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Improved Condition Number for Spectral Methods

By Wilhelm Heinrichs

Abstract. For the known spectral methods (Galerkin, Tau, Collocation) the condition
number behaves like 0(N4) (N: maximal degree of polynomials). We introduce a
spectral method with an 0(N2) condition number. The advantages with respect to
propagation of rounding errors and preconditioning are demonstrated. A direct solver
for constant coefficient problems is given. Extensions to variable coefficient problems
and first-order problems are discussed. Numerical results are presented, showing the
effectiveness of our methods.

1. Introduction. Spectral methods involve representing the solution to a prob-
lem in terms of a truncated series of smooth global functions. For Dirichlet problems
the Chebyshev polynomials are the trial functions. It turns out that for the stan-
dard spectral methods (Galerkin, tau, collocation) the condition number is very
large and grows as 0(N4) (N: maximal degree of polynomials) (see Orszag [16]).

As a consequence we observe for direct solvers a strong propagation of rounding
errors. For iterative methods an effective preconditioning is necessary (see Phillips
et al. [17] or Heinrichs [8], [9]). A direct solver based on an ADI-factorization
technique is proposed by Haidvogel and Zang [7], where the tau method has been
used for discretization.

We derive an improved spectral method with an 0(N2) condition number which
is also known from finite difference and finite element methods. The main idea is
that we employ polynomials fulfilling the homogeneous boundary conditions. The
Laplace operator (or any other elliptic operator) applied to a truncated series of
these trial functions is then developed in a series of Chebyshev polynomials. The
coefficients of this series are taken to be equal to the coefficients of the right-hand
side expansion. The resulting spectral system has the improved condition number.
Obviously, the derived approximation is identical to the approximation of Lanczos'
tau method. A comparison with the approximation of [7] is made in Section 3.

The described treatment can also be applied to the Bubnov-Galerkin method
where polynomials with homogeneous boundary conditions are trial functions and
the usual polynomials are test functions. A disadvantage of this approach is the fact
that the Galerkin systems now become nonsymmetric. Since, in addition, the use
of Fast Fourier Transforms (FFT's) is no longer possible, we prefer the treatment
given here.

In Sections 2 and 3 we describe the method for one- and two-dimensional con-
stant coefficient problems. In Section 4 we propose an efficient elimination process

Received December 29, 1987; revised April 7, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 65N30, 65N35.
Key words and phrases. Spectral methods, condition number, direct solver, iterative methods,

elliptic problems, first-order problems.

©1989 American Mathematical Society
0025-5718/89 $1.00 + $.25 per page

103

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



104 WILHELM HEINRICHS

for the corresponding spectral systems. Subsequently, the system is solved by a
block-Gauss elimination procedure. In Section 5 we investigate the case of inhomo-
geneous boundary conditions and in Section 6 we give a short convergence analysis.
Numerical results for some test examples are presented in Section 7. In Sections
8 and 9 we show how this treatment can be extended to variable coefficient and
first-order problems. For variable coefficient problems we employ a collocation
method for discretization and propose a suitable iterative solver for these systems.
Furthermore it is indicated that a straightforward extension of these ideas to time-
dependent problems is not possible. We expect that the proposed treatment will
find further applications in fluid dynamics and yield similar improvements.

2. One-Dimensional Case. We consider the boundary value problem

(2.1) -u" = f   onfi = (-l,l)
with homogeneous boundary conditions u(—1) = u(l) = 0. For the spectral approx-
imation of (2.1) we choose a basis, given by {(1 — x2)Tk(x) : k = 0,..., N}, which
fulfills the homogeneous boundary conditions. Here, Tk denotes the fcth Chebyshev
polynomial, i.e., Tfe(x) = cos(fcarccos(x)). By means of a simple calculation we get
the following formula.

LEMMA 2.1.   We have, for arbitrary constants ap,
I N \ " N

-{j2aP(l-x2)Tp(x)\   =£VTP(*),
p=0 / p=0

where
,      " Í2

fy> = (P + l)(P + 2)ap + ap       2^    (6<7)a<7    and   aP = \
9=p+2

q+p even

for p = 0,
for p > 1.

Proof. Since
-((1 - x2)Tp{x))" = -(1 - x2)T;'(x) + 4xT;(x) + 2Tp(x),

we have by standard formulas (see [6]):
N N+2

^2 aPTP = £
p=0 p=0

(1 - X2) ̂2 aPTP —  XT ^P'      Wnere eP — -Jap-2ap-2

+ ( ! - 4 (°p + qp-i) J aP - 4aP+2,

x J2 aPTp = ^2 fpTP' where -^ = ^("p-1^-1+ap+i^
N N+l

p=0 p=0

and
N N-2 N

H aPTP ~ H gPTP'    where Sp^oij,1     Yl    Kk2 - P2)ak,
p=0 p=0 fc=p+2

k+p even

N N-l N
J2aPTp=Y,hPTP>    where/ip = a;1    "¡T   (2fcK-
p=o p=0 fc=p+l

k+p odd
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IMPROVED CONDITION NUMBER FOR SPECTRAL METHODS 105

In all formulas we set ap = 0 for p < 0. Hence we get for p > 2
TV N

bp = 2ap + S    ^2    Wq ~ *pav - r    E    q(q2 - p2)aq
q=P Q=P

Q+p even q+P even

+ \    E    9(92-(P+2)2)a9
«=p

q+p even

+ J    E    9(<72-(p + 2)2)ag-^p(p2-(p + 2)2)ap
q=p

q+p even

= (2-4p+±p(4p-r4))ap-r    E     (89-^(92-P2) + ^(92-(P-2)2)
<J=P

q+p even

1
4+ 79(?2-(P + 2)2)K

= (p2-3p + 2)ap+    E     (8g + iQp2-i(p-2)2-i(p + 2)2))a9
q=p

q+p even

= (p + l)(p + 2)ap+    E    (6<?K-
9=p+2

g+p even

A direct computation in the cases p = 0,1 completes the proof.    D
From the formula of Lemma 2.1 it becomes obvious that the matrix B  €

RN+1,N + 1 wjth

(2.2) b = Ba

is a positive upper triangular matrix. Its eigenvalues are (p + l)(p + 2) for p =
0,..., N and hence an 0{N2) condition number can be expected. The pseudospec-
tral approximation of (2.1) can now be determined by choosing b such that

(EVTpJ (*/) = /(*;),     ¿ = o,...,iV,
at the Chebyshev nodes Xj = cos(jtt/N). This can be done efficiently by using
an inverse Fast Fourier Transform (FFT). The computational effort takes about
0(N In N) arithmetic operations. Thereafter, the coefficient vector a can be deter-
mined by solving the system (2.2). Because of the special structure of B (triangular
and the nonzero elements are columnwise equal) it can be solved in about O(N)
arithmetic operations.

3. Two-Dimensional Case. Now we consider the Poisson equation

(3.1) -Au = /   onii = (-l,l)2

with homogeneous boundary conditions on dû.
For the spectral approximation of (3.1) we choose the basis

{(l-x2)(l-2/2)Tfc(x)Ti(2/):fc,/ = 0,...,JV}.
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106 WILHELM HEINRICHS

The operator —A applied to a basis function gives

-A(l - x2)(l - y2)Tk(x)T,(y) = -(((1 - x2)Tk{x))"{\ - y^T^y)

+ ((l-y2)Tl(y))"(l-x2)Tk(x)).

The Chebyshev expansion of —Au^ («jv is the spectral approximation) is known
from the formulas in the proof of Lemma 2.1. It becomes obvious that now the
Chebyshev polynomials T/v+i and Tn+2 occur in the representation. In order to
get an equation system for Chebyshev polynomials of degree < N, we neglect these
terms and approximate

N
(l-x2)^2apTp

p=0

by

E ePTpi    where ep = --ap_2ap-2 + ( 1 - j{ap + ap-i) J ap - jap+2,
p=0 ^ '

ap as in Lemma 2.1. Let E G rW+i./v+i ¿enoj.e ^e matrix which represents the
connection between a and e, i.e., e = Ea. Obviously, E is a tridiagonal matrix with
positive diagonal entries and nonpositive off-diagonal elements. E is irreducible
and diagonally dominant, hence an M-matrix, i.e., E_1 > 0 (all elements of E~x
are greater or equal zero) (see also Meis and Marcowitz [14, Theorem 13.16]).

Now the spectral matrix A in the coefficient space can be written by means of
the tensor product <g> as follows:

A = B®E + E®B,        B®E = {Beitj\j=0y_ N,

where B is defined in (2.2). The Fourier coefficients fPtQ of / can be calculated by
FFT's and the corresponding linear system is

Aa = f.
The spectral approximation, given by

N
uN = (1 - x2)(l - y2) J2 aP,qTp(x)Tq(y)

p,q=0

can now be easily evaluated by FFT's and scaling. The derived approximation un is
identical to the approximation of Lanczos' tau method. It fulfills the homogeneous
boundary conditions and is determined by matching the Chebyshev coefficients. In
comparison with [7], we observe better approximation results (see Table 4) since
we employ an approximation with polynomials of degree N + 2 (in each direction).
In contrast to [7], matching is done using all Chebyshev coefficients /Pi9 (p, q =
0,...,7V).

By using Gerschgorin's estimate it becomes obvious that the largest eigenvalues
grow as 0(N2). The smallest eigenvalues are calculated numerically by means of
the QR-factorization (see Table 1). We note that they are strictly positive and have
a fixed positive lower bound. Hence the condition number behaves like 0(N2).
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TABLE  1

Smallest and largest eigenvalues Am¡n and AE of A
N condition number   condition number/TV2

4 3.12188 2.99319 • 101
8 3.13694 9.45206 ■ 101

16 3.13767 3.74279 ■ 102
32 3.13770 1.61179  103

9.39146 • 10°
3.01332 • 101
1.19286 • 102
5.13685 • 102

5.86967 ■ 10"1
4.70831 • 10_1
4.65961 • 10-1
B.01646 • HT1

Further insight into what happens may be gained by a local consideration of the
analytical behavior of -A(TkT¡), resp. -A((l - x2)(l - y2)TkT¡). We get

/   k2 l2    \
(3.2) -A(TfcTi) = í J-—2 + yz~2 ) TkTl + lower-order terms in k, I

and

(3.3)
A((l - x2)(l - y2)TkT,) = (k2(l - y2) + l2(l - x2))TfcT,

+ lower-order terms in k, I.

From the representation (3.2) it becomes clear that for k ~ N (I ~ N) and x ~
±1 T 0{N~2) {y ~ ±1 T 0{N~2)) (as for the Chebyshev nodes) an N4 term
appears and leads to largest eigenvalues growing as N4. From (3.3) it is clear that
the largest eigenvalues grow as N2. On the other hand, the smallest eigenvalues
do not behave like N~2 since the corresponding influence only comes from the four
edges. Hence, there is no global effect, and the smallest eigenvalues do not tend to
zero.

We remark that the improved condition number can also be attained by pre-
conditioning the usual spectral matrix by a diagonal matrix with diagonal entries
equal to (1 — x2)(l — y2), i,j = 1,..., N — 1. This observation becomes of great
interest for iterative solvers and will be discussed in Section 8.

4. The Direct Solver. Now we describe an efficient block Gauss elimination
procedure for the spectral matrix A. Obviously, A has the following block Hessen-
berg structure:

C0C0P0P0
(

0  C   0    C    0    P    0

D 0   C    0    C    0    P

D   0    C    0    C    0

0    C   0    c
D    0    C    0

DOC

D    0

0 P

P 0

0 P

P 0

0 P

0   P 0

COP

0   C 0

C 0 c
D    0   C   0

D   0   CJ
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108 WILHELM HEINRICHS

Here D, P and C denote submatrices with the following structures:

—D has the same structure as B (upper triangular matrix),

—P has the same structure as E (pentadiagonal matrix),

—C has the same structure as B + E (Hessenberg structure).

We now explicitly give the matrices B and E:

C1

B =

6    0   12   0   18   0  24
0   18   0   30   0   42  0
12   0   24   0   36   0  48

20   0   30   0   42  0
30   0   36   0  48

42   0   42  0
56   0  48

72  0

O 90

0 3N
6(N - 1) 0

0 6N
6(N - 1) 0

0 6N
6(JV-1) 0

0 6JV
6(N - 1) 0

0 &N

N{N + l) 0

{N + 1)(N + 2)J

E =

(   1/2        0      - 1/4
0        1/4        0 - 1/4

- 1/2     0        1/2 0      - 1/4
- 1/4     0 1/2        0          1/4

- 1/4 0        1/2        0      - 1/4

-1/4 0
-1/4

V
1/2     0
0     1/2

-1/4   0

-1/4
0

1/2

Direct elimination for the matrix A requires storage of about 0(N3) elements; for
Gauss elimination about 0(N6) arithmetic operations are necessary. By utilizing
the block Hessenberg structure of A this can be reduced to about 0(N5) operations.
By a special elimination we show that A can be transformed to a band matrix. First
we consider the matrix B. By subtracting from row 0 half of row 2 and further from
row i the row i + 2 for i = 1,2,..., N - 2, we get a band matrix TB (T represents
the elimination process). TB has the following structure:

TB =

6 0-2
12   0

0
(i + l)(i + 2)   0   6(i + 2)-(¿ + 3)(¿ + 4)

0
(Ar-i)jv 0        6N - (N + 1)(N + 2)

N(N + 1) 0
(N + l)(N + 2)      }
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IMPROVED CONDITION NUMBER FOR SPECTRAL METHODS 109

The same transformation can also be applied to E and yields

TE =

i   3/4   0  -1/2  0 1/8
0   1/2   0 -3/4  0   1/4

-1/2  0   3/4   0 -3/4  0   1/4
- 1/4  0 3/4   0  - 3/4  0   1/4

1/4  0   3/4   0  -3/4  0 1/4
-1/4  0   3/4   0  -3/4  0

-1/4  0   3/4   0 -3/4
-1/4  0   3/4   0

-1/4  0 3/4 )

We now apply the transformation blockwise to the matrix A. It can be written as
(J denotes the unit matrix):

(J ® T)A = (I®T){B®E + E®B) = B®TE + E®TB
¡C 0   C    0    D \

0 C   0    C    0    D 0
D 0   C    0    C    0 D

D   0    C    0    C 0 D

D    0    C 0 C 0   D
D    0 C 0 C   0

D 0 C 0   C
0 D 0 C   0

V D 0   Cj

Now we have a band matrix, and this system can be solved in about 0(N4) arith-
metic operations. The above process itself requires only about 0(N2) operations.
The procedure can also be applied to each block. This can formally be written as
a multiplication with T <8> /, and we get H — (T ® /)(/ <g> T)A. H has the same
block structure as (I <8>T)A but with matrices D and C of the following structures:

—D has the structure of TB.
-C has the structure of TE or TB + TE.

The matrix H can also be written by means of the tensor product of TB and TE.
We find

H = {T® I)(I <g> T)A = TB®TE + TE® TB.

H is a. band matrix with only about 0(N2) nonzero elements. Hence, the system
can be solved in about 0(N4) arithmetic operations. By a further simultaneous
exchange of rows and columns the band width of B and E, resp. TB and TE,
can be halved. This also halves the band width of the tensor product matrix and
operational costs can be reduced to a fourth.

For the transformed matrix H we give the smallest and largest eigenvalues in
Table 2. The condition number is somewhat worse than for A but still increases as
0{N2).
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TABLE  2

Smallest and largest eigenvalues Amm and Amax of H

N        Amjn Amax condition number   condition number/N2

4 1.97075 10° 3.38728 • 101 1.71878 • 101               1.07424 • 10°
8 1.11919 10° 2.20707 ■ 102 1.97202 • 102              3.08128 • 10°

16 5.55226 lO"1 8.87355 • 102 1.59819 • 103              6.24298 • 10°
32 1.84507 IP"1 3.77197 ■ 103 2.04435 ■ 104_1.99644 • 101
We remark that by an alternating direction implicit (ADI) method (proposed,

e.g., by Haidvogel and Zang [7]) the amount of work can be reduced to 0(N3) oper-
ations. But for an efficient determination of the parameters of ADI the eigenvalues
have to be calculated. These pre-computations are already quite costly, and hence
the total amount of work is comparable to our direct solver. Furthermore, for our
method standard routines from programming libraries are available.

We finally mention that this efficient direct solver can also be used to derive
defect corrections for variable-coefficient problems. Here we refer to D'yakonov's
method [16] where the Laplace operator is used for preconditioning.

5. Inhomogeneous Boundary Conditions. We now consider the Poisson
equation with inhomogeneous boundary conditions, given by

(5.1) -Au = /   on fi,        u = g   on dfi.

We describe a collocation method for problem (5.1) where the boundary conditions
are collocated, too. First, we determine a smooth function uN which satisfies

uN(xi,Xj) = g(xi,Xj)   for (x¿, Xj) € dfi.

Usually, uN is also chosen as a suitable polynomial of degree < N in x, y. Further,
let uN denote the collocation approximation (as in Section 3) for the solution u° of
the problem

-A^^f + Aulf,        u° = 0   ondfi.
Then un — uN+uN is a collocation approximation for the solution of problem (5.1).
The approximation error of this method can be estimated by the interpolation error
of uN on the boundary dQ and the collocation error for uN. A detailed analysis of
convergence can be found in [11].

We remark that the above treatment can be extended to variable coefficient
problems in a straightforward manner.

6. Convergence. We give a proof of convergence in the one-dimensional case.
The pseudospectral approximation un G P^+2 can be equivalently written as the
solution of the discrete problem

<in,u{un,vn) = (f,VN)N,u   for all vN 6 Pjv,

where P^+2 = {un = (1 — x2)zjq\ zn € Pjv} and Pjv denotes the space of
polynomials of degree < JV. Here, apf,u and (■, -)n,u are given by

N

aN,u{u,v) = (-u",v)N>u    and    {v,w)N¡u = Y2v{xj)w{xj)ujj,
j=0
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IMPROVED CONDITION NUMBER FOR SPECTRAL METHODS 111

where Xj = cos(jit/N) and wo = wjv = ir/2N, w¿ = tt/N (j = 1,..., N - 1) are the
weights of the Chebyshev-Gauss-Lobatto quadrature formula. Convergence will be
proved by using variational principles (see the Babuaka/Neöas conditions [1], [15]).
Here the stability and convergence of the spectral scheme is assured, provided the
form ün,u fulfills some properties of continuity and coerciveness (see Canuto and
Quarteroni [3]). The main problem is to show the coerciveness; we show that for
each ujv €E Pjv+2 there exists a vn G Pn such that

(6.1) aNtU1(uN,vN)>c\\uN\\v\\vN\\w,        c > 0,

where V = ff¿,w n H2<u with the norm of H2'u and W = H°>" = Lu. {H^
denotes the subspace of functions from H1'" with compact support; Lu the space
of w-integrable functions where w(x) = (1 - x2)-1/2.) Since u^vn € P2N, and in
view of the equivalence of discrete and continuous norms, we get for v^ = uN:

N

\aN,u{uN,vN)\ = ^u'n(xj)un(xj)uj
3=0

= c\\vN\\l>c'\\vN\\L»\\uN\\H2,„.
The last inequality follows from Poincaré's theorem. Hence we get the estimate
(see [3, Theorem 1.2]):

||u-ujv||2,w <      inf      \ci\\u-wN\\2,u

\cin,u(wn,vn) - au{wN,vN)\

> c /    \uN(x)\2uj(x)dx

+ C2    SUp
vnEPn   .

+
\{f,vN)u - {f,VN)N,t

}■II«jvL
For u G Hs,u, s > 2, the approximation error can be estimated by (see [2], [4])

\\u-wN\\2iU<cN2-°\\u\\atU.

Since aN,u{wN,VN) - ciw(u>n,vn) = {-wn,vn)n,u - {-wn,vn)u, and using the
estimate of [3, Lemma 2.5], resp. [4, Lemma 3.2], we get

|(—wN,vN)NtW - {-wN,vN)u\ < C\\vN\\u\\wN -Pn-iwn\\u

< CN2-\\wK\\aju\\vN\\u.

Here we have used Pcw'N = w'N (Pc denotes the interpolation operator onto Pjv)
and the approximation property of the orthogonal projection Pjv-i (see the ap-
proximation results of Canuto and Quarteroni [2]). By the same arguments we
get

M'VN\~ [{>Vn)n'"\ < CJV-1/IU    for / € JT-W, a > 1/2.
Pn\\u

Altogether, we therefore conclude that

II« - ujvk« < CN2-a\\u\\s<u + CN—\ \\a,ui

for u E Hs'u, s > 2 and / e Hcu', a > 1/2. Hence, the proposed method
allows stronger convergence estimates than those obtained for the usual collocation
method.
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Further convergence estimates in strong C-norms are given in [12]. There, we
deduce estimates such as

\\u-uN\\C2<ClnNN2-s\\u\\c°,        s>2,

where || • ||c« denotes the strong norm of Cs[—1,1].
Convergence estimates for the corresponding Galerkin (-Petrov) methods are

given by Krasnosel'skii et al. [13]. Theorem 16.6 of [13] yields asymptotically opti-
mal estimates in the norms of H2>2 and C1.

7. Examples. We examine numerical examples introduced in [7], [8], [9] and
compare the collocation method with the proposed spectral method. For this pur-
pose we calculate the absolute discretization error, measured in the pointwise max-
imum norm (||itjv - w||max)- We implemented both methods on a Siemens 7.570-P
computer and used double-precision arithmetic with an accuracy of 14 digits. The
first example is given by

2
(7.1) -Au = — cos (-x\ cos (^-yj     (on fi),        u = 0    (on dQ)

with the exact solution u = cos(|x) cos(|2/).

TABLE 3

\\u - un Umax for example (7.1)

N    Collocation    Our Method

16   8.08   HT13    6.11 -10-16
32    1.59-HT12     1.12 ■ 10~15

Inspection of the results in Table 3 shows that the collocation method strongly
propagates rounding errors and its inherently high accuracy is somewhat disturbed.
Here our method yields an increase in accuracy of about 2-3 digits, which is due
to the smaller condition number. The second example is given by

(7.2) -Au = 1    (on fi),        u = 0    (on dQ),

where the exact solution can be written as an infinite series [7]. Now collocation is
more accurate, which may be due to the fact that we neglected the highest modes
in our method. Here, the phenomena of the first example cannot be observed
since the discretization error is too large to be influenced by rounding errors. The
numerical results for this example are presented in Table 4. For comparison, the
corresponding results of [7] are also given.

For reasons mentioned in Section 3, our method yields a higher accuracy.

TABLE 4

\\u — u n Umax for example (7.2)

N    Collocation   Our Method   Tau Method [7]

16    7.47   HT7      3.99  lO"6 3.52 • 10~5
32    5.51   10-8      2.07  10-7 2.23 • KT6
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8. Variable-Coefficient Problems. For nonlinear or nonconstant coefficient
problems the presented tau method is no longer efficiently implementable (see also
Gottlieb and Orszag [6, Section 10]). The corresponding spectral matrices are dense
and the spectral systems cannot be solved efficiently by using FFT's. In this case,
collocation (or pseudospectral) methods are recommended. The resulting spectral
systems can be efficiently solved by means of iterative methods [7]-[10], [16], [17],
[19]. For an iterative method the reduced condition number further leads to an
improved convergence property (see, e.g., [14]).

However, a straightforward adaptation of the preceding ideas to collocation with
the usual Chebyshev nodes (extrema of Chebyshev polynomials) is not possible.
This can easily be seen by considering the expression (3.3). In the four edges,
the expression -A((l - x2)(l — y2)TkTi) is always zero, and hence collocation at
these points is not possible for elliptic problems where the right-hand side is not
compatible with the boundary conditions. For instance, we refer to the example
(7.2) of Section 7. This means that the Gauss-Lobatto nodes cannot be used,
and the advantage of FFT is lost. However, Gauss nodes can still be used. We
recommend the use of the Chebyshev polynomials for which fast transforms are
still available (see [12]). But in comparison with FFT they still need twice the
amount of work and are hardly competitive computationally.

Hence we prefer a somewhat different treatment. Let us consider a variable
coefficient problem given by

(8.1) Lu = —auxx — buyy + cux + duy + eu = f   on fi

with homogeneous boundary conditions on dQ. Here a, b, c, d, e and / denote
(¿ven functions defined on fi, where a > 0 and b > 0 on fi. In place of (8.1) we
numerically solve the modified singular problem

(8.2) Lsu = g   on fi,

where

Lsu = (l-x2)(l-2/2)Lu    and   g = (1 - x2)(l - y2)f.

This can also be written as

- (1 - y2)u((l - x2)uxx) - (1 - x2)6((l - y2)uyy)

(8.3) + (1 - u2)c((l - x2K) + (1 - x2)d((l - y2)uy)
+ (1 - x2)(l - y2)eu = g.

Now, for an iterative solution of spectral systems the preconditioned Richardson
relaxation [9], [19] is recommended. For a more detailed description, denote

_ / iTT ?7T \fiw = <{xi,yj) = Icos—,cos —J : i,j = 0,...,N\,

fijv = finfiw, dQpj = dQHQN for fi = (-1, l)2, and let G(Qn) be the space of grid
functions defined on fi/y. Let further g¡<f € G(fijv) with components gN3 — g(xi, yj)
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and u3N € G(Qpf), u3N — 0 on dfijv, be given. The iteration then proceeds as follows:

u'n1 = un + unPn(LsUN - gN)   on fijy,

uN¥1=0   on dQN for j = 0,1,2,... .

Here we denote by

L^   the spectral discretization operator of La,

Pn   the preconditioning operator,

w3N    the relaxation parameter.

For an efficient relaxation these components have to be chosen in a suitable manner.
A stable evaluation of L^u3N can be done using the splitting of formula (8.3). The
evaluation of (1—x2)uxx, (l—y2)uyy and (l-x2)^, (l-y2)Uj, can be accomplished
in a stable way with a rounding error propagation of at most 0(N2). This is an
easy consequence of the following lemma:

LEMMA 8.1.  LetvN{x) = '£ip=0apTp(x); then

N
(8.4) -(l-x2)vN(x)"^^apTp(x)

p=0

and
N+l

(8.5) (1-x2)vn(x)'=J2tptp(x)>
p=0

where
N

o-p = p(p - l)aP - ctp 1     J2    (2£W

and

k=p+2
k+p even

-o„_i + —— ap+i    /orp = 0,l,...,iV + l.■v 2     v 2

Here, ap is defined as in Lemma 2.1 and we set a_i = ün+i — a;v+2 = 0.

Proof. The proof can easily be accomplished using the standard formulas noted
in the proof of Lemma 2.1.    D

Since FFT's should be applicable, we use in (8.5) only the /V-series and set
Tjv+i = 0. After an FFT into physical space, the multiplication by the coefficient
functions (1 - y2)a, (1 - x2)6, (1 - y2)c, (1 - x2)d and (1 - x2)(l - y2)e can be
accomplished pointwise. In algebraic notation, this can be represented by a matrix
multiplication. This is stable and only takes 0(N2) arithmetic operations. Hence
we get an efficient computation of L^u3N implementable with FFT's, which causes
rounding error propagation of at most 0{N2).

For an anisotropic test problem with coefficients

a(x,2/) = l + eexp(x),     £ = Q  Q1 ^
b(x,y) = l+eexp(y),
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and c = ax, d = by, e — 0, we have numerically calculated the smallest and largest
eigenvalues of L^ (see Table 5). The calculations were done by using certain
variants of the power method. The results once more indicate an 0(N2) condition
number of L^. For the Poisson equation, the smallest eigenvalues approximate
Amin = 3.138, which should also be a good prediction for the smallest eigenvalue of
the singular operator Ls = —(1 — x2)(l — y2)A.

TABLE 5

Smallest and largest eigenvalues of L^

£ iV       «Amin       ''max

16 3.138  402.82

32 3.138 1752.79

0.1

1.0

16   3.541     457.02

32   3.542    1976.13
16   6.293    1002.90

32   6.294   4247.37

From these considerations it can be deduced that pure Richardson relaxation
without defect correction yields a convergence factor of 1 — OÍA''-2). Clearly, better
factors can be obtained by using a suitable preconditioning. Here we recommend
a correction based on the five-point finite difference discretization (see [9], [19]) of
(8.2) at the Chebyshev nodes. Here the term (1 -x2)(l — y2) has to be incorporated
into the difference formula. In the selfadjoint case with c — ax, d = by and e = 0,
we make use of the formula in [9]. In (xj,y;) € fijv we obtain

r»,J   .hFD - -0
0 flft        0

a%,j ßi,3 aid
P-lß       ^0,0 Pl,0

0 $?_!        0   J
where ß — l/(2si/2Si) and

ai à _
^0,1 —

ai,]      _
^0,-1 —

If'3      —P-1,0 —

-b(xi,-(yj + Vj+i)) t^-,
\        ¿ /   SJ + l/2

-b(xù-z{yj + yj-i)) t^2-,
V       2 /  SJ-l/2

f1, ^       \    SJ5t
-a   -{xl+xi-l),y]    —*-,

\2 / S,-l/2

a   ñ{xi+Xi+i),yj
J   St+l/2

0\1o
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Here we denote s¿ = sm(in/N), s¿+1/2 = sin((z-t-l/2)7r/Ar) for i = 0,..., N. We are
now in a position to prove some nice properties of the corresponding discretization
matrix LFD.

LEMMA 8.2. The matrix LFD has real eigenvalues, the largest one growing as
0(N2). In particular, for the Poisson equation, the smallest eigenvalues have a
lower bound of 1/2. Hence the condition number of LFD grows only as 0(N2).

Proof. We observe that LF3D can be written as LF3D — dijLF3D, d%¿ = SiSj,
where LF3D is a symmetric star. Hence, in matrix notation, we obtain LFD =
D^Lfd-i where D^ = diag(dij)iij=ii,„¡N-i. Now the original eigenvalue problem
is equivalent to the symmetric problem

D]¡2LpDD]¡2eN = XeN.

This proves that all eigenvalues are real. The fact that the largest eigenvalue grows
as 0(N2) easily follows from Gerschgorin type estimates. Since LF3D has a Z-
structure (i.e., the off-diagonal elements are nonpositive), we only have to find a
vector zN = (zNj) with zNj > 0 (i,j = 1,...,N - 1) such that {L^DzNy^ > \zN3
(i,j = 1,..., N — 1). Then it follows that the matrix LFD is an M-matrix, and its
eigenvalues have a lower bound of 1/2 (see Schröder [18, Chapter II, Proposition
1.4]). Now we prove that the special vector zn with zN3 = a,- sj leads to the
desired result. First, we consider points of fi far away from the boundary. For large
AT we obtain (in obvious notation for stars)

r*.j   .hFD -
N2
It*

s2[-12 -1] + S,2

If we show that

(8.6)      ^-([-1 2 - \\sxl2)% > -s'*'2    {i = 1,...,N - 1) for s1'2 = sin1/2 x,
7T 4

then it also follows that

(LV^>j(|+|)«:/2sr>^r-^-

The last inequality easily follows from x2 + y2 > 2xy for real x, y. (8.6) is a
consequence of the fact that the finite difference operator is identical to the second-
order difference star. Hence, the left-hand side in (8.6) approximates the second
derivative of the function - sin1'2 x in x¿ = iir/N. Since further

(- sin1/2 x)' = - sin~3/2 x + - sin1/2 x > - sin_3/2 x   for x e [0, tt],
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we obtain the desired result. A special treatment of points near the boundary
confirms the above result.    D

Numerical calculations show that the smallest eigenvalue also approximates Am¡n
= 3.138 for increasing N.

The convergence factors after this preconditioning are equal to those obtained
without multiplication by (1 — x2)(l — y2). Here we refer to results given in [9],
where we have applied this relaxation in a multigrid context. It is still of great
interest to find even better or less expensive defect corrections which utilize the
improved condition number.

9. First-Order Problems. We consider the first-order problem
u'= f   onfi = (-l,l),

9.1 J V     '  ;'
u(l) = 0   or   u(-l) = 0.

Depending on the boundary conditions, we use a spectral approximation given by
N

u±(x) = (l±x)£aprp(x).
p=0

The first-order derivative of un can be represented in the following way.

LEMMA 9.1.   There holds
N N

un(xY = ^2rPTp(x) and uñ(x)' = Esptp(x)'
p=0 p=0

where
N

(9.2) rp = (p+l)ap + cvp-1   £ {2k)ak
k=p+l

and
N

(9.3) sp = -(p + l)ap - a;1   £ (-l)k+"(2k)ak.
fc=p+i

ap is defined as in Lemma 2.1.

Proof. We have
N N-l

uN(x)' = ±EaPTp(x) + (1 ±x) E hPTp(x),
p=0 p=0

where hp — a"1 Z)fc=P-t-i;fc+podd(2'i;)a*;- By further making use of the formulas
given in the proof of Lemma 2.1, we easily obtain (9.2) and (9.3).    D

The matrices representing the relations (9.2) and (9.3) are called R and S. Ob-
viously, R and S are upper triangular with real positive and negative eigenvalues
±(p + 1), p = 0,..., N. Again, we obtain largest eigenvalues increasing only as
0{N) instead of 0{N2).

Next, we consider constant coefficient systems. We shall analyze the case of two
equations. After diagonalization, such a system takes the form (see also Funaro [5])

(9.4) "* onfi = (-l,l)
vx-g
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with
u(l) = av(l)1        u{-l) = ßv(-l),

where a, ß are two real numbers.
Problem (9.4) admits a unique solution, provided a and ß satisfy the condition

(9.5) aß ¿ 1.

Here we use approximations given by

utv = (1 - x)wn + 7jv    and   vn = (1 + x)zn + Ön,

where wn,zn € Pjv and in,&n € R- The wn and zn are determined as the
spectral tau approximation of the problems

{{l-x)w)x = f   and    ((l + x)z)x=g.

Subsequently, the real numbers 77V, ¿>n are chosen in such a way that the boundary
conditions are fulfilled. By making use of (9.5), we obtain

2a 2a
In = z--{zN{l) + ßwN{-l))    and   6N =--{azN{l) + wN(-l)).

1 — aß 1 — aß
Hence, the approximations un, vn are fully determined and the improvements
mentioned above are realized.

Consider now variable coefficient systems given by

aiux + a2vx = /
on fi = (-1,1)

azux + üíVx = g

with boundary conditions

aMl) + a2v(l)=0, atGR)î = 1,2)3i4.
a3u(-l) + tv4u(-l) = 0,

Oi,...,a4 denote continuous functions on fi, prescribed in such a way that the
quantity det(£' £2) never vanishes on [—1,1].

As already seen for second-order problems, direct solvers based on the tau
method are no longer available; iterative methods based on collocation have to
be used. To achieve a reduction of the condition number, the system should be
multiplied by (1 - x) and (1 + x). Hence we get

ai(l - x)ux + a2(l - x)vx = (1 - x)f,        a3(l + x)ux + a4(l + x)vx = (1 + x)g.

The trivial equations at x = 1, resp. x = — 1, are replaced by the correspond-
ing boundary equations. Now pseudospectral discretization can be applied in a
straightforward manner. Iterative methods can be efficiently implemented using
FFT and, if there is no preconditioning, convergence factors of 1 - 0{N~l) can be
expected. Efficient preconditioners for such problems are proposed by Funaro [5].
The corresponding eigenvalues are real positive and lie between 1 and 7r/2.
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