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ABSTRACT

We extend and apply a model-independent analysis method developed earlier by Daly &Djorgovski to new super-
nova, radio galaxy, and galaxy cluster samples to study the acceleration history of the universe and the properties of the
dark energy. There is good agreement between results obtainedwith radio galaxies and supernovae, suggesting that both
distance indicators are reliable. The deceleration parameter q(z) is obtained assuming only the validity of the FRWmet-
ric, allowing for a range of values of space curvature, and independent of a gravity theory and the physical nature of the
contents of the universe. We show that q0 is independent of space curvature, and obtain q0 ¼ �0:48 � 0:11. The tran-
sition redshift when q0 ¼ 0 is zT ¼ 0:78þ0:08

�0:27 for zero space curvature, and has a weak dependence on space curvature.
We find good agreement betweenmodel-independent quantities and those predicted by general relativity, indicating that
GR provides a good description of the data over look-back times of ten billion years.

Subject headinggs: cosmological parameters — cosmology: observations — cosmology: theory — dark matter —
equation of state

Online material: machine-readable table

1. INTRODUCTION

Understanding the physical nature of the dark energy which
appears to be driving the accelerated expansion of the universe is
among the most pressing and important topics in cosmology to-
day. Studies of the expansion history of the universe allow us to
constrain the physical nature of its matter and energy constitu-
ents. One way that the expansion and acceleration history of the
universe can be studied is through the use of a set of coordinate
distances and redshifts for some standard set of objects. Type Ia
supernovae provide amodified standard candle (e.g., Phillips 1993;
Hamuy et al. 1995) and powerful radio galaxies provide a mod-
ified standard yardstick (Daly 1994; Daly et al. 2008) that allow
the distancemodulus, luminosity distance, and coordinate distance
to each source to be determined. The recent data sets presented by
Astier et al. (2006), Riess et al. (2007), Wood-Vasey et al. (2007),
Davis et al. (2007), and Daly et al. (2008) have been analyzed by
these groups and compared with models by other researchers.

In a novel, largely model-independent approach to this prob-
lem, it was shown by Daly &Djorgovski (2003) that the first and
second derivatives of the coordinate distance with respect to red-
shift could be obtained from the coordinate distances and com-
bined to solve for the expansion rate H(z)/H0 and acceleration
rate q(z) of the universe. The functions H( y0) and q( y0; y00) are
exact, that is, they are not obtained by expansions in terms of
derivatives about some point. The only assumption is that the
universe is described by a Friedmann-Robertson-Walker (FRW)
metric. The results are independent of the contents of the universe
and their physical properties, and even independent of whether

general relativity provides an accurate description of the uni-
verse. Here, we drop the assumption of zero space curvature, and
it turns out that the deceleration parameter at a redshift of zero,
q0, remains the same, independent of whether space curvature is
zero or not.

In this paper, we expand on the previous analysis done by Daly
& Djorgovski (2003, 2004). First, we use updated and expanded
data sets, as described in x 2.1. Second, we introduce amore direct
way to compare the model-independent results obtained from the
data with predictions; this is done by directly comparing the first
and second derivatives of the coordinate distance with respect
to redshift to predicted values in various models, as described in
x 2.2. Third, we analyze the data using both a sliding window fit
and fits in independent redshift bins. To solve for the physical
properties of the dark energy as functions of redshift, a theory of
gravity must be specified. To determine the properties of the dark
energy, general relativity is taken to be the correct theory of grav-
ity, allowing us to solve for the pressure, energy density, and equa-
tion of state of the dark energy as a function of redshift in x 2.4.
Fourth, in x 2.4, we introduce a way to solve for the potential and
kinetic energy densities of the dark energy as functions of red-
shift. In addition, we define a new model-independent function,
the dark energy indicator, which provides ameasure of deviations
of w from�1 and a new and independentmeasure of �m. Fifth, in
x 2.3, these derivatives are combined to solve for the expansion
and acceleration rates of the universe as functions of redshift for
both zero and nonzero space curvature; in our previous work
we have not considered the effects of nonzero space curvature.
The only assumption that must be made to obtain the functions
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H(z)/H0 and q(z) from the data are that the FRW metric is valid
in our universe. A discussion and conclusions follow in x 3.

Other groups have explored complementarymodel-independent
approaches to the study of the acceleration history of the universe.
This includes the work of Huterer & Starkman (2003), Wang &
Tegmark (2004, 2005), Shafieloo et al. (2006), Alam et al. (2004),
Nesseris & Perivolaropoulos (2004), Huterer & Cooray (2005),
Shapiro&Turner (2006), Turner&Huterer (2007), andAlam et al.
(2007), for example. Summaries of these approaches are given by
Sahni&Starobinsky (2006), Perivolaropoulos (2006), andRatra&
Vogeley (2007).

2. DATA AND ANALYSIS

2.1. Data Sets Used

We consider three types of distances: those determined from
luminosity distances to supernova standard candles (SN), those
determined from the angular diameter distances to radio galax-
ies (RG), and those determined to clusters of galaxies (CL) with
Sunyaev-Zeldovich (SZ) measurements of angular diameter
distances.

The SN samples studied here include those of Davis et al.
(2007), Riess et al. (2007), and Astier et al. (2006); these authors
provide the pertinent details about their measurements. There is
some overlap between these supernovae samples, and this com-
parison allows the effects of different samples and subsamples to
be seen. In addition, a comparison between the values of y(z),
y0(z), and y00(z) for the different samples goes hand in hand with a
comparison of the best-fit parameter values obtained in different
models for these same samples, described by Daly et al. (2008).
The 71 new supernovae presented by Astier et al. (2006) are in-
cluded in both the Riess et al. (2007) and Davis et al. (2007)
samples, and the high-redshift Hubble Space Telescope (HST )
supernovae of Riess et al. (2007) are included in the Davis et al.
(2007) sample, which otherwise includes only ESSENCE super-
novae and low-redshift supernovae. These comparisons can be quite
helpful, as illustrated by the work of Nesseris & Perivolaropoulos
(2007).

The dimensionless coordinate distance y and its uncertainty
�y to a supernova can be obtained from the published distance
modulus� and its uncertainty�� using the best-fit value of �SN and
the relations � ¼ �SN þ 5 log½ y(1þ z)� and �y ¼ y�� ln (10)/5½ �.
There are several ways to determine �SN ¼ 25� 5 log(H0/c) for
published data sets for which the effective value of H0 has not
been determined (e.g., Daly et al. 2008). The different methods
provide values of �SN that are in good agreement and, for cases

for which the effective value of H0 has been independently de-
termined, such as in the work of Astier et al. (2006), the effective
value of H0 is recovered to very high accuracy. Here, we use the
best-fit value of �SN obtained byDaly et al. (2008) for each source
sample. We use the new RG sample of Daly et al. (2008); 11 new
radio galaxies were observed and analyzed, which increases the
sample size to 30 radio galaxies with redshifts between zero and
about 1.8.
Finally, we also use the angular diameter distances to a sample

of 38 clusters determinedwith the SZmeasurements byBonamente
et al. (2006). The angular diameter distances dA obtained by
Bonamente et al. (2006) for the hydrostatic equilibrium model
were used. To convert from the angular diameter distance to the
dimensionless coordinate distance, we use the best-fit value of H0

of 76:9þ3:9
�3:4 km s�1 Mpc�1 obtained by Bonamente et al. (2006),

to solve for the dimensionless coordinate distance y to each of
their clusters using the well-known relations dA ¼ (a0r)/(1þ z)
and y ¼ (H0/c)(a0r).
After a detailed comparison between the SN and RG samples,

we combine the Davis et al. (2007) supernova sample with the
Daly et al. (2008) radio galaxy sample, and study the combined
sample of 222 sources. Dimensionless coordinate distances y and
their uncertainties �( y) are obtained for these samples as de-
scribed byDaly et al. (2008), and are listed here in Table 1.We also
study results obtained by adding the cluster sample of Bonamente
et al. (2006) to obtain a sample of 260 sources; these distances
are also included in Table 1. Figure 1 shows a comparison of the
distances for these three data sets relative to the standard lambda
cold dark matter (LCDM) model with �m ¼ 0:3 and �� ¼ 0:7.
A comparison of each data set with the standard LCDM model
indicates that both the SN and RG data sets provide reliable cos-
mology probes, while the SZ cluster method perhaps need some
refinement; the reduced �2 for the SN and RG is ~1, as expected
from the quotedmeasurement errors, whereas that for the SZ clus-
ters is >2, suggesting that the quoted errors substantially under-
estimate the true uncertainties of these distance measurements.

TABLE 1

Distances 192 Supernovae, 30 Radio Galaxies, and 38 Galaxy Clusters

Type Source z y �y

SN ......................... sn1994S 0.016 0.0160 0.0016

SN ......................... sn2001V 0.016 0.0145 0.0015

SN ......................... sn1996bo 0.016 0.0135 0.0015

SN ......................... sn2001cz 0.016 0.0155 0.0017

SN ......................... sn2000dk 0.016 0.0161 0.0016

SN ......................... sn1997Y 0.017 0.0174 0.0018

SN ......................... sn1998ef 0.017 0.0146 0.0016

SN ......................... sn1998V 0.017 0.0160 0.0016

SN ......................... sn1999ek 0.018 0.0155 0.0016

SN ......................... sn1992bo 0.018 0.0190 0.0018

Note.—Table 1 is published in its entirety in the electronic edition of the Astro-
physical Journal. A portion is shown here for guidance regarding its form and
content.

Fig. 1.—Difference between the distance modulus to the source and that ex-
pected in a standard LCDM model with �m ¼ 0:3 and �� ¼ 0:7. Open circles
represent the 192 supernovae of Davis et al. (2007), filled circles represent the
30 radio galaxies of Daly et al. (2008), and open triangles represent the 38 clusters
of Bonamente et al. (2006).
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However, to illustrate how our method can be applied to coordi-
nate distances obtained using different methods, we consider the
analysis of the full sample of 260 sources as well as the analysis of
the sample of 222 SN and RG.

2.2. Determinations of y 0 and y 00

The distances y to each source are used to obtain the distance
y(z) to any redshift within the redshift range of the sample, and
first and second derivatives of the distance with respect to red-
shift, y 0(z) and y 00(z), and their uncertainties, using themethod of
Daly & Djorgovski (2003, 2004).

In previous work, we have used y 0 and y 00 to obtain E(z) ¼
H(z) /H0 and q(z). We then compared our empirically determined
functions E(z) and q(z) with predictions in differentmodels. How-
ever, it is also possible to compare our empirically determined
functions y 0(z) and y 00(z) directly with model predictions for these
quantities. The predicted values of these quantities are labeled y 0

p

and y 00
p .

For a universe with nonrelativistic matter with normalized
mean mass-energy density �m(1þ z)3, normalized mean dark
energy density�DE f (z), and space curvature k inwhichEinstein’s
equations apply, we have, in full generality, the predicted values of
y 0, y 0

p, and y 00, y 00
p :

y 0
p ¼

1þ �k y
2
p

�m(1þ z)3þ �DE f (z)þ �k(1þ z)2

" #1=2

ð1Þ

and

y 00
p ¼

y 0
p

(1þ z)

�

�k yp y
0
p(1þ z)

1þ �k y2p

� 1:5
�m(1þ z)3þ �DE(1þ w) f (z)þ (2=3)�k(1þ z)2

�m(1þ z)3þ �DE f (z)þ �k(1þ z)2

#

:

ð2Þ

Here �k ¼ �k/(H0a0)
2, �m ¼ �0m/�0c is the zero redshift value

of the meanmass density of nonrelativistic matter relative to the
critical density,�DE ¼ �0DE/�0c is the zero-redshift value of the
dark energy density relative to the critical density,�m þ �DE þ
�k ¼ 1, and yp ¼

R z

0
y
0
pdz is obtained by numerically integrating

equation (1). This derivation does not assume that w ¼ PDE/�DE,
is constant, and allows for variable w(z). The function f (z) de-
scribes the redshift evolution of the energy density of the dark
energy; in a quintessence model with constant equation of state
w ¼ PDE/�DE, f (z) ¼ (1þ z)3(1þw), and for a cosmological con-
stant f (z) ¼ 1.

The data were analyzed using a sliding window fit, described
in x 2.2.1, and using fits in independent redshift bins, described
in x 2.2.2.

2.2.1. Results Obtained with a Sliding Window Fit

Fits are done using the window �z ¼ 0:6 throughout for the
SN data, �z ¼ 0:8 for the RG data, when considered individu-
ally, and �z ¼ 0:6 for the joint samples using the method de-
scribed by Daly & Djorgovski (2003, 2004). The width of the
fitting window is driven by the need to obtain useful confidence
intervals for the fits by including a sufficient number of data points.
As the size of the available data sets increases in the future, this
width could be correspondingly narrowed. In decreasing the win-
dow function width from 0.6 to 0.5 to 0.4, the trends and overall
results remain the same, the uncertainties increase (because there

are fewer data points in the window), and the trends becomemore
noisy (due to sparser sampling). In addition, to test whether the
window function has an effect on the trends extracted from the
data, we created a mock data set with the same number and red-
shift distribution of points as in each data set and the same frac-
tional error per point, but with y values obtained from a standard
LCDMcosmologywith�m ¼ 0:3 and�� ¼ 0:7 and ran it through
the programs to extract y(z), y 0(z), and y 00(z). As expected, the un-
certainties increase as the window width decreases due to the
smaller number of data points in the window. For window widths
of 0.3 and 0.4 in redshift, y(z), y 0(z), y 00(z), and q(z) match the in-
put cosmology to very high precision. For widths of 0.5 and 0.6,
there is a very slight offset of y 00(z) and q(z) from the input cos-
mology that sets in above redshifts of about 1, at a level that is
very small compared with the uncertainties. Thus, the values of
y(z), y 0(z), y 00(z), and q(z), and quantities obtained by combining
these quantities, provide reliable determinations to redshifts well
above 1.

Our completely model-independent determinations of y(z),
y 0(z), and y 00(z) are shown in Figures 2Y6. In Figures 2, 3, and 4,
they are compared with the predicted value in a spatially flat uni-
verse, described by general relativitywith a cosmological constant
�� ¼ 0:7, and nonrelativistic matter �m ¼ 0:3. This provides
a reasonable description of the data to redshifts of about 1 or so for
the supernovae and 1.5 or so for the radio galaxies. (We note that
this is not amodel fit, but simply an illustration of its compatibility
with the data.)

The values of y 0(z) and y 00(z) obtained for theDavis et al. (2007)
supernova sample are compared with the best-fit model parameters
obtained in a spatially flat quintessence model, a lambda model
that allows for nonzero space curvature, and the standard LCDM
model in Figures 5 and 6 using the best-fitmodel parameters listed
by Daly et al. (2008). The best-fit model parameters are obtained
by fitting the data to a model, and each model is based on general
relativity. A comparison of the first and second derivatives of y

Fig. 2.—Dimensionless coordinate distances to each source, shown along
with the best-fit y(z) and its 1 � error bar for the 182 gold supernovae from Riess
et al. (2007), the 192 supernovae from Davis et al. (2007), the 115 supernovae of
Astier et al. (2006), and the 30 radio galaxies from Daly et al. (2008). In this and
in all subsequent figures, the solid curve illustrates the predicted value in a standard
LCDM model with �m ¼ 0:3 and �� ¼ 0:7.
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with those predicted in each of the models provides another way
to see whether the model predictions provide a good description
of the data. The models and best-fit model parameters are shown
for a lambda model that allows for nonzero space curvature, and
a quintessence model.

The comparison between the values of y 0 and y 00 determined
directly from the data with those predicted in a standard LCDM
model that relies on the equations of general relativity provides
effectively a large-scale test of general relativity. The good agree-
ment obtained indicates that general relativity provides a good de-
scription of the data over look-back times (and the corresponding
length scales) of about 10 billion years.

For the Davis et al. (2007) sample of 192 supernovae, the best-
fit models track y 0 and y 00 to a redshift of about 1.2 or so, beyond
which the data drop away from the model prediction (see Figs. 5
and 6). Curves expected for the best-fit parameters obtained in a
quintessence model and a cosmological constant model with space
curvature by fitting y(z), obtained byDaly et al. (2008), are shown
as well as a standard LCDM model. For y 0 all three curves fit
well, and some differences emerge for y 00; in particular, the curve
with nonzero space curvature does not fit the data well at low
redshift.

Fig. 3.—First derivative of the coordinate distance with respect to redshift as
a function of redshift for the samples described in Fig. 2.

Fig. 4.—Second derivative of the coordinate distance with respect to redshift
as a function of redshift for the samples described in Fig. 2.

Fig. 5.—First derivative of the coordinate distance with respect to redshift as
a function of redshift for the Davis et al. (2007) sample of 192 supernovae. Lines
illustrating the predicted values of y0(z), obtained by substituting the best-fit pa-
rameters of a spatially flat quintessencemodel, a lambdamodel with space curva-
ture, and a standard flat LCDM model into eq. (1), are shown.

Fig. 6.—As in Fig. 5, but for the second derivative of the coordinate distance
with respect to redshift. Lines illustrate the predicted values of y 00(z), obtained by
substituting the best-fit parameters of a spatially flat quintessence model, a lambda
model with space curvature, and a standard flat LCDM model into eq. (2).

DALY ET AL.4 Vol. 677



2.2.2. Results Obtained with Fits in Independent Redshift Bins

Our sliding window fit method produces fit values that are
strongly correlated over the redshift range corresponding to the
fitting window, and are thus indicative of trends, but cannot be
used simply to evaluate a statistical significance of any particular
model. For that, we would need independent values at different
redshifts. To this effect, we divided the data sample in a number
of independent redshift bins (note that the data are not binned or
averaged; the sample is divided into groups of points belonging
to non-overlapping redshift bins). One drawback of this approach
is that the numbers of data points in each bin is smaller, and thus
the fit values are noisier. Another drawback is that the boundary
values of the fits are not constrained, allowing for discontinuities
in the values of y(z), y0(z), and y00(z) at the bin boundaries, which
physically makes no sense. This is the price of the statistical
independence.

The dimensionless coordinate distances to the 192 supernovae
of Davis et al. (2007) were combined with those to the 30 radio
galaxies of Daly et al. (2008) to obtain a sample of 222 sources
with redshift between 0.016 and 1.79. These data were divided
into bins based on the redshifts of the points to be able to obtain
independent determinations of y0 and y00 and their uncertainties.
The data were divided into redshift bins with roughly equal num-
bers of points per bin.We considered 2 bins with 111 points each;
3 bins with 74 points each; 4 bins with 55 points in the first three
bins and 57 points in the highest redshift bin; and 6 bins with
37 points each. The bin, number of points per bin, median red-
shift of the points in the bin, and the minimum and maximum
redshift of points within the bin are listed in Table 2. Points in
each bin were used to determine the values of y0 and y00 and their
uncertainties at the median redshift of the bin.

The results for y0 are shown in Figure 7 for 3, 4, and 6 bins; the
redshift range of the points that went into the determination of y0

at the median redshift zmed are indicated by the horizontal lines.
Three theoretical curves are included on the figure. The dotted line
is the curve predicted by the standard LCDM model with �m ¼
0:3, and the other two curves, which are nearly identical, are those
predicted in the Cardassian model (Freese & Lewis 2002) and the
generalized Chaplygin gasmodel (Kamenshchik et al. 2001; Bilic
et al. 2002; Bento et al. 2002) shown for the best-fit parameters
obtained by Bento et al. (2006) assuming a spatially flat universe.

The results obtained for y00 are shown in Figure 8 for 2 and
3 bins. The full set of results are listed in Table 2. Given the noise
inherent in the data that are currently available, it is not possible to
obtain meaningful results for y00 with a larger number of indepen-
dent bins.Withmore data,wewill be able to obtain this quantity in
a larger number of independent redshift bins.

2.3. Determinations of H(z)/H0 and q(z)
for Zero Space Curvature

The dimensionless expansion rate E(z) � H(z)/H0 and the de-
celeration parameter q(z) can be constructed directly from the fist

TABLE 2

Fits in Independent Redshift Bins to 192 Supernovae and 30 Radio Galaxies

Bin N zmed zmin zmax y0(zmed) H(zmed)/H0 y00(zmed) q(zmed)

1/6 ........................ 37 0.025 0.016 0.052 1:09 � 0:05 0:92 � 0:05 �6:2 � 7:5 4:8 � 6:9

2/6 ........................ 37 0.275 0.054 0.348 0:74 � 0:07 1:34 � 0:13 �1:6 � 0:8 1:9 � 1:6

3/6 ........................ 37 0.430 0.352 0.504 0:67 � 0:15 1:48 � 0:32 2:7 � 6:5 . . .

4/6 ........................ 37 0.600 0.508 0.670 0:72 � 0:28 1:4 � 0:5 1:2 � 11 . . .

5/6 ........................ 37 0.790 0.679 0.905 0:55 � 0:16 1:8 � 0:5 �4:0 � 5:0 . . .

6/6 ........................ 37 1.100 0.910 1.790 0:40 � 0:13 2:5 � 0:8 �0:4 � 0:8 1:1 � 3:7

1/4 ........................ 55 0.035 0.016 0.268 1:03 � 0:03 0:97 � 0:03 �0:9 � 0:6 �0:1 � 0:6

2/4 ........................ 55 0.400 0.274 0.502 0:79 � 0:08 1:27 � 0:13 �0:4 � 2:5 �0:2 � 4:5

3/4 ........................ 55 0.630 0.504 0.749 0:54 � 0:12 1:85 � 0:40 �2:5 � 3:2 . . .

4/4 ........................ 57 0.965 0.752 1.790 0:64 � 0:10 1:57 � 0:23 �0:9 � 0:5 1:80 � 1:3

1/3 ........................ 74 0.050 0.016 0.348 1:02 � 0:03 0:98 � 0:03 �1:05 � 0:27 0:08 � 0:26

2/3 ........................ 74 0.505 0.352 0.670 0:80 � 0:06 1:26 � 0:09 0:9 � 1:4 �2:7 � 2:6

3/3 ........................ 74 0.905 0.679 1.790 0:66 � 0:06 1:52 � 0:15 �0:8 � 0:3 1:2 � 0:9

1/2 ........................ 111 0.275 0.016 0.504 0:84 � 0:02 1:19 � 0:03 �0:73 � 0:16 0:10 � 0:27

2/2 ........................ 111 0.790 0.508 1.790 0:63 � 0:04 1:59 � 0:10 �0:40 � 0:21 0:13 � 0:57

Fig. 7.—Results obtained for the first derivative of the coordinate distancewith
respect to redshift for the combined sample of 192 supernovae and 30 radio galaxies
using data split into three bins (top panel ), four bins (middle panel ), and six bins
(bottom panel ). The data point at the median redshift is shown, and the horizontal
bars indicate the redshift range of the data points in the bin. The standard LCDMpre-
diction for�m ¼ 0:3 is indicated by the dotted line, and the curves predicted by the
Cardassian model and the generalized Chaplygin gas model, which yield nearly
identical results, are shown by the short- and long-dashed curves, respectively.
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and second derivatives of the coordinate distance y0 and y00, as
discussed in detail by Daly & Djorgovski (2003). The relation-
ship between E(z) and y0, and that between q(z) and y0 and y00, are
exact; they do not represent expansions about some point. The
only specification needed to derive these exact relationships is
that the FRW line element is valid in our universe. With this as-
sumption alone, it can be shown that

H(z)=H0 ¼ ( y 0 )�1(1þ �ky
2)1=2 ð3Þ

(e.g., Weinberg 1972), and

q(z) ¼ �1� (1þ z)y00( y0 )�1 þ
�k yy

0(1þ z)

1þ �k y2
ð4Þ

(Daly & Djorgovski 2003), where H(z) � (ȧ/a), q(z) �
�(äa)/(ȧ)2, �k � �k/(H0a0)

2, and k is positive and �k is neg-
ative when space curvature is positive. Thus, the zero redshift
value of q(z ¼ 0) ¼ �1� ( y00/y0)jz¼0 is independent of space
curvature, as is E0 ¼ (1/y0)jz¼0, since y ¼ 0 at z ¼ 0. Thus, the
zero redshift values of E(z) and q(z) obtained from y0 and y00 are
independent of space curvature. In addition, the zero redshift
value of q indicates whether the universe is accelerating at the
current epoch and can be determined independent of �k .

2.3.1. Results Obtained with a Sliding Window Fit

The data and analysis described in x 2.2.1 were used to obtain
H(z)/H0 and q(z) using equations (3) and (4) with �k ¼ 0 (see
x 2.5 for results with nonzero �k). The results are shown in Fig-
ures 9 and 10 for the combined sample of 222 sources described
above. The results confirm that the universe is accelerating at the
current epoch. For theDavis et al. (2007) sample of 192 supernovae,
wefind a zero redshift value of qof q0(192 SNe)¼ �0:48� 0:11.
For the radio galaxies, we find q0(30 RG) ¼ �0:65 � 0:5, consis-
tent with the results obtained using supernovae. Again, these results

depend only on the form of the FRW line element and are inde-
pendent of space curvature, whether general relativity is the cor-
rect theory of gravity, and the content or evolution of the contents
of the universe. For k ¼ 0, the redshift at which the universe
transitions from acceleration to deceleration for the Davis et al.
(2007) sample of 192 SNe is zT ¼ 0:77þ0:11

�0:24.
We investigated the effect of the size of the window function

of the value of q0 and the transition redshift for the combined
sample of 192 supernovae and 30 radio galaxies. For a window
function of width 0.6 in redshift, we obtain q0 ¼ �0:48 � 0:11

Fig. 8.—Results obtained for the second derivative of the coordinate distance
with respect to redshift for the combined sample of 192 supernovae and 30 radio
galaxies using data split into two bins (top panel ) and three bins (bottom panel ).
The data point at the median redshift is shown, and the horizontal bars indicate
the redshift range of the data points in the bin. The standard LCDMprediction for
�m ¼ 0:3 is indicated by the dotted line.

Fig. 9.—Top: Dimensionless coordinate distances to the 192 supernovae of
Davis et al. (2007; open circles) and the 30 radio galaxies ofDaly et al. (2008; filled
circles). Middle: Our model-independent determination of H(z), obtained using
eq. (3) with zero space curvature, shown for the combined sample of 192 super-
novae and 30 radio galaxies. Bottom: Same, but for 30 radio galaxies alone.

Fig. 10.—Our model-independent determination of q(z), obtained using
eq. (4) with zero space curvature, shown for the combined sample of 192 super-
novae and 30 radio galaxies (top) and for 30 radio galaxies alone (bottom).
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and a transition redshift zT ¼ 0:78þ0:08
�0:27; for a window function

of width 0.5 in redshift, we obtain q0 ¼ �0:37 � 0:13 and a tran-
sition redshift zT ¼ 0:79 � 0:15; and for a window function of
width 0.4, we obtain q0 ¼ �0:30 � 0:18 and zT ¼ 0:71 � 0:37.
These numbers are all consistent, although the uncertainties in-
crease as the size of the window function decreases, since then
fewer points are used to determine each quantity. It is important
to increase the number of data points at all redshifts so that the size
of the window function can be decreased. These transition red-
shifts are consistent with those obtained by other groups, such as
Melchiorri et al. (2007) and Alam et al. (2007).

2.3.2. Results Obtained with Fits in Independent Redshift Bins

The data and analysis described in x 2.2.2 were used to obtain
H(z)/H0 and q(z) using equations (3) and (4) with �k ¼ 0 (see
x 2.5 for results with nonzero �k). The results are shown in Fig-
ures 11 and 12, and are listed in Table 2.

The values of H(zmed) are consistent with predictions in the
standard LCDM model at about 1 � or better. For comparison,
predictions obtained in a Cardassian model and generalized
Chaplygin gas model, described in x 2.2.2, are also displayed.
The value of the deceleration parameter at the median redshift
of the bin, q(zmed), does not definitely show that the universe is
accelerating today, using this approach. That is, we do not see
that q must be less than zero. If we consider the data split into
two bins, each with 111 data points, and review the results for the
lower redshift bin, we find that at a redshift of 0.02, the value of
q is �0:28 � 0:14. If we consider the data split into three bins,
each with 74 data points, and review the results for the lowest
redshift bin, we find that the value q is consistent with zero for all
of the data points in this bin. Evidently, we do not yet have a suf-
ficient density of data points even at a redshift less than about 0.5
to be able to definitely state at 3 � or better that the universe is ac-
celerating today, using this method (fits in independent redshift
bins). It is only when we increase the number of data points that
go into the determination of q(z) by using the sliding window
function that we can conclude that the universe is accelerating
today using our model-independent analysis.

Of course, when it is concluded that the universe is accelerat-
ing today in the context of a quintessencemodel or other models,
all of the data are being used in the context of that particular
model. The quintessence and most other models implicitly as-
sume that our universe is described by the FRW line element,
that the equations of general relativity apply, and that a spe-
cific function for the redshift evolution of the dark energy is
valid over the redshift interval under study.Manymore data are
needed in order to test independently these (perfectly reasonable)
assumptions.

2.4. Determinations of the Properties of the Dark Energy

We can solve for the properties of the dark energy as functions
of redshift if a theory of gravity is specified, as shown by Daly &
Djorgovski (2004). Einstein’s equations of general relativity are
used to relate the pressure, PDE, energy density, �DE, equation of
state w ¼ PDE/�DE, and potential, VDE, and kinetic, KDE, energy
densities as functions of redshift to the cosmic scale factor a, and
the first and second derivatives of a with respect to time. Since
the FRW line element has been used to relate the first and sec-
ond derivatives of a with respect to time to the first and second
derivatives of the coordinate distance with respect to redshift, y0

and y00, the equations of general relativity can be used to solve for
the pressure, energy density, equation of state, and potential and
kinetic energy density of the dark energy in terms of y0 and y00,
which are obtained directly from the data. Here a value of k ¼ 0
is assumed, and the equations of Daly & Djorgovski (2004) are
used to solve for the properties of the dark energy as functions
of redshift. To obtain the pressure, we only need to specify that
Einstein’s equations apply,

PDE(z)

�0c
¼ �( y0)�2 1þ 2

3
(1þ z)y00( y0)�1

� �

: ð5Þ

As pointed out by Daly & Djorgovski (2004), the zero redshift
value of P translates into a value of �� in a standard LCDM
model, since in this modelw ¼ �1, so�� ¼ �DE/�0c ¼ �P0/�0c.
Here, this implies that�� ¼ 0:64 � 0:1 if the dark energy is due

Fig. 11.—As in Fig. 7, but for H(zmed)/H0, obtained using eq. (3) with zero
space curvature.

Fig. 12.—As in Fig. 8, but for q(zmed), obtained using eq. (4) with zero space
curvature.
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to a cosmological constant in a universe with zero space curva-
ture. This value of ��, which is obtained from the first and sec-
ond derivatives of the coordinate distance, is consistent with other
measures.

To obtain the energy density �DE of the dark energy,�m must
be specified, and a value of �m ¼ 0:3 is adopted here:

�DE(z)

�0c
¼ ( y0)�2 � �m(1þ z)3: ð6Þ

The equation of statew is obtained by taking the ratio PDE/�DE

and is given by

w(z) ¼
�½1þ (2=3)(1þ z)y00( y0)�1�

1� �m(1þ z)3( y0)2
: ð7Þ

The potential energy density of a dark energy scalar field is
given by V ¼ 0:5(�� P), so

VDE(z)

�0c
¼ ( y0)�2 1þ

(1þ z)y00

3y0

� �

� 0:5�m(1þ z)3 ð8Þ

and the kinetic energy density is given by K ¼ 0:5(�þ P), so

KDE

�0c
¼

�y00(1þ z)

3( y0)3
� 0:5�m(1þ z)3; ð9Þ

since V ¼ 0:5(�� P) and K ¼ 0:5(�þ P).
We define a newmodel-independent function, the dark energy

indicator s, which is given by

s ¼
y00

( y0)3(1þ z)2
: ð10Þ

The function is model-independent, because no assumptions
have been adopted to arrive at this function; it is valid indepen-
dent of a theory of gravity and the contents (and space curva-

ture) of the universe. This choice for s is motivated by the fact
that, for zero space curvature, the predicted value of s is

sp ¼� 1:5�m 1þ 1þ wð Þ
�DE f (z)

�m 1þ zð Þ3

" #

¼� 1:5�m 1þ 1þ wð Þ
�DE

�m

� �

; ð11Þ

as indicated by equations (1) and (2); this occurs because y00p /
( y0p)

3(1þ z)2 when �k ¼ 0. Equation (11) is derived assuming
that general relativity is valid, space curvature is zero, and there
are two mass-energy components controlling the expansion of
the universe: dark energy and nonrelativistic matter including
dark matter and baryons. It is not assumed that the equation of
state of the dark energy, w, is constant, and no functional form
for the evolution of the energy density of the dark energy, f (z),
is assumed. If w ¼ �1, then sp ¼ �1:5�m, and the value of s
obtained using equation (10) provides a new and independent
measure of �m. Deviations of s from a constant provide a mea-
sure of the deviations of w from�1; the amount of the deviation
also depends on the ratio of the energy density of the dark energy
�DE(z) to that of the mass density of nonrelativistic matter �m(z),
including dark matter and baryons, at a given redshift, as dis-
cussed in more detail below.

2.4.1. Results Obtained with a Sliding Window Fit

The analysis described in x 2.2.1 was applied to the combined
sample of 192 supernovae from Davis et al. (2007) and 30 ra-
dio galaxies from Daly et al. (2008). The values of y0 and y00

were substituted into equations (5), (6), (7), (8), (9), and (10),
and the results are shown in Figures 13, 14, and 15. The zero
redshift values of these parameters are P0/�0c ¼ �0:64 � 0:10,
�DE(z ¼ 0)/�0c ¼ 0:67 � 0:05, w0 ¼ �0:95 � 0:08, V0/�0c ¼
0:65 � 0:05,K0/�0c ¼ 0:01� 0:03, and s0 ¼ �0:50 � 0:08. The
zero redshift value of s indicates a value of �m ¼ 0:33 � 0:05 if
w ¼ �1, and the zero redshift value of P indicates a value of

Fig. 13.—Pressure, energy density, and equation of state of the dark energy
for the combined sample of 30 radio galaxies and 192 supernovae, obtained from
y0 and y00 using eqs. (5), (6), and (7), respectively, assuming �m ¼ 0:3 in eqs. (6)
and (7).

Fig. 14.—Potential and kinetic energy density of a dark energy scalar field for
the combined sample of 30 radio galaxies and 192 supernovae, obtained from y0

and y00 using eqs. (8) and (9), respectively, assuming �m ¼ 0:3.
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�� ¼ 0:64 � 0:10 if w ¼ �1. Overall, the results are consis-
tent with predictions in a standard LCDM model.

As noted above, the dark energy indicator s provides a measure
of whether w ¼ �1 over the redshift range shown in Figure 15.
To illustrate the signature of a value of w that differs from �1,
three curves are overlaid on the figure. Each curve is obtained us-
ing equation (11) assuming�m ¼ 0:3, �DE ¼ 0:7, f (z) ¼ 1, and
w = const. over the redshift range shown, with values of w of �1.2
(short-dashed curve), w ¼ �1 (solid line), and w ¼ �0:8 (long-
dashed curve). Clearly, the curves with w ¼ �0:8 and w ¼ �1:2
do not provide a good description of the data. Another way to look
at this is that equations (10) and (11) indicate that w ¼ �1�
(�m/�DE)½2s/(3�m)þ 1�, so the second part of this is a measure of
the deviation of w from �1. At zero redshift the ratio �m/�DE �
0:3/0:7 and�m ¼ 0:3, so s places rather strong constraints on de-
viations of w0 from �1. For example, with s0 ¼ �0:50 � 0:08
obtained above, w0 ¼ �0:95 � 0:08, for �m ¼ 0:3. A zero red-
shift value of w of �1would suggest thatw ¼ �1 for all redshifts,
or that w asymptotes to �1 at late times.

Since most of these functions involve combinations of the first
and second derivatives of the coordinate distance, results obtained
with independent redshift bins are quite noisy, so only values ob-
tained in two independent redshift bins are listed in Table 3.

2.5. Effect of Space Curvature on H(z)/H0 and q(z)

The dimensionless expansion rate H(z)/H0 and the decelera-
tion parameter q(z) can be obtained assuming only the validity of

the FRW metric using equations (3) and (4), allowing for rea-
sonable values of space curvature. Space curvature, parame-
terized by �k, has only a modest effect on H(z) and q(z) for
reasonable values of �k , as illustrated in Figures 16 and 17 for
the Davis et al. (2007) sample of 192 SNe. Positive values of �k

cause H(z) to increase more steeply with redshift than nega-
tive values of �k , which tend to flatten out the H(z) curve. Posi-
tive space curvature, with negative�k , flattens the q(z) curve and
pushes the redshift at which the universe transitions from an ac-
celerating state to a decelerating state to higher redshift. This fol-
lows, since y0 is known to be positive in our universe, since the
universe is expanding. Similarly, negative space curvature moves
the redshift at which q ¼ 0 to lower redshift, causing the universe
to transition from an accelerating to a decelerating state at lower
redshift. For k ¼ 0, the redshift at which the universe transitions
from acceleration to deceleration for the Davis et al. (2007) sam-
ple is zT ¼ 0:77þ0:11

�0:24. For negative space curvature with �k ¼
0:1, this transition redshift is shifted to about 0.6, and for positive
space curvature with �k ¼ �0:1 it shifts to about 0.8. Thus, the
effect of space curvature on H(z) and q(z) is small relative to the
overall uncertainties of their measurements, for a plausible range
of the curvature parameter �k.

2.6. Determinations of y0 and y00 for Other Samples

We also consider the full sample of 260 sources, including the
38 SZ clusters of Bonamente et al. (2006), the 192 supernovae
of Davis et al. (2007), and the 30 radio galaxies of Daly et al.
(2008). These results are shown in Figure 18; a window function

Fig. 15.—Dark energy indicator for the combined sample of 30 radio galaxies
and 192 supernovae obtainedusing eq. (10). The behavior of s predicted by eq. (11)
is shown for three simple models each with �m ¼ 0:3, �DE ¼ 0:7, and f (z) ¼ 1
over the redshift range shown, and w ¼ �1 (solid line), w ¼ �0:8 and remains
constant (long-dashed curve), andw ¼ �1:2 and remains constant (short-dashed
curve). If s is constant, it suggests thatw ¼ �1, and the value of s provides a new
and independent measure of �m.

TABLE 3

Fits in Independent Redshift Bins at the Median Redshift of the Bin

Data PDE/�0c �DE/�0c wDE VDE/�0c KDE/�0c s

1/2 ........................ �0:38 � 0:24 0:79 � 0:07 �0:48 � 0:34 0:58 � 0:10 0:21 � 0:15 �0:75 � 0:21

2/2 ........................ �0:6 � 1:0 0:8 � 0:3 �0:8 � 1:2 0:7 � 0:6 0:1 � 0:45 �0:50 � 0:25

Fig. 16.—Model-independent determination of H(z) for the Davis et al. (2007)
sample of 192 supernovae obtained using eq. (3). The top panel shows results ob-
tained for �k ¼ 0, and the bottom panel shows results obtained for �k ¼ 0:1
(upper curve) and �k ¼ �0:1 (lower curve). For clarity, the uncertainties are not
shown in the bottom panel, but are similar to those shown in the top panel.
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of width 0.6 was used to analyze the data. This analysis illus-
trates how this method can be applied to diverse data sets. How-
ever, while the SZ cluster distances currently provide a useful tool
for measurements of the far-field Hubble parameter, it is probably
premature to use them as standard rulers to probe the global geom-
etry and kinematics of the universe at this time.

Gamma-ray bursts as standard candles have been analyzed in
detail by Schaefer (2007), who gives other pertinent references.

The values of � listed by Schaefer (2007) can be used to deter-
mine the dimensionless coordinate distance to each source if the
value of H0 relevant for the sample is known, as described in x 2.1;
here a value of H0 ¼ 70 km s�1Mpc�1was used (B. E. Schaefer
2007, private communication). The dimensionless coordinate dis-
tances were analyzed to determine the functions y(z), y0(z), and
y00(z) using a window function of width 2.0 in redshift. A first
look at results for the gamma-ray bursts are shown in Figure 19,
which suggests that these are a potentially promising tool to study
cosmology at very large distances, and are broadly consistent with
predictions in the canonical LCDM model. However, the quality
and sparsity of the data indicate that it is still not sufficient for
model-independent analysis, as shown above for the SN+RG sam-
ple, and there are reservations concerning the method as discussed,
for example, by Friedman & Bloom (2005).

3. SUMMARY AND CONCLUSIONS

The work presented here improves and extends our previous
results. First, expanded and improved data sets are considered,
including three supernova samples and one radio galaxy sample.
The radio galaxy data set has 11 new sources, increasing its size
to 30 sources, and the supernovae data sets have increased sub-
stantially in size and quality. In addition, SZ cluster distances and
gamma-ray burst distances are considered. The dimensionless co-
ordinate distances (obtained directly from the data) and first and
second derivatives of the distance are obtained as functions of red-
shift using a sliding window fit. The good agreement obtained
using supernovae and radio galaxies, two completely independent
methods, with sources that cover similar redshift ranges, suggests
that neither method is strongly affected by systematic effects, and
that each method provides a reliable cosmological tool.
The first and second derivatives of the distance are combined

to obtain the acceleration parameter q(z), allowing for nonzero
space curvature. It is shown that the zero redshift value of q(z),
q0, is independent of space curvature, and can be obtained from
the first and second derivatives of the coordinate distance. Thus,
q0, which indicates whether the universe is accelerating at the

Fig. 17.—Model-independent determination of q(z) for the Davis et al. (2007)
sample of 192 supernovae obtained using eq. (4). The top panel shows results
obtained for �k ¼ 0, and the bottom panel shows results obtained for �k ¼ 0:1
(upper curve) and �k ¼ �0:1 (lower curve). For clarity, the uncertainties are not
shown in the bottom panel, but are similar to those shown in the top panel.

Fig. 18.—Results for y0(z), y00(z), and q(z) (obtained using eq. [4] with zero
space curvature) for the combined sample of 30 radio galaxies ( filled circles),
192 supernovae (open circles), and 38SZ clusters (stars), shown in Fig. 1. The solid
curve illustrates the predicted value in a standard LCDMmodelwith�m ¼ 0:3 and
�� ¼ 0:7.

Fig. 19.—Results for y(z), y0(z), and y00(z) obtained with the 69 gamma-ray
burst data of Schaefer (2007). The solid curve illustrates the predicted value in a
standard LCDMmodel with �m ¼ 0:4 and �� ¼ 0:6, which are the best-fit val-
ues to this model obtained by Schaefer (2007).
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current epoch, can be obtained directly from the supernova and
radio galaxy data; our determinations of q(z) only relies on the
validity of the FRW line element, and is independent of a theory
of gravity and the contents of the universe. Each of the super-
nova samples and the radio galaxy sample, analyzed using a slid-
ing window fit, indicates that the universe is accelerating today
independent of space curvature, independent of whether general
relativity is the correct theory of gravity, and independent of the
contents of the universe. The effect of nonzero space curvature
on q(z) is to shift the redshift at which the universe transitions
from acceleration to deceleration, moving this to lower redshift
for negative space curvature and to higher redshift for positive
space curvature. The zero redshift values of q obtained using a
sliding window fit for the Davis et al. (2007) supernova sample is
q0(192 SNe) ¼ �0:48 � 0:11, and that obtained for the radio
galaxy sample of Daly et al. (2008) is q0(30 RG) ¼ �0:65 �
0:53, indicating that the universe is accelerating at the current
epoch. The data were also binned so that only certain subsets
of the data were used to solve for y0, y00, H(z)/H0, and q(z). The
results for y0 and H(z)/H0 indicate that the standard LCDM
model provides a good description of the data. The results for
y00 and q(z) are consistent with the standard LCDM model, but
do not independently confirm the model or the acceleration of
the universe.

In addition to the evaluation of the standard cosmological pa-
rameters, in an even more direct approach, we compared y0 and
y00 obtained from the fits to the data to model predictions. Com-
parisons of y0 and y00 with predictions based on general relativity
indicate that general relativity provides an accurate description
of the data on look-back timescales of about 10 billion years, thus
providing a very large scale test of general relativity.

Another new approach is that the data were analyzed using
both a sliding window fit and fits in independent redshift bins.
The fits in statistically independent redshift bins are broadly con-
sistent with the sliding window fits, but are generally noisier (as
expected).

We also explored the effects of nonzero space curvature on
determinations of H(z) and q(z). It is shown that the zero redshift
value of q, obtained by applying equation (4) to y0 and y00, is in-
dependent of space curvature. This means that our method can
be used to determine q0, and thus the degree to which the universe
is accelerating at the current epoch,with only one assumption, that

the FRW line element is valid. In addition, it is found that the effect
of space curvature on the shape of H(z) and q(z) is small, relative
to the uncertainties arising from the measurement errors.

After determining the expansion and acceleration rates of the
universe as functions of redshift independent of a theory of grav-
ity, we solve for the pressure, energy density, equation of state,
and potential and kinetic energy of the dark energy as functions
of redshift, assuming that general relativity is the correct theory
of gravity. We also define a new model-independent function, the
dark energy indicator s, which provides ameasure of deviations of
the equation of state of the dark energyw from�1, and provides a
new and independent measure of �m if w ¼ �1. The results ob-
tained using a sliding window fit indicate that a cosmological
constant in a spatially flat universe provides a good description of
each of these quantities over the redshift range from 0 to 1. The
zero redshift values of these quantities obtained with the Davis
et al. (2007) supernova sample are PDE;0/�0c ¼ �0:64 � 0:10,
�DE;0/�0c ¼ 0:67 � 0:05, wDE;0 ¼ �0:95 � 0:08, VDE;0/�0c ¼
0:65 � 0:05, KDE;0/�0c ¼ 0:01 � 0:03, and s0 ¼ �0:50 � 0:08.
In the standard LCDMmodel,�� ¼ �P0/�0c ¼ 0:64 � 0:1, ob-
tained using the first and second derivatives of the coordinate dis-
tance, provides an independent measure of ��. In addition, in this
model, w ¼ �1, so s provides a measure of �m, and the value
obtained here using the first and second derivatives of the coor-
dinate distance is �m ¼ 0:33 � 0:05. Overall, the shapes of the
pressure, energy density, equation of state, and other parameters
as functions of redshift are consistent with those predicted in a
standard LCDMmodel. There is a tantalizing hint that there may
be deviations from the standard model at high redshift; more ob-
servations at high redshift will be needed to investigate this fur-
ther. The results obtained using fits in independent redshift bins
are consistent with the standard LCDM model, but do not inde-
pendently confirm the model.
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