 0.74 0.65 0.60 0.45 0.41 

'C: Spherical bounding volumes (control); S: Selected bounding volumes; H: Hierarchical environ- 
ment structure; Z: Visible surface preprocess. 
bCPU time in hours for control image (C) on VAX 11/750 computed at a resolution of 256 × 240. 
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