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All-pass �lter design can be generally achieved by solving a system of linear equations.�e associatedmatrices involved in the set of
linear equations can be further formulated as a Toeplitz-plus-Hankel form such that a matrix inversion is avoided. Consequently,
the optimal �lter coecients can be solved by using computationally ecient Levinson algorithms or Cholesky decomposition
technique. In this paper, based on trigonometric identities and sampling the frequency band of interest uniformly, the authors
proposed closed-form expressions to compute the elements of the Toeplitz-plus-Hankel matrix required in the least-squares design
of IIR all-pass �lters. Simulation results con�rm that the proposed method achieves good performance as well as e�ectiveness.

1. Introduction

Digital all-pass �lters have received much attention in many
signal processing applications such as notch �ltering, phase
equalization in communication systems, multichannel �lter
bank, construction of a wavelet, and image compression
[1–9]. �e most commonly used design methods can be
classi�ed into four categories: (1) maximally �at design
[10], (2) least-squares approximation [11–15], (3) minimax
approximation [16–18], and (4) cepstral coecients method
[19, 20]. �e aforementioned approaches [11–18] include
solving a set of linear equations, using a linear program-
ming method, or utilizing a generalized exchange algorithm.
Several di�erent optimization methods have been developed
based on eciency or applications. No matter what methods
are used, the computation increases signi�cantly as the �lter
length increases.

In the literature [13], an ecient and robust weighted
least-squares (WLS) method is proposed to design IIR all-
pass �lters that have a least-squares or an equiripple phase
error response. �e method is based on formulating a
weighted square error re�ecting the di�erence between the

desired phase and the phase response of the design IIR all-
pass �lter in a quadratic form. �e �lter coecients are
then obtained by solving a system of linear equations which
involves a Toeplitz-plus-Hankel matrix. Consequently, the
optimal solution of this system of linear equations can be
obtained eciently using Cholesky decomposition or Levin-
son algorithm [21–23].�ese ecient algorithms require only�(�2) complexity [21–24] to compute the optimal solution. It
is computationally ecient as compared to solving the linear
equations by directly computing a matrix inversion which

involves�(�3) complexity. Furthermore, the computation of
matrix inversion may cause numerical problems as the �lter
length is large. �erefore, the method proposed by Kidambi
[13, 24] is not only ecient but also robust as applied to the
�lter design problems. It has been shown in [24] that the
ecient algorithms do not result in numerical problem as the
�lter increases to 2000.

As observed from the elements of Toeplitz-plus-Hankel
matrix, they are associated with the �lter speci�cations when
the design problem is speci�ed. �erefore, trigonometric
properties can be further used to reduce the computation. In
this paper, based on trigonometric identities and uniformly
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sampling the band of interest, the elements of Toeplitz-
plus-Hankel matrix can be further simpli�ed as closed-form
expressions. Simulation results indicate that the computa-
tions can be greatly reduced as compared to the ecient
algorithm presented by [13].

�is paper is organized as follows. In Section 2, the
problem formulation of IIR all-pass �lter is brie�y reviewed.
In Section 3, the closed-form expressions for Toeplitz-plus-
Hankel matrix are investigated in detail. �e analysis of com-
putational requirements is stated in Section 4.�e simulation
and design examples are shown in Section 5 to verify the
advantages of the proposed method. Finally, the conclusion
is stated in Section 6.

2. Problem Formulation

�e frequency response of an IIR all-pass �lter with N real
coecients, ℎ(�), � = 0, . . . , � − 1, can be expressed as

�(���) = ∑��=0 ℎ (� − �) �−���
∑��=0 ℎ (�) �−��� = �−����(�−�� )

� (��� ) , (1)

where the denominator is an FIR �lter with frequency

response �(���) = ∑��=0 ℎ(�)�−��� and ℎ(0) = 1. It can be

found that the magnitude response of �(���) is unit gain at

all frequencies. �e phase response of �(���) can be written
as

� (�) = −�� + 2 tan−1( ∑��=1 ℎ (�) sin (��)1 + ∑��=1 ℎ (�) cos (��)) . (2)

Given a desired phase response, ��(�), 0 ≤ � ≤ �, the
purpose is to �nd the real coecients ℎ(�) such that phase
errors �(�) can be minimized in the least-squares sense.
�e phase error response between �(�) and ��(�) can be
represented as

� (�) = �� (�) − � (�)
= �� (�) + �� − 2 tan−1( ∑��=1 ℎ (�) sin (��)1 + ∑��=1 ℎ (�) cos (��)) .

(3)

It is clear that the phase error response in (3) is a
nonlinear representation of �lter coecients. Minimizing
the phase error response directly will result in a highly
nonlinear optimization problem. Based on the assumption of
phase approximation presented by Kidambi [13], (2) can be
alternatively rewritten as

tan(� (�) + ��2 ) = h
�
s (�)1 + h�c (�) , (4)

where

h = [ℎ (1) , ℎ (2) , . . . , ℎ (�)]�,
c (�) = [cos (�) , cos (2�) , . . . , cos (��)]�,
s (�) = [sin (�) , sin (2�) , . . . , sin (��)]�.

(5)

If the phase response of the design IIR all-pass �lter is very
close to the desired phase, that is, ��(�) ≈ �(�), then the
expression in (4) can be approximated as [13]

sin [�� (�)]
cos [�� (�)] ≈ h

�
s (�)1 + h�c (�) , (6)

where ��(�) = (��(�) + ��)/2. A�er performing some
mathematical treatment, (6) can be simpli�ed as

h
� [sin [�� (�)] c (�)−cos [�� (�)] s (�)]≈− sin [�� (�)] .

(7)

As a consequence, (7) can be expressed in a more compact
form

h
�
s1 (�) ≈ − sin [�� (�)] , (8)

where

s1 (�)= sin [�� (�)] c (�) − cos [�� (�)] s (�) ,
= [sin(�� (�)− �) sin (�� (�)−2�) ⋅ ⋅ ⋅ sin (�� (�) − ��)]�.

(9)

�erefore, the objective function to beminimized in the least-
squares sense can be formulated in a quadratic form as

� = �∑
	=1

{h�s1 (�	) + sin (�� (�	))}2, (10)

where �is the number of frequency points at which the
desired phase is sampled. By setting  �/ ℎ(!) = 0, for ! =1, 2, . . . , �, a system of linear equations given by Qh = d is
easily obtained, where

Q = �∑
	=1

s1 (�	) ⋅ s�1 (�	) ,

d = − �∑
	=1

sin [�� (�	)] s1 (�	) .
(11)

SinceQ is a real, symmetric, and positive-de�nite matrix,
a unique solution is guaranteed. In solving the system of

linear equations, a matrix inversion Q
−1 which involves�(�3) complexity can be used directly. As the �lter length

is long, the computational complexity increases signi�cantly.
Furthermore, large �lter length may cause the numerical
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problem when the matrix is ill conditioned. �erefore, algo-
rithms with ecient to design and robust to avoid numerical
problem should be used.

3. Proposed Closed-Form Expressions for
Toeplitz-Plus-Hankel Matrix

Kidambi [13, 24] expanded the matrix Q into a sum of
symmetric Toeplitz and Hankel matrix. Consequently, the
system of linear equations can be written as (T + H) h =
d. �ere exist several iterative and ecient algorithms [21–

23] which involve �(�2) complexity that can be used to
obtain the optimal �lter. In this paper, some trigonometric
identities [25] and uniformly sampled frequency points are
exploited such that the Toeplitz and Hankel matrices can be
further simpli�ed as closed-form expressions. As a result, the

computational requirements for the associated matrices can
be greatly reduced especially for �lter length is large.

Evidently, each element of matrix Q is the sum of cosine
functions and can be written as a Toeplitz-plus-Hankel
matrix form:

" (!, #) = �∑
	=1

sin [�� (�	) − !�	] ⋅ sin [�� (�	) − #�	]
= 12 { �∑

	=1
cos (!−#) �	− �∑

	=1
cos [(!+#) �	−2�� (�	)]}

= & (!, #) + � (!, #) .
(12)

�ese elements can be further expanded as the matrix forms

T = [& (!, #)] = 12

[[[[[[[[[[[[[
[

�∑
	=1
1 �∑

	=1
cos (�	) ⋅ ⋅ ⋅ �∑

	=1
cos (� − 1) �	

�∑
	=1

cos (�	) �∑
	=1
1 ⋅ ⋅ ⋅ �∑

	=1
cos (� − 2) �	

...
... d

...
�∑
	=1

cos (� − 1) �	 �∑
	=1

cos (� − 2) �	 ⋅ ⋅ ⋅ �∑
	=1
1

]]]]]]]]]]]]]
]

,

H = [� (!, #)] = −12
[[[[[[[[
[

�∑
	=1

cos (2�	 − 2�� (�	)) ⋅ ⋅ ⋅ �∑
	=1

cos ((� + 1) �	 − 2�� (�	))
... d

...
�∑
	=1

cos ((� + 1) �	 − 2�� (�	)) ⋅ ⋅ ⋅ �∑
	=1

cos (2��	 − 2�� (�	))

]]]]]]]]
]
.

(13)

�erefore, only the �rst row (or column) of T has to be
evaluated. �ere are � distinct elements required to be
computed for an � × � Toeplitz matrix. Similarly, 2� − 1
distinct elements at the �rst row (or column) and the last
row (or column) are required to be computed for an � × �
Hankel matrix. Using the Toeplitz-plus-Hankel matrix, the
computations can be signi�cantly reduced. As observed from
(12), the summation is performed on the discrete frequency
points, so the computations are a�ected by the frequency
sampling points. If L points are uniformly sampled in the
band of interest [�
, ��], �	 can be formulated as

�	 = �
 + (�� − �
) ⋅ 8� = �
 + Δ 8, 8 = 1, 2, . . . , �, (14)

where Δ = (�� − �
)/� is the spacing between two adjacent
frequency points. To obtain the closed-form expressions, the

following useful formulae which have been shown in [25] can
be used:

�∑
	=�

cos (: + 8;)

= cos [: + (< + �) ;/2] sin [(� − < + 1) ;/2]
sin (;/2) ,

�∑
	=�

sin (: + 8;)

= sin [: + (< + �) ;/2] sin [(� − < + 1) ;/2]
sin (;/2) .

(15)

Consequently, only the closed-form expressions for Toeplitz
matrix can be readily achieved for the case of ! = #,

& (!, #) = 12
�∑
	=1

cos [0 ⋅ �	] = 12
�∑
	=1

1 = �2 . (16)
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And for the case of ! ̸= #,
& (!, #)
= 12
�∑
	=1

cos [(! − #) (�
 + 8Δ)]

= 12
�∑
	=1

cos [(! − #) �
 + 8Δ (! − #)]

= 12
cos [(! − #) �
+(� + 1) (! − #) Δ/2] ⋅ sin [(! − #) �Δ/2]

sin [(! − #) Δ/2] .
(17)

Similarly, the closed-form expression for the elements of the
Hankel matrix can be written as

�(!, #) = −12
�∑
	=1

cos [(! + #) �	 − 2�� (�	)] . (18)

It is clear that the Hankel matrix is not only dependent on
cosine function but also dependent on the desired phase
response. Considering for a Hilbert transformer with phase
response ��(�) = −�� − �/2 is designed, it implies that��(�) = −�/4. Accordingly, (18) can be further simpli�ed as

�(!, #)
= −12

�∑
	=1

cos [(! + #) �	 + �2 ]

= 12
�∑
	=1

sin [(! + #) (�
 + 8Δ)]

= 12
sin [(! + #) �
+(� + 1) (! + #) Δ/2] ⋅ sin [(! + #) �Δ/2]

sin [(! + #) Δ/2] .
(19)

Performing the analogous procedure, the closed-form
expression of d can be shown below:

A (!) = − �∑
	=1

sin [�� (�	)] ⋅ sin [�� (�	) − !�	]

= − 12
�∑
	=1

{cos (!�	) − cos [!�	 − 2�� (�	)]}

= − 12
�∑
	=1

cos (!�	) + 12
�∑
	=1

cos(!�	 + �2 )

= − 12
�∑
	=1

cos (!�	) − 12
�∑
	=1

sin (!�	)

= − 12
cos [!�
 + (� + 1) !Δ/2] sin (!�Δ/2)

sin (! ⋅ Δ/2)
− 12

sin [!�
 + (� + 1) !Δ/2] sin (!�Δ/2)
sin (! ⋅ Δ/2)

= − √22 sin (!�Δ/2)
sin (!Δ/2) ⋅ sin [!�
 + (� + 1) !Δ2 + �4 ] .

(20)

Using these closed-form expressions for the associatedmatri-
ces in the system of linear equations, the computational
complexity can be signi�cantly reduced.

In order to verify the accuracy of the closed-form expres-
sions for Toeplitz-plus-Hankel matrix calculated, a Hilbert
transformer with length� = 6, �
 = 0.06�, �� = 0.94�, and� = 60 is designed [14]. Our results agree with those obtained
from the method in [13]. It can be found that the di�erence
occurs at approximately 15 decimal places of accuracy for
the computations of Toeplitz-plus-Hankel matrix and vector
d. �erefore, the proposed method is not only ecient but
also accurate for the computation of associated matrices. As
the closed-form expressions of the associated matrices have
been determined, the ecient Levinson algorithm [21–23] or
Cholesky decomposition can be used to solve the optimal
solution.

�e problem of Toeplitz-plus-Hankel system of equations
can be converted to a block Toeplitz matrix using a block
Levinson algorithm [21–23]. �e system (T + H) h = d is
equivalent to the following symmetric system:

[ T JH

JH H
] [Jh

h
] = [Jd

d
] , (21)

where the � × � matrix J denotes the reverse matrix with
unities on the antidiagonal and zeros elsewhere as shown
below:

J = [[[[[
[

0 0 ⋅ ⋅ ⋅ 1
0 ... 1 0
... 1 d

...1 0 ⋅ ⋅ ⋅ 0

]]]]]
]
. (22)

It is clear that the coecient matrix in (21) is Toeplitz and
symmetric. Although, the size of the problem has increased
by a factor of two, the desired solution is symmetric. As a
consequence, an ecient block Levinson algorithm [21, 23]
can be applied to solve this system. Furthermore, the sym-
metric split Levinson algorithm [22] that uses only symmetric
quantities with lower complexity can also be exploited to

solve this problem. Both algorithms have �(�2) complexity
to solve the Toeplitz-plus-Hankel system, as compared to the

general algorithm which requires �(�3) complexity.

4. Computational Requirements Analysis

Asobserved from the abovementionedmatrices, the required
computations include addition, multiplication, and trigono-
metric operation. To obtain each "(!, #) from (12) requires
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3� − 1 additions, 3� multiplications, and 2� trigonometric

operations. �ere are �2 distinct elements that need to
be computed. �erefore, the total numbers of additions,
multiplications, and trigonometric operations required to

obtain Q are (3� − 1)�2, 3��2, and 2��2, respectively.
On the other hand, there are � distinct elements in d as
shown in (20). Similarly, the total numbers of additions,
multiplications, and trigonometric operations required to
obtain d are (2� − 1)�, 2��, and 2��, respectively.

To obtain the � distinct elements of the Toeplitz matrix
shown in (12), the total numbers of additions,multiplications,
and trigonometric operations required to computeT are (2�−1)�, ��, and ��, respectively, for Kidambi’smethod [13, 24].
In the proposed closed-form expressions of Toeplitz matrix
shown in (17), the value of (! − #)Δ/2 needs to be computed
only once and stored for further use. Evidently, each &(!, #)
requires 3 additions, 6 multiplications, and 3 trigonometric
operations. �erefore, the total numbers of additions, multi-
plications, and trigonometric operations required to obtainQ
are 3�, 6�, and 3�, respectively.

Similar computational analysis can be found on Hankel
matrix. It is concluded that by using the closed-form expres-
sions for the Toeplitz-plus-Hankel matrix, the computational
cost can be reduced signi�cantly. Table 1 shows the compar-
ison of the computations required for the matrices Q, H,
T, and d. �e total computation of the associated matrices
is approximately 24�� − 4� − 7� and 49� operations for
Kidambi approach [13] and the proposed technique, respec-
tively. �at is the closed-form expressions of the matrices
involved here depend only on the length of the �lter while
those of the matrices involved in [13] depend on both the
length of the �lter and the number of sampling grid. In
general, the number of the sampling grid is approximately� = L� with L ≥ 4 for the compromise of integral squared
error and computational requirements. It is notable that
the required operations for the Toeplitz-plus-Hankel matrix
of the proposed technique are �(�), whereas the Kidambi
method [13] requires computational complexity of �(�2).
On the other hand, the conventional least-squares method
requires �(�3) complexity.

5. Simulation and Design Examples

In this section, MATLAB programming language is used to
design an IIR all-pass �lter having the same speci�cations as
that of [13] for evaluating the performance of the proposed
technique.�e simulations are evaluated on the IBMPCwith
an Intel Pentium IV-2.67 GHz CPU and 512 MB RAM.

Example (Design of aHilbert Transformer). For an IIR all-pass
�lter, the desired phase response is given by

�� (�) = −�� − �2 , 0.08� ≤ � ≤ 0.92�, (23)

where � = 30 and the frequency sampling grid is set to � =10�.�edesign results including designed impulse response,
magnitude response, phase response, phase error response,
and group delay response are shown in Figure 1. As observed

from the analysis of computations and accuracy for Toeplitz-
plus-Hankel matrix, the proposed technique achieves the
same performance as those of the Kidambi method [13]
and the least-squares method, whereas the computational
complexity can be reduced considerably. Comparison of the
design performancewithmethod of [13] and the least-squares
method is indistinguishable; we just show the proposed
design results. Figure 1(a) shows the design impulse response.
�e design magnitude response of the IIR all-pass �lter
is plotted in Figure 1(b). It is obvious that the proposed
method achieves unit magnitude response at the bands of
interest. �e error response of magnitude response can be
seen in Figure 1(c). �e maximum magnitude peak error

response is approximately 6.6613 × 10−15, which is very
small. Figures 1(d) and 1(e) illustrate the phase response
and error phase response, respectively. �e constant desired
group delay response and the designed one are compared at
Figure 1(f).�emaximum peak phase error response is 0.022
rad and the maximum peak group delay response is 0.5544.
Moreover, themaximumpole radius is 0.9301, so the designed
IIR all-pass �lter not only is stable but also achieves excellent
performance with e�ectiveness.

In order to compare the computational eciency of the
proposed technique, a Hilbert transformer with �
 = 0.04�,�� = 0.94�, and varying �lter lengths from � = 40 to� = 240 are designed. Figure 2 shows the comparison ofCPU
design time required for the computations of associated
matrices with ecient method in [13]. It is evident that the
proposed closed-form expressions for the computations of
the Toeplitz-plus-Hankel matrix grow very slowly as the �lter
length increases. However, the design CPU time of the robust
and ecient method [13] increases rapidly as compared to
the proposed method when the �lter is long. �is is because
the proposed closed-form expressions depend only on the
�lter length while the Kidambi [13] method depends both on
�lter length and on frequency sampling grid. �erefore, it is
concluded that the proposed method has the superiority in
eciency as well as design accuracy.

Although the Hilbert transformer is only considered for
the derivation of the closed-form expression, the proposed
method can also be applied to the quadrature mirror �lter
design that generally with a constant phase response ��(�) =−L� is required [26].

6. Conclusion

�e least-squares design of all-pass IIR �lter can be for-
mulated by solving a system of linear equations and the
associated matrix can be further represented as a Toeplitz-
plus-Hankel form. �is system of linear equations can be

solved using ecient algorithms with �(�2) complexity.
Based on the trigonometric identities and sampling the
frequency domain uniformly, this paper presents a compu-
tationally more ecient and closed-form expressions for the
simpli�cation of Toeplitz-plus-Hankel matrix. As a result,
not only the design accuracy can be achieved, but also the
computational requirements can be reduced greatly.
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Figure 1: A 30th Hilbert transformer. (a) Impulse response. (b) Designed magnitude response. (c) Designed magnitude error response. (d)
Phase response. (e) Phase error response. (f) Group delay response.
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Table 1: Comparison of computational requirements for associated matrices.

Matrix or vector Operation
Algorithm

Conventional Kidambi [13] Proposed

Q

Addition (3� − 1) �2
Multiplication 3 � �2
Sine or cosine 2 � �2

T

Addition (2� − 1) � 3 �
Multiplication � � 6 �
Sine or cosine � � 3 �

H

Addition (3� − 1) (2� − 1) 3 (2� − 1)
Multiplication 2� (2� − 1) 7 (2� − 1)
Sine or cosine � (2� − 1) 3 (2� − 1)

d

Addition (2� − 1) � (2� − 1) � 3 �
Multiplication 2� � 2� � 5 �
Sine or cosine 2� � 2� � 3 �

Total

Addition 3��2 − �2 + 2�� − � 10�� − 3� − 4� + 1 12 � − 3
Multiplication 3��2 + 2�� 7�� − 3� 25 � − 7
Sine or cosine 2��2 + 2�� 5�� − � 12 � − 3
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Figure 2: Comparison of CPU time for a Hilbert transformer with
varying �lter length.
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