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Abstract

This paper considers an improved confidence interval for the average annual percent change in 

trend analysis, which is based on a weighted average of the regression slopes in the segmented line 

regression model with unknown change-points. The performance of the improved confidence 

interval proposed by Muggeo is examined for various distribution settings, and two new methods 

are proposed for further improvement. The first method is practically equivalent to the one 

proposed by Muggeo, but its construction is simpler and it is modified to use the t-distribution 

instead of the standard normal distribution. The second method is based on the empirical 

distribution of the residuals and the resampling using a uniform random sample, and its 

satisfactory performance is indicated by a simulation study.
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1 Introduction

In cancer trend analysis, the annual percent change (APC) has been used to estimate the rate 

of change in a given time period and it is estimated by fitting a simple linear regression 
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model for the logarithm of the age-adjusted rates. The APC value of c% means that the 

cancer rates change at c% of the rate per year, and it is a measure that is comparable across 

scales, for both rare and common cancers. When the trend changes over a time period, a 

segmented line regression model was proposed to describe such changes in cancer incidence 

and mortality trends (Kim et al. [1]), and the average annual percent change (AAPC) 

provides a summary measure of the APCs over a period of time where the trend is not 

constant. Clegg et al. [2] proposed the AAPC as a measure to summarize “rates of change 

that are not constant over a given time period,” discussed how to calculate a confidence 

interval for the AAPC, and applied it to US cancer incidence and mortality data. The AAPC 

has proven to be a very useful measure when summarizing recent trends across a large 

number of data series (e.g. cancer sites) in a single table. Investigators have found an AAPC 

over a fixed segment is more easily compared across data series than the final segment APCs 

and starting years. For example, in Tables 3 and 4 in The Annual Report to the Nation on the 

Status of Cancer (Kohler et al. [3]) (a high profile paper representing a collaboration by the 

Centers for Disease Control and Prevention, the American Cancer Society, the National 

Cancer Institute, and the North American Association of Central Cancer Registries), 5 and 

10 year AAPCs are presented for incidence and mortality rates respectively for the top 15 

cancer sites by sex, race, and ethnicity.

In Clegg et al. [2], the confidence interval (CI) for the AAPC is obtained by using the 

asymptotic normality of the estimated slopes, conditional on the estimated locations of the 

change-points where the trends change. Muggeo [4] proposed to incorporate the joint 

distribution of the estimated slope parameters and change-point estimators, and showed via 

simulations that the conditional confidence intervals (CCI) used in Clegg et al. [2] are 

usually conservative, while Muggeo’s confidence interval is more accurate.

In this paper, we follow up on the suggestion made by Muggeo [4], investigate how to 

further improve the accuracy of the AAPC confidence interval, and compare various 

confidence interval estimates for the AAPC. In Section 2, we formally describe the 

segmented line regression model, review the confidence intervals proposed in Clegg et al. 

[2] and Muggeo [4], and discuss some issues in the construction of the AAPC confidence 

interval. In Section 3, we propose two new methods to construct the confidence interval of 

the AAPC: the first-last method that reformulates the parametric method and the empirical 

cumulative distribution function resampling method. Simulation results are presented in 

Section 4, and Section 5 includes examples. Further discussion is included in Section 6.

2 Confidence Intervals for the AAPC

Suppose that for i = 1, …, n, ri denotes an age-adjusted cancer incidence/mortality rate at 

time xi and yi = log(ri). The segmented line regression model with the continuity constraint 

assumes the following:

(1)
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where the τ’s are unknown change-points, also called break-points, joinpoints, etc. in 

literature, the εi are independent errors, and t+ = max(0, t). This model can also be expressed 

as

(2)

where τ0 = min{xi}, τk+1 = max{xi}, and αj + βjτj = αj+1 + βj+1τj for j = 1, …, k.

The segmented line regression model described above has been studied by many authors and 

called a piecewise, broken-line, or multi-phase regression model in literature. Hinkley [5, 6] 

studied inference problems in a broken-line regression model with one change-point and 

Feder [7] studied asymptotic properties of the estimators in a general segmented regression 

model. Since then, many authors investigated various models and fitting algorithms, and we 

include a short list of references on multi-phase regression with the continuity constraint [8–

16]. For an extensive list of references on multi-phase regression covering models with 

abrupt changes, Bayesian approaches, and testing procedures can be found in [17]. More 

recently, Muggeo [18] proposed a method to fit piecewise regression models with unknown 

break-points and the algorithm is available as an R package [19]. Kim et al. [1] applied the 

model (1) to describe changes in cancer trends where the unknown change-points were 

called joinpoints and the model was referred as the joinpoint regression model. They [1] 

used the least squares method to estimate the model parameters in the joinpoint regression 

model with k joinpoints and proposed the permutation test procedure to determine the 

number of joinpoints by sequentially conducting the tests. For a model with k joinpoints, 

Kim et al. [20] discussed how to construct confidence intervals for the model parameters and 

studied their small sample properties via simulations. Their algorithms to determine the 

number of joinpoints, fit the joinpoint regression model, estimate confidence intervals for the 

model parameters, and obtain the p-values to assess the significance of the regression slopes 

are implemented in JOINPOINT software available at http://surveillance.cancer.gov/

joinpoint. Our focus in this paper is on the model with a fixed number of joinpoints, and 

further discussion related to selecting the number of joinpoints is included in the discussion 

section.

For the joinpoint regression model (2) with k joinpoints, the APC for a segment with the 

slope of βj is defined as

and the AAPC over the entire study period [a, b] is defined as
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(3)

where wj = (τj − τj−1)/(b − a) for j = 1, …, k + 1 with τ0 = a and τk+1 = b. Note that the 

original definition of the AAPC in Clegg et al. [2] uses “a−” in place of “a” in wj of (3), 

where a− = a − Δx with Δx → 0 when x is continuous and Δx = 1 when x is discrete. 

However, in order to avoid ambiguity in defining the APC for the period of (a−, a) = (a − 1, 

a) with annually observed data, JOINPOINT software adopted the new definition of wj using 

“a” as in (3), and (3) will be used throughout this paper. For a subinterval [c, d], where a ≤ c 

< d ≤ b, the AAPC is defined similarly with wj = max{min(d, τj) − max(c, τj − 1), 0}/(d − c).

Let  and denote its estimator as  where  and  are the least 

squares estimators of βj and τj (j = 1,…, k + 1) and the ŵj are accordingly estimated. Clegg 

et al. [2] estimated the standard error of  as , where  is the estimated 

variance of  and wj is computed conditional on the estimated values of the τj’s, and 

calculated the 100(1 − α)% confidence limits for the AAPC as

(4)

based on the asymptotic normality of the least squares estimators , where zp is the p-th 

percentile of the standard normal distribution. Noting that “ignoring uncertainly in ŵ may 

overestimate the true variance of ,” Muggeo [4] proposed to incorporate the joint 

distribution between ŵ = (ŵ1, …, ŵk+1)′ and  by using the first order 

Taylor series expansion:

(5)

Note that Muggeo [4] considered the AAPC over the entire study period, [a, b], for the 

model with k joinpoints, and Muggeo’s approach can be applied to a general subinterval [c, 

d], which is motivated by that we often consider the last 5 or 10 year AAPC in cancer trend 

analysis.

Now, we consider the AAPC over a general subinterval [c, d] and express a general form of 

 using the arguments of Muggeo [4]. For [c, d] on which the AAPC is estimated, let I 

and J denote the indices such that τI−1 < c ≤ τI < ⋯ < τJ ≤ d < τJ+1 where 1 ≤ I < J ≤ k, and 

define a (k + 2) × 1 vector
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(6)

Then,

where B is a (k + 1) × (k + 2) matrix.

For notational simplicity, we will use η for η[c,d] and w for w[c,d] from now on, and note that 

β = Aθ, where

We also let  and h′ = (β′B, w′A) with A and B defined above. Then, as in 

Muggeo [4], we note that

where  and  are the least squares estimators of η and θ.
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Now let  with , , and , where 

ΛI,J, ΓI,J, and Σ are (J − I + 1) × (J − I + 1), (J − I + 1) × 2(k + 1), and 2(k + 1) × 2(k + 1) 

matrices, respectively. Then the (3k + 4) × (3k + 4) covariance matrix of  is

and with the estimated covariance matrix , we estimate  as

To estimate  for , we first note that  and use the 

delta method to obtain

where

Then, we get  and with . The 

covariance matrix of the estimated regression coefficients or equivalently  can be 

estimated by using the unconstrained information matrix discussed in Hinkley [6], and it is 

produced by JOINPOINT software. Also, M is estimated using the values obtained by the 

consistent estimators of the model parameters. This method based on Muggeo [4] provides a 

more accurate standard error estimate of , and we call the confidence interval constructed 

using this improved standard error estimate in (4) as MCI.

Muggeo [4] conducted simulations to compare the accuracies of the confidence interval 

estimates, and we reproduced Muggeo’s simulation in Table 1. In this simulation study, we 

generated data that follow the model in Muggeo [4]:
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where εi ~ N(0, σ = 0.06), xi = i, for i = 1, 2, ⋯, n, and n = 30, 50, 100. Table 1 includes the 

empirical standard error estimate of , , obtained with 1,000 replications of , where 

, and the average of the standard error estimates, Ave(SE), approximated by 

each of the CCI and MCI methods. Note that the numbers do not exactly match even after 

taking 100 multiplied in Muggeo’s Table 1 into consideration, and the observed discrepancy 

could be explained by (i) the use of “c” instead of “c−” in the definition of the AAPC over 

[c, d], (ii) possible differences in the fitting constraints, and (iii) possibly different methods 

used to estimate the variances of the estimated slopes and estimated joinpoints as well as the 

covariance between the estimated slopes and joinpoints. Regarding (ii), we used the grid 

search option of JOINPOINT with the minimum number of observations between two 

joinpoints set as four, the minimum number of observations from a joinpoint to either end of 

the data set as three, and the number of grid points between the two consecutive x-values as 

three (quarterly grid), while Muggeo [4] used an iterative algorithm to make a continuous fit. 

For (iii), our standard error estimates of the slope parameters are obtained deleting offending 

data points that coincide with the estimated joinpoints and using an unconstrained estimate 

of the covariance matrix that is obtained without the continuity constraint. The use of the 

unconstrained estimate is justified in Hinkley [6] and simulation studies to compare the 

unconstrained model standard error estimates to the constrained model standard error 

estimates were conducted in [20]. The deletion of the offending observations is proposed in 

Lerman [21] to avoid ambiguity at the estimated joinpoints that coincide with observed x-

values in getting unconstrained standard error estimates, and further details can be found in 

[20].

Table 1 indicates that the CCI overestimates the standard error of , and the standard error 

estimate computed by (5) for the MCI is more accurate although there is a slight tendency of 

underestimating.

Muggeo [4] only used σ = 0.06 in the simulation study, and we considered the cases with σ 
= 0.1, 0.6, and 1.2 as well in order to examine how the accuracy of the confidence interval 

depends on σ, whose results are summarized in Table 2. We also considered various 

subintervals [c, d] over which the AAPCs are estimated. In Table 2, CP and AW denote the 

coverage probability, the proportion of the simulation runs whose 95% confidence interval 

contains the true value of μ, and the average width, the average width of the 1,000 

confidence intervals, respectively. Note that for n = 30, 50, and 100, the first cases with σ = 

0.06 and [c, d] = [1, n] correspond to the cases considered in Table 1. When [c, d] belongs to 

one segment of the fitted mean function, a modified CCI (mCCI) was constructed using 

t1−α/2,df instead of z1−α/2 in (4), where tp,d is the p-th percentile of the t-distribution with d 

degrees of freedom and the degrees of freedom df is obtained considering the number of 

data points deleted as offending data points. That is, df = n − k − (2k + 2) = n − 3k − 2 for 

the model with k joinpoints in the annual grid search case. This modification was proposed 

in order to produce the AAPC confidence interval consistent with the APC confidence 

interval when [c, d] belongs to one segment, and the t-interval for APC has been 

implemented since JOINPOINT V 3.5.

Kim et al. Page 7

Stat Med. Author manuscript; available in PMC 2018 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results show that the standard error estimates of  used in the mCCI are always 

overestimating, which usually lead to conservative mCCIs. As noted in Muggeo [4], treating 

the weight ŵ as fixed lead to an over-estimated standard error of , which seems to be 

because changes in  based on different values of ŵ are not incorporated and thus it is likely 

that  conditional on the observed value of ŵ deviates further from the true value of μ more 

often. However, even with over-estimated standard error values, coverage probabilities of the 

mCCI are sometimes quite below the nominal level of 0.95, more so for a narrower interval 

[c, d], larger σ, and smaller n. The method based on Muggeo [4] accurately estimates the 

standard error of  except when σ is large and n is small/medium, but the MCIs are usually 

liberal with their CP values below 0.95, more so as σ increases and [c, d] gets narrower, and 

this improves as n increases. We also note that these parametric confidence intervals lose 

accuracy more when c and/or d coincide with τi, and mCCI even becomes liberal in some 

cases where σ is not very small. Such inaccuracy would be because the estimated joinpoints, 

 and  could be either inside or outside of [c, d] and this may lead to an accumulation of 

errors in parametric confidence interval estimation where the standard error estimates are 

based on the partition of the x values. A more accurate fit that can be achieved for small σ 
seems to mitigate such inaccuracy. When n is 30 or 50, however, the CP values of the MCI 

are mostly below 0.95 even with accurate standard error estimates, and this indicates that the 

asymptotic normality of the pivotal quantity used to construct the MCI may not be 

satisfactory for small/medium sample size cases. In summary, the results in Table 2 indicate 

that the MCI works reasonably well if n is large, for example 100 in our simulations, except 

when the joinpoint location is close to c or d or [c, d] is short with large σ. However, in 

cancer trend analysis, we usually work with the rates over 10-40 years, and this motivated us 

to study how to further improve the confidence interval for AAPC.

3 Reformulated and New Methods

In this section, we propose two methods to construct the confidence interval of the AAPC. 

The first method is practically equivalent to the MCI, in terms of the standard error 

calculation, but it is based on a simpler expression using the parameters only in the first and 

last segments as shown below and we also propose to use the t-distribution for the pivotal 

quantity instead of the standard normal distribution. In the parameterizations (1) and (2) 

given above, we note that for j = 2, …, k + 1,

and it follows that

and
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with wj = (τj − τj−1)/(b − a). Then it can be shown that

That is, the AAPC that is originally defined as a function of the weighted average of the 

slope parameters can be expressed in terms of the regression mean values at x = a of the first 

segment and x = b of the last segment, and it motivated us to call this method the First-Last 

method. Based on this presentation of the AAPC, we estimate μ and its standard error using

where  and l = (−1, −a, 1, b)′. For a general subinterval [c, d], 

we can estimate μ and its standard error using the similar argument.

Note that the standard error calculation in the First-Last method does not require to estimate 

 and , which were used in the construction of the MCI. It can be 

shown that  estimated by the First-Last method is analytically equivalent to the 

improved variance estimate by Muggeo [4] in a simple case of k = 2, and Σ1 is a block 

diagonal matrix when we use the unconstrained estimate of the covariance matrix of . In 

our preliminary simulations, we observed that the use of the t-distribution instead of the 

standard normal distribution to approximate the distribution of the pivotal quantity improves 

the coverage level, so we used the t-interval as follows. With the standard error of 

estimated as , the confidence limits of the AAPC are calculated as

where the degrees of freedom df of the t-distribution is obtained deleting offending data 

points as described earlier. This interval is called the First-Last t-interval (FLT). Although it 

is not reported here, we observed in our simulations that the First-Last z-interval with the z-

scores as in (4) and MCI produced the same coverage probabilities, which empirically 

supports the analytic equivalence discussed above.
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As to be indicated in Tables 3(a) and 3(b), however, MCI and FLT sometimes underestimate 

the nominal level of 0.95 too much, which motivated us to consider a resampling method. 

We investigated both permutation and a few basic bootstrap confidence intervals, but their 

performances were not satisfactory even with large n, which might be due to non-zero 

correlation among the residuals that converge to zero too slowly and/or the sampling 

distribution of the residuals that is not quite symmetric. Based on such observations in our 

preliminary simulations and noting that the empirical distribution of the observed residuals 

may not be close enough to the uniform distribution, we propose a new method to use the 

uniform random sample and the empirical distribution of the residuals, and we call it the 

empirical cumulative distribution function (CDF) quantile interval (EmpQ). It can be 

considered as a variation of the ordinary Bootstrap confidence interval and works as follows:

• Step 1: Generate n independent samples from the uniform distribution on (0, 1), 

U(0, 1). That is, for each b = 1, …, B, generate , where the 

 form a random sample from U(0, 1).

•
Step 2: For b = 1, …, B, generate , where  denotes the 

empirical distribution function of the residuals,  with .

• Step 3: Let y(b) = ŷ + ε(b), where ŷ is the least squares fit of the original data.

• Step 4: Fit the model (1) for y(b) and estimate  for the b-th resample data y(b).

In Step 2, we used the following definition of a truncated  and . For the ordered 

residuals, , define the end points of the intervals where  is constant as 

z(0), z(1), …, z(n+1) where ,  for i = 1, …, n, and  with 

. Note that the choice of D is 

made to ensure the range large enough to cover almost all possible values of the residuals 

and to allow it to slowly increase as n increases, and the interquartile range was used as a 

robust measure of the dispersion of the residuals. Then, define  and  as follows:

where u and u′ are independent random numbers from the uniform distribution on (0, 1). 

We also considered the use of  and observed that the two methods 

perform comparably. Once we estimate  for b = 1, …, B, a confidence interval can be 

constructed using the 100α-th and 100(1 − α)-th percentiles of the resampled  :

Kim et al. Page 10

Stat Med. Author manuscript; available in PMC 2018 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  denotes the p-th percentile of . We call this the EmpQ confidence 

interval. Our motivation of resampling as above is to obtain resamples from a distribution 

closer to an ideal sampling distribution such that the empirical distribution of the resampled 

residuals is close to the uniform distribution, and its accuracy is empirically justified in our 

simulation study.

4 Simulations

We conducted further simulations to investigate the accuracy of the various AAPC 

confidence intervals discussed in the previous sections. The values for the parameters are 

chosen based on actual cancer incidence and mortality data, and β0 is set as 1 in all of these 

simulations. For a given choice of the regression slope parameters, simulations are 

conducted with various choices of the number of data points (n), the standard deviation of 

the error term (σ), and the joinpoint locations (τ), and the number of simulations was 1,000. 

For the interval [c, d] over which the AAPC is calculated, we considered three cases of the 

entire data range, the last 5 years, and the last 10 years, which are often of our interest in 

cancer trend analysis. The model fitting was done using JOINPOINT with the fitting 

parameters set as described in Section 2, including the quarterly grid search. In our 

simulation study, we also considered the basic grid search where the x-values of the 

observations serve as the grid points, for which similar results are obtained, and the results 

with the quarterly grid search are presented in Tables 3(a) and 3(b).

Tables 3(a) and 3(b) compare the accuracy of the four types of the confidence intervals, the 

modified confidence interval based on the CCI of Clegg et al. [2] (mCCI), the improved 

confidence interval based on the Muggeo’s method (MCI), the First-Last t-interval (FLT), 

and the empirical CDF quantile interval (EmpQ) with 1,000 replications. For each 

simulation setting, the values reported are the coverage probabilities, the proportion of 

simulation runs where the 95% confidence interval contains the true value of μ. Tables 3(a) 

and 3(b) report the coverage probabilities for the cases with k = 1 and 2, respectively.

The mCCI is usually conservative with its coverage probability larger than the nominal level 

of 0.95 when [c, d] = [1, n], but the mCCI underestimated the coverage probability in many 

cases with [c, d] = [d − 4, d] and for some cases with [c, d] = [d − 9, d]. The observed under-

coverage is possibly due to skewness in the distribution of the AAPC estimates, and such 

under-coverage gets worse as σ increases. This under-coverage tendency was observed even 

with many of the t-intervals used instead of the z-intervals when [c, d] belongs to one 

segment: e.g. n = 10, τ = 3, [c, d] = [6, 10] and n = 40, τ = 20, [c, d] = [31, 40]. The under-

coverage tends to be worse when the location of joinpoint is close to c, especially when σ is 

not very small.

The MCI that incorporates the joint distribution between the estimated regression slope 

coefficients and estimated joinpoints is usually liberal, and its coverage probabilities are 

sometimes much below 0.95. When the subinterval is considered, additional uncertainty 

involved in estimating I and J in (6) might have contributed to poor performance of the MCI, 

and it is especially so when σ is large. The MCI also tends to underestimate the coverage 

probability more for cases with larger σ, but the coverage probabilities are at least 0.92 when 
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σ = 0.01 and n ≥ 20 for k = 1 and in some cases with σ = 0.01 and n = 40 for k = 2. When k 

= 2, the performance of the MCI seems better when τ1 is much below c for [c, d]. In general, 

it was observed in Tables 3(a) and 3(b) that the MCI works better as n increases with small 

σ, which matches with our finding in Table 2 that the MCI performs reasonably well when n 

= 100 except for a few cases. The FLT that is practically equivalent to the MCI but 

constructed with the t-percentiles improves the MCI, and the coverage probability of the 

FLT are close to 0.95, although still under 0.95, when σ is small as 0.01 for all of n = 10, 20 

and 40 when k = 1 in Table 3(a) and when σ is small as 0.01 and both joinpoints are not in 

[n − 9, n] when k = 2 in Table 3(b). But, it still underestimates the coverage probability, 

especially for large σ.

In most of cases we tried, the EmpQ method works best keeping its coverage probability 

close to 0.95. The EmpQ method improves severe under-coverage observed by other 

parametric methods, and when both the EmpQ CI and mCCI are conservative, the EmpQ CI 

is less conservative than the mCCI. For a situation with small n such as 10, the method that 

produced the average coverage probability closest to 0.95 is the mCCI, but as shown in 

Table 2, the mCCI usually overestimates the standard error of  and its coverage probability 

is often close to 1 if [c, d] = [1, n]. Thus, our general recommendation is to use the EmpQ 

confidence interval, and one may consider the FLT or mCCI when the sample size is as 

small as 10, σ is small, and [c, d] is short, which is the case where EmpQ performs 

somewhat liberal.

5 Examples

In this section, we apply the confidence intervals discussed in the previous sections to 

several cancer sites. We consider incidence rates of several cancer sites for various cohorts 

observed during the period of [1975, 2010], and the data are obtained from the Surveillance, 

Epidemiology, and End Results Program (SEER) of the National Cancer Institute. 

JOINPOINT V 4.0.5 was used to fit the joinpoint regression model with the annual grid 

search and the default setting described in Section 2, and the fits are shown in Figures 1, 2, 

3, 4, and 5. For each data set, JOINPOINT selects the model, i.e. the number of joinpoints, 

by using the permutation procedure at the overall significance level of 0.05 and with the 

maximum number of joinpoints set at 5, and the AAPCs under the selected model are 

presented in Table 4. Table 4 summarizes the AAPC estimates during the last five [2006–

2010] and/or ten year [2001–2010] periods, and includes the confidence intervals obtained 

by the mCCI, FLT, and EmpQ methods.

For white male prostate cancer incidence rates, JOINPOINT selected the model with four 

joinpoints, and the estimated joinpoints are 1988, 1992, 1995, and 2001. The estimated 

AAPCs during the 2006–2010 and 2001–2010 periods are the same as −2.535, and the same 

AAPC estimate during these two time intervals is expected because there was no joinpoint 

estimated after 2001. The mCCIs for these two time periods are the same as well. When the 

FLT method was used for white male prostate cancer incidence, there is a difference 

between the FLT confidence limits during these two time periods, [2006, 2010] and [2001, 

2010], although the AAPC estimates remain unchanged. This is due to the fact that the year 

of 2001 was the last joinpoint estimated and the FLT CI over [2001, 2010] incorporated the 
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distribution of the estimators in the fourth segment as well as in the fifth segment. Note that 

for [c, d] = [2006, 2010], the FLT CI and mCCI estimates are identical, which is expected by 

the use of the t-interval for the slope of the fifth segment in both approaches. The EmpQ 

confidence limits are included in the last column and the difference between the EmpQ CIs 

for the AAPC during two time periods is considerably larger than the difference between the 

FLT CIs for these two time periods. This can be explained by that resampled data may or 

may not have the last joinpoint in [2001, 2010] and thus larger variability in the resampled 

AAPC values, compared to the standard error estimates in the parametric methods, is 

anticipated. This example illustrates that the mCCI and FLT CI are identical if the period [c, 

d] is composed with one segment and does not touch the estimated joinpoint at either end, 

but the FLT confidence limits change and thus the mCCI and FLT limits are different if a 

joinpoint is estimated at c or d.

For black male prostate incidence data, the joinpoints are estimated at 1989 and 1992 and 

we observe the exact matches between mCCI and FLT confidence limits for both time 

periods, [2006, 2010] and [2001, 2010], and the EmpQ confidence intervals for these two 

time periods are also identical. Differently from the last ten year AAPC for white male 

prostate incidence, the estimated last joinpoint of 1992 for black male prostate incidence 

indicates that the AAPC during the last ten year of [2001, 2010] for the resampled data is 

likely to be based on one segment only and thus the identical EmpQ CIs for the last five and 

ten year AAPCs seem reasonable. For white female breast cancer incidence data, the 

joinpoints are estimated as 1980, 1987, 1994, 1999, and 2004, and thus the AAPC 

confidence interval estimates are expected to be different between the two periods and also 

among the methods used. The estimated AAPCs are −0.056 and −0.831 for the last five and 

ten years, respectively, and the confidence intervals are presented in Table 4. The mCCI and 

FLT confidence intervals for the last five year AAPC match, but the mCCI and FLT 

confidence limits for the last ten year AAPC are different, which is due to the joinpoint 

estimated at 2004.

In summary, if [c, d] is composed with several segments, then mCCI, FLT CI, and EmpQ CI 

will be all different in general (for example, white female breast cancer incidence for [2001, 

2010]). When [c, d] is composed with one segment but a joinpoint is estimated at c or d, 

these three methods are also expected to produce different confidence intervals (for example, 

white male prostate cancer incidence for [2001, 2010]). If [c, d] is composed with one 

segment and doesn’t touch the estimated joinpoint at either end, the confidence limits 

obtained by the mCCI and FLT methods will match, but these will be different from the 

confidence limits of the EmpQ method in general. For example, see the case of black male 

prostate incidence for [2001, 2010].

For the first six rows of Table 4, the significance of AAPC does not change depending on the 

method of the confidence interval used, but the two cases reported at the bottom of Table 4 

illustrate a situation where the significance of AAPC varies depending on the method used 

to construct the confidence interval. For male (all races) pancreas incidence rates, the final 

model selected by JOINPOINT was the one with three joinpoints at 1993, 2003 and 2008, 

and the 95% confidence interval for the AAPC during the last ten year period is obtained as 

(−1.011, 2.257) by the mCCI method, (0.069, 1.154) by the FLT method, and (0.111, 1.311) 
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by the empirical quantile method. Thus, if one’s interest is on the significance of the last 10 

year AAPC, the EmpQ CI and the FLT CI indicate its significance, while it is not significant 

based on the mCCI method. In the Non-Hodgkin lymphoma case, however, the last 10 year 

AAPC is not significant based on the EmpQ confidence interval, while it is significant based 

on the mCCI and FLT methods. Incidence rates for the Non-Hodgkin lymphoma has a larger 

variability than those of pancreas incidence, and [2001, 2010] includes estimated joinpoints 

for the pancreas incidence data, while there is no estimated joinpoint in [2001, 2010] for the 

Non-Hodgkin lymphoma data. This matches with the findings for n = 40 and [c, d] = [31, 

40] in Table 3(b): for small σ of 0.01 and (τ1, τ2) = (31, 37), the mCCI CI tends to be more 

conservative than the EmpQ CI and the coverage probability of the FLT CI is considerably 

below 0.95, while for large σ of 0.1 and (τ1, τ2) = (10, 20), the mCCI and FLT CI tend to be 

liberal and the EmpQ CI is conservative. Based on our simulation study summarized in 

Tables 3(a) and 3(b), a change from a significant mCCI, which is the method currently being 

used in JOINPOINT, to a non-significant EmpQ CI is possible if [c, d] is short and σ is 

large, and/or the estimated joinpoint is near the end of the interval, [c, d]. On the other hand, 

one could observe a change from a non-significant mCCI to a significant EmpQ CI if [c, d] 

is long or σ is small. The examples of pancreas and Non-Hodgkin lymphoma incidence data 

illustrate such situations.

6 Discussion

This paper considers how to obtain an improved confidence interval for the AAPC in trend 

analysis, which is a function of a weighted average of the regression slope coefficients in 

segmented line regression with unknown change-points. As indicated in Muggeo [4] and 

further investigated in this paper, it was found that the coverage probability of the 

conditional confidence interval proposed by Clegg et al. [2] is often larger than the nominal 

level, especially when the time period in consideration is long, and incorporating the joint 

distribution between the estimated regression coefficients and change-points was considered 

as a way to improve the CCI. However, our simulations indicated that the improved 

confidence interval originally proposed by Muggeo [4] and further improved in this paper by 

using a t-distribution is not still satisfactory, especially when the interval over which the 

AAPC is calculated is short, data vary a lot around the mean function, or the number of 

observations is not large enough. This is possibly due to skewness of the sampling 

distribution or an inaccurate small sample estimate of the standard error of the estimated 

change-points as well as an inaccurate small sample estimate of the covariance between the 

estimated regression coefficients and change-points. Also, as indicated in Hinkley [6], the 

convergence of the distribution of the estimated change-point to a normal distribution is 

rather slow and this may influence the convergence of the distribution of the AAPC 

estimators. With improved estimates of these standard errors and covariance values, an 

improved confidence interval could be achieved, but we expect that such slower convergence 

of the estimated change-point distribution may still require a very large number of 

observations in order to achieve a reasonable accuracy.

The empirical CDF quantile (EmpQ) confidence interval proposed in this paper performs 

quite accurately for cases with n such as 20 or 40, regardless of the length of the interval 

over which the AAPC is calculated, and it outperforms other parametric methods except for 
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cases with a small number of observations such as 10, σ is small, and a short interval over 

which the AAPC is calculated.

As illustrated in the examples, JOINPOINT program selects the model, i.e. the number of 

joinpoints, using some selection methods such as the permutation procedure or Bayes 

Information Criteria, and it should be noted that the results presented in this paper are valid 

under the model with the true number of joinpoints. Under certain conditions, the 

consistency of the estimated number of joinpoints can be achieved (Kim et al. [22] and Kim 

and Kim [23]), and then the EmpQ CI is expected to maintain the confidence level to the 

level observed in this paper. It is our plan to conduct further simulation studies to investigate 

the accuracy of the various CIs incorporating the model selection procedure, and it will be 

pursued in our future research.
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Figure 1. 

Prostate Cancer Incidence for White Males
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Figure 2. 

Prostate Cancer Incidence for Black Males
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Figure 3. 

Breast Cancer Incidence for White Females
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Figure 4. 

Pancreas Cancer Incidence for Males (All Races)
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Figure 5. 

Non-Hodgkin Lymphoma Incidence for Blacks (Both Sexes)
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