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Abstract
We consider the problem of computing the minimum value fmin,K of a polynomial
f over a compact set K ⊆ R

n , which can be reformulated as finding a probability
measure ν on K minimizing

∫
K f dν. Lasserre showed that it suffices to consider such

measures of the form ν = qμ, where q is a sum-of-squares polynomial and μ is a
given Borel measure supported on K . By bounding the degree of q by 2r one gets
a converging hierarchy of upper bounds f (r) for fmin,K . When K is the hypercube
[−1, 1]n , equipped with the Chebyshev measure, the parameters f (r) are known to
converge to fmin,K at a rate in O(1/r2).We extend this error estimate to awider class of
convex bodies, while also allowing for a broader class of referencemeasures, including
the Lebesgue measure. Our analysis applies to simplices, balls and convex bodies that
locally look like a ball. In addition, we show an error estimate in O(log r/r) when
K satisfies a minor geometrical condition, and in O(log2 r/r2) when K is a convex
body, equipped with the Lebesgue measure. This improves upon the currently best
known error estimates in O(1/

√
r) and O(1/r) for these two respective cases.
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1 Introduction

1.1 Lasserre’s measure-based hierarchy

Let K ⊆ R
n be a compact set and let f ∈ R[x] be a polynomial. We consider the

minimization problem

fmin,K := min
x∈K f (x). (1)

Computing fmin,K is a hard problem in general, and some well-known problems
from combinatorial optimization are among its special cases. For example, it is shown
in [13,24] that the stability number α(G) of a graph G = ([n], E) is given by

1

α(G)
= min

x∈K
∑

i∈V
x2i + 2

∑

{i, j}∈E
xi x j ,

where we take K = {x ∈ R
n : x ≥ 0,

∑n
i=1 xi = 1} to be the standard simplex in

R
n .
Problem (1) may be reformulated as the problem of finding a probability measure

ν on K for which the integral
∫
K f dν is minimized. Indeed, for any such ν we have∫

K f dν ≥ fmin,K
∫
K dν = fmin,K . On the other hand, if a ∈ K is a global minimizer

of f in K , then we have
∫
K f dδa = f (a) = fmin,K , where δa is the Dirac measure

centered at a.
Lasserre [21] showed that it suffices to consider measures of the form ν = qμ,

where q ∈ � is a sum-of-squares polynomial and μ is a (fixed) reference Borel
measure supported by K . That is, we may reformulate (1) as

fmin,K = inf
q∈�

∫

K
f (x)q(x)dμ(x) s.t.

∫

K
q(x)dμ(x) = 1. (2)

For each r ∈ N we may then obtain an upper bound f (r)
K ,μ for fmin,K by limiting our

choice of q in (2) to polynomials of degree at most 2r :

f (r)
K ,μ := inf

q∈�r

∫

K
f (x)q(x)dμ(x) s.t.

∫

K
q(x)dμ(x) = 1. (3)

Here, �r denotes the set of all sum-of-squares polynomials of degree at most 2r . We
shall also write f (r) = f (r)

K ,μ for simplicity. As detecting sum-of-squares polynomials
is possible using semidefinite programming, the program (3) can be modeled as an
SDP [21]. Moreover, the special structure of this SDP allows a reformulation to an
eigenvalue minimization problem [21], as will be briefly described below.

By definition, we have fmin,K ≤ f (r+1) ≤ f (r) for all r ∈ N and

lim
r→∞ f (r) = fmin,K .
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Improved convergence analysis of Lasserre’s measure-based bounds 833

In this paper we are interested in upper bounding the convergence rate of the sequence
( f (r))r to fmin,K in terms of r . That is, we wish to find bounds in terms of r for the
parameter:

E (r)
K ,μ( f ) := f (r) − fmin,K ,

often also denoted E (r)( f ) for simplicity when there is no ambiguity on K , μ.

1.2 Related work

Bounds on the parameter E (r)
K ,μ( f ) have been shown in the literature for several dif-

ferent sets of assumptions on K , μ and f . Depending on these assumptions, two main
strategies have been employed, which we now briefly discuss.

Algebraic analysis via an eigenvalue reformulation The first strategy relies on a refor-
mulation of the optimization problem (3) as an eigenvalue minimization problem
(see [12,21]). We describe it briefly, in the univariate case n = 1 only, for simplicity
and since this is the case we need. Let {pr ∈ R[x]r : r ∈ N} be the (unique) orthonor-
mal basis of R[x] w.r.t. the inner product 〈pi , p j 〉 = ∫

K pi p j dμ. For each r ∈ N, we
then define the (generalized) truncated moment matrix Mr , f of f by setting

Mr , f (i, j) :=
∫

K
pi p j f dμ for 0 ≤ i, j ≤ r .

It can be shown that f (r) = λmin(Mr , f ), the smallest eigenvalue of the matrix Mr , f .
Any bounds on the eigenvalues of Mr , f thus immediately translate to bounds on f (r).

In [10], the authors determine the exact asymptotic behaviour of λmin(Mr , f ) in the

case that f is a quadratic polynomial, K = [−1, 1] anddμ(x) = (1−x2)− 1
2 dx , known

as the Chebyshev measure. Based on this, they show that E (r)( f ) = O(1/r2) and
extend this result to arbitrary multivariate polynomials f on the hypercube [−1, 1]n
equipped with the product measure dμ(x) = ∏n

i (1 − xi )−1/2dxi . In addition, they
prove that E (r)( f ) = �(1/r2) for linear polynomials, which thus shows that in some
sense quadratic convergence is the best we can hope for. (This latter result is shown
in [10] for all measures with Jacobi weight on [−1, 1]).

The orthogonal polynomials corresponding to the measure (1 − x2)−1/2dx on
[−1, 1] are the Chebyshev polynomials of the first kind, denoted by Tr . They are well-
studied objects (see, e.g., [25]). In particular, they satisfy the following three-term
recurrence relation

T0(x) = 1, T1(x) = x, and Tr+1(x) = 2xTr (x) − Tr−1(x) for r ≥ 1. (4)

This imposes a large amount of structure on the matrix Mr , f when f is quadratic,
which has been exploited in [10] to obtain information on its smallest eigenvalue.

The main disadvantage of the eigenvalue strategy is that it requires the moment
matrix of f to have a closed form expression which is sufficiently structured so as to
allow for an analysis of its eigenvalues. Closed form expressions for the entries of the
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834 L. Slot, M. Laurent

matrix Mr , f are known only for special sets K , such as the interval [−1, 1], the unit
ball, the unit sphere, or the simplex, and only with respect to certain measures.

However, aswewill see in this paper, the convergence analysis from [10] inO(1/r2)
for the interval [−1, 1] equipped with the Chebyshev measure, can be transported to a
large class of compact sets, such as the interval [−1, 1] with more general measures,
the ball, the simplex, and ‘ball-like’ convex bodies.

Analysis via the construction of feasible solutions A second strategy to bound the
convergence rate of the parameters E (r)( f ) is to construct explicit sum-of-squares
density functions qr ∈ �r for which the integral

∫
K qr f dμ is close to fmin,K . In

contrast to the previous strategy, such constructions will only yield upper bounds on
E (r)( f ).

As noted earlier, the integral
∫
K f dν may beminimized by selecting the probability

measure ν = δa , the Dirac measure at a global minimizer a of f on K . When the
reference measure μ is the Lebesgue measure, it thus intuitively seems sensible to
consider sum-of-squares densities qr that approximate the Dirac delta in some way.

This approach is followed in [12]. There, the authors consider truncated Taylor
expansions of the Gaussian function e−t2/2σ , which they use to define the sum-of-
squares polynomials

φr (t) =
2r∑

k=0

1

k!
(−t2

2σ

)k

∈ �2r for r ∈ N.

Setting qr (x) ∼ φr (||x −a||) for carefully selected standard deviation σ = σ(r), they
show that

∫
K f (x)qr (x)dx− f (a) = O(1/

√
r)when K satisfies a minor geometrical

assumption (Assumption 1 below), which holds, e.g., if K is a convex body or if it is
star-shaped with respect to a ball.

In subsequent work [8], the authors show that if K is assumed to be a convex body,
then a bound in O(1/r) may be obtained by setting qr ∼ φr ( f (x)). As explained
in [8], the sum-of-squares density qr in this case can be seen as an approximation
of the Boltzman density function for f , which plays an important role in simulated
annealing.

The advantage of this second strategy seems to be its applicability to a broad class
of sets K with respect to the natural Lebesgue measure. This generality, however, is
so-far offset by significantly weaker bounds on E (r)( f ). Another main contribution of
this paper will be to show improved bounds on E (r)( f ) for this broad class of sets K .

Analysis for the hypersphere Tight results are known for polynomial minimization
on the unit sphere Sn−1 = {x ∈ R

n : ∑
i x

2
i = 1}, equipped with the Haar surface

measure. Doherty andWehner [15] have shown a convergence rate in O(1/r), by using
harmonic analysis on the sphere and connections to quantum information theory. In the
very recent work [11], the authors show an improved convergence rate in O(1/r2),
by using a reduction to the case of the interval [−1, 1] and the above mentioned
convergence rate in O(1/r2) for this case. This reduction is based on replacing f by
an easy (linear) upper estimator. This idea was already exploited in [8,12] (where a
quadratic upper estimator was used) and we will also exploit it in this paper.
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Improved convergence analysis of Lasserre’s measure-based bounds 835

1.3 Our contribution

The contribution of this paper is showing improved bounds on the convergence rate
of the parameters E (r)

K ,μ( f ) for a wide class of sets K and measures μ. It is twofold.

Firstly, we extend the known bound from [10] in O(1/r2) for the hypercube
[−1, 1]n equipped with the Chebyshev measure, to a wider class of convex bodies.
Our results hold for the ball Bn , the simplex 
n , and ‘ball-like’ convex bodies (see
Definition 3) equipped with the Lebesgue measure. For the ball and hypercube, they
further hold for a wider class of measures; namely for the measures given by

wλ(x)dx :=
(
1 − ‖x‖2

)λ

dx (λ ≥ 0)

on the ball, and the measures

ŵλ(x)dx :=
n∏

i=1

(
1 − x2i

)λ

dx

(

λ ≥ −1

2

)

on the hypercube. Note that for the hypercube, setting λ = − 1
2 yields the Chebyshev

measure, and that for both the ball and the hypercube, settingλ = 0 yields theLebesgue
measure. The rate O(1/r2) also holds for any compact K equipped with the Lebesgue
measure under the assumption of existence of a global minimizer in the interior of K .
These results are presented in Sect. 3.

Secondly, we improve the known bounds in O(1/
√
r) and O(1/r) for general

compact sets (under Assumption 1) and convex bodies equipped with the Lebesgue
measure, established in [8,12], respectively. For general compact sets, we prove a
bound in O(log r/r), and for convex bodies we show a bound in O(log2 r/r2). These
results are exposed in Sect. 4.

For our results in Sect. 3, we will use several tools that will enable us to reduce to
the case of the interval [−1, 1] equipped with the Chebyshev measure. These tools are
presented in Sects. 2 and 3. They include: (a) replacing K by an affine linear image
of it (Sect. 2.3); (b) replacing f by an upper estimator (easier to analyze, obtained via
Taylor’s theorem) (Sect. 2.4); (c) transporting results between two comparable weight
functions on K and between two convex sets K , K̂ which look locally the same in
the neighbourhood of a global minimizer (Sects. 3.1, 3.2). In particular, the result of
Proposition 1 will play a key role in our treatment.

To establish our results in Sect. 4 we will follow the second strategy sketched
above, namely we will define suitable sum-of-squares polynomials that approximate
well the Dirac delta at a global minimizer. However, instead of using truncations of the
Taylor expansion of the Gaussian function or of the Boltzman distribution as was done
in [8,12], we will now use the so-called needle polynomials from [19] (constructed
from the Chebyshev polynomials, see Sect. 4.1). In Table 1 we provide an overview
of both known and new results.

Finally, we illustrate some of the results in Sects. 3 and 4 with numerical examples
in Sect. 5.
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836 L. Slot, M. Laurent

Table 1 Known and new convergence rates for the Lasserre hierarchy of upper bounds

K ⊆ R
n compact E(r)

K ,μ
( f ) μ Reference

General o(1) Borel [21]

Assumption 1 O(1/
√
r) Lebesgue [12]

Convex body O(1/r) Lebesgue [8]

Hypersphere O(1/r) Haar [15]

Hypersphere O(1/r2) Haar [11]

Hypercube O(1/r2) Chebyshev [10]

Hypercube O(1/r2) ŵλ(x)dx(λ ≥ −1/2) Theorem 3

Ball O(1/r2) wλ(x)dx(λ ≥ 0) Theorem 4

Simplex O(1/r2) Lebesgue Theorem 9

Ball-like convex body O(1/r2) Lebesgue Theorem 6

Global minimizer in the interior O(1/r2) Lebesgue Theorem 5

Assumption 1 O(log r/r) Lebesgue Theorem 10

Convex body O(log2 r/r2) Lebesgue Theorem 11

2 Preliminaries

In this section, we first introduce some notation that we will use throughout the rest
of the paper and recall some basic terminology and results about convex bodies. We
then show that the error E (r)( f ) is invariant under nonsingular affine transformations
of Rn . Finally, we introduce the notion of upper estimators for f . Roughly speaking,
this tool will allow us to replace f in the analysis of E (r)( f ) by a simpler function
(usually a quadratic, separable polynomial). We will make use of this extensively in
both Sects. 3 and 4.

2.1 Notation

For x, y ∈ R
n , 〈x, y〉 denotes the standard inner product and ‖x‖2 = 〈x, x〉 the

correspondingnorm.Wewrite Bn
ρ (c) := {x ∈ R

n : ‖x−c‖ ≤ ρ} for then-dimensional
ball of radius ρ centered at c. When ρ = 1 and c = 0, we also write Bn := Bn

1 (0).
Throughout, K ⊆ R

n is always a compact set with non-empty interior, and f is an
n-variate polynomial. We let ∇ f (x) (resp., ∇2 f (x)) denote the gradient (resp., the
Hessian) of f at x ∈ R

n , and introduce the parameters

β f ,K := max
x∈K ‖∇ f (x)‖ and γ f ,K := 1

2
max
x∈K ‖∇2 f (x)‖. (5)

Whenever we write an expression of the form

“E (r)( f ) = O
(
1/r2

)
”,

123



Improved convergence analysis of Lasserre’s measure-based bounds 837

we mean that there exists a constant c > 0 such that E (r)( f ) ≤ c/r2 for all r ∈ N,
where c depends only on K , μ, and the parameters β f ,K , γ f ,K . Some of our results
are obtained by embedding K into a larger set K̂ ⊆ R

n . If this is the case, then c may
depend on β f ,K̂ , γ f ,K̂ as well. If there is an additional dependence of c on the global
minimizer a of f on K , we will make this explicit by using the notation “Oa”.

2.2 Convex bodies

Let K ⊆ R
n be a convex body, i.e., a compact, convex set with non-empty interior.

We say v ∈ R
n is an (inward) normal of K at a ∈ K if 〈v, x − a〉 ≥ 0 holds for all

x ∈ K . We refer to the set of all normals of K at a as the normal cone, and write

NK (a) := {v ∈ R
n : 〈v, x − a〉 ≥ 0 for all x ∈ K }.

We will make use of the following basic result.

Lemma 1 (e.g., [2, Prop. 2.1.1]) Let K be a convex body and let g : R
n → R be

a continuously differentiable function with local minimizer a ∈ K. Then ∇g(a) ∈
NK (a).

Proof Suppose not. Then, by definition of NK (a), there exists an element y ∈ K such
that 〈∇g(a), y − a〉 < 0. Expanding the definition of the gradient this means that

0 > 〈∇g(a), y − a〉 = lim
t↓0

g(t y + (1 − t)a) − g(a)

t
,

which implies g(t y+(1−t)a) < g(a) for all t > 0 small enough.But t y+(1−t)a ∈ K
by convexity, contradicting the fact that a is a local minimizer of g on K . ��

The set K is smooth if it has a unique unit normal v(a) at each boundary point
a ∈ ∂K . In this case, we denote by TaK the (unique) hyperplane tangent to K at a,
defined by the equation 〈x − a, v(a)〉 = 0.

For k ≥ 1, we say K is of classCk if there exists a convex function� ∈ Ck(Rn,R)

such that K = {x ∈ R
n : �(x) ≤ 0} and ∂K = {x ∈ R

n : �(x) = 0}. If K is of class
Ck for some k ≥ 1, it is automatically smooth in the above sense.

We refer, e.g., to [1] for a general reference on convex bodies.

2.3 Linear transformations

Suppose that φ : Rn → R
n is a nonsingular affine transformation, given by φ(x) =

Ux + c. If q is a sum-of-squares density function w.r.t. the Lebesgue measure on
φ(K ), then we have

∫

φ(K )

q(y) f (φ−1(y))dy = | detU | ·
∫

K
q(φ(x)) f (x)dx and

1 =
∫

φ(K )

q(y)dy = | detU | ·
∫

K
q(φ(x))dx .
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838 L. Slot, M. Laurent

As a result, the polynomial q̂ := (q ◦ φ)/
∫
K q(φ(x))dx = (q ◦ φ) · | detU | is a sum

of squares density function w.r.t. the Lebesgue measure on K . It has the same degree
as q, and it satisfies

∫

K
q̂(x) f (y)dx =

∫

φ(K )

q(x) f (φ−1(y))dx .

We have just shown the following.

Lemma 2 Let φ : R
n → R

n be a non-singular affine transformation. Write g :=
f ◦ φ−1. Then we have

E (r)
K ( f ) = E (r)

φ(K )(g).

2.4 Upper estimators

Given a point a ∈ K and two functions f , g : K → R, we write f ≤a g if f (a) =
g(a) and f (x) ≤ g(x) for all x ∈ K ; we then say that g is an upper estimator for f
on K , which is exact at a. The next lemma, whose easy proof is omitted, will be very
useful.

Lemma 3 Let g : K → R be an upper estimator for f , exact at one of its global
minimizers on K . Then we have E (r)( f ) ≤ E (r)(g) for all r ∈ N.

Remark 1 We make the following observations for future reference.

1. Lemma 3 tells us that we may always replace f in our analysis by an upper
estimator which is exact at one of its global minimizers. This is useful if we can
find an upper estimator that is significantly simpler to analyze.

2. We may always assume that fmin,K = 0, in which case f (x) ≥ 0 for all x ∈ K
and E (r)( f ) = f (r). Indeed, if we consider the function g given by g(x) =
f (x) − fmin,K , then gmin,K = 0, and for every density function q on K , we have

∫

K
g(x)q(x)dμ(x) =

∫

K
f (x)q(x)dμ(x) − fmin,K ,

showing that E (r)( f ) = E (r)(g) = g(r) for all r ∈ N.

In the remainder of this section, we derive some general upper estimators based on
the following variant of Taylor’s theorem for multivariate functions.

Theorem 1 (Taylor’s theorem) For f ∈ C2(Rn,R) and a ∈ K we have

f (x) ≤ f (a) + 〈∇ f (a), x − a〉 + γK , f ‖x − a‖2 for all x ∈ K ,

where γK , f is the constant from (5).
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Improved convergence analysis of Lasserre’s measure-based bounds 839

Lemma 4 Let a ∈ K be a global minimizer of f on K . Then f has an upper estimator
g on K which is exact at a and satisfies the following properties:

(i) g is a quadratic, separable polynomial.
(ii) g(x) ≥ f (a) + γK , f ‖x − a‖2 for all x ∈ K.
(iii) If a ∈ int K, then g(x) ≤ f (a) + γK , f ‖x − a‖2 for all x ∈ K.

Proof Consider the function g defined by

g(x) := f (a) + 〈∇ f (a), x − a〉 + γK , f ‖x − a‖2, (6)

which is an upper estimator of f exact at a by Theorem 1. As we have ‖x − a‖2 =∑n
i (xi − ai )2, g is indeed a quadratic, separable polynomial.
As a is a global minimizer of f on K , we know by Lemma 1 that ∇ f (a) ∈ NK (a).

This means that 〈∇ f (a), x −a〉 ≥ 0 for all x ∈ K , which proves the second property.
If a ∈ int K , we must have ∇ f (a) = 0, and the third property follows. ��
In the special case that K is a ball and f has a global minimizer a on the boundary

of K , we have an upper estimator for f , exact at a, which is a linear polynomial.

Lemma 5 Assume that f (a) = fmin,Bn
ρ (c) for some a ∈ ∂Bn

ρ (c). Then there exists a
linear polynomial g with f ≤a g on Bn

ρ (c).

Proof Write K = Bn
ρ (c) and γ = γK , f for simplicity. In view of Lemma 4, we have

f (x) ≤ g(x) for all x ∈ K , where g is the quadratic polynomial from relation (6).
Since a ∈ ∂K is a global minimizer of f on K , we have∇ f (a) ∈ NK (a) by Lemma 1,
and thus ∇ f (a) = λ(c − a) for some λ ≥ 0. Therefore we have

〈∇ f (a), x − a〉 = 〈λ(c − a), x − a〉 = λρ2 + λ〈x − c, c − a〉.

On the other hand, for any x ∈ K we have

‖x − a‖2 = ‖x − c‖2 + ‖c − a‖2 + 2〈x − c, c − a〉 ≤ 2ρ2 + 2〈x − c, c − a〉.

Combining these facts we get

f (x) ≤ g(x) ≤ f (a) + (λ + 2γ )
(
ρ2 + 〈x − c, c − a〉

)
=: h(x).

So h(x) is a linear upper estimator of f with h(a) = f (a), as desired. ��
Remark 2 As can be seen from the above proof, the assumption in Lemma 5 that
a ∈ ∂K = ∂Bn

ρ (c) is a global minimizer of f on K may be replaced by the weaker
assumption that ∇ f (a) ∈ NK (a).

Finally, we give a very simple upper estimator, which will be used in Sect. 4.

Lemma 6 Recall the constant βK , f from (5). Let a be a global minimizer of f on K .
Then we have

f (x) ≤a f (a) + βK , f ‖x − a‖ for all x ∈ K .
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840 L. Slot, M. Laurent

3 Special convex bodies

In this section we extend the bound O(1/r2) from [10] on E (r)
K ,μ( f ), when K =

[−1, 1]n is equipped with the Chebyshev measure dμ(x) = ∏n
i=1(1 − x2i )

− 1
2 dxi , to

a broader class of convex bodies K and reference measures μ.
First, we show that, for the hypercube K = [−1, 1]n , we still have E (r)

K ,μ( f ) =
O(1/r2) for all polynomial f and allmeasures of the form dμ(x) = ∏n

i=1(1−x2i )
λdxi

with λ > −1/2. Previously this was only known to be the case when f is a linear
polynomial. Note that, for λ = 0, we obtain the Lebesgue measure on [−1, 1]n . Next,
we use this result to show that E (r)

Bn ,μ( f ) = O(1/r2) for all measures μ on the unit

ball Bn of the form dμ(x) = (1− ||x ||2)λdx with λ ≥ 0. We apply this result to also
obtain E (r)

K ,μ( f ) = O(1/r2) when μ is the Lebesgue measure and K is a ‘ball-like’
convex body, meaning it has inscribed and circumscribed tangent balls at all boundary
points (see Definition 3 below). The primary new tool we use to obtain these results is
Proposition 1, which tells us that the behaviour of E (r)

K ,μ( f ) essentially only depends
on the local behaviour of f and μ in a neighbourhood of a global minimizer a of f
on K .

3.1 Measures and weight functions

A functionw : int K → R>0 is a weight function on K if it is continuous and satisfies
0 <

∫
K w(x)dx < ∞. A weight function w gives rise to a measure μw on K defined

by dμw(x) := w(x)dx . We note that if K ⊆ K̂ , and ŵ is a weight function on K̂ , it
can naturally be interpreted as a weight function on K as well, by simply restricting
its domain (assuming

∫
K ŵ(x)dx > 0). In what follows we will implicitly make use

of this fact.

Definition 1 Given two weight functions w, ŵ on K and a point a ∈ K , we say that
ŵ �a w on K if there exist constants ε,ma > 0 such that

maŵ(x) ≤ w(x) for all x ∈ Bn
ε (a) ∩ int K . (7)

If the constant ma can be chosen uniformly, i.e., if there exists a constant m > 0 such
that

mŵ(x) ≤ w(x) for all x ∈ int K , (8)

then we say that ŵ � w on K .

Remark 3 We note the following facts for future reference:

(i) As weight functions are continuous on the interior of K by definition, we always
have ŵ �a w if a ∈ int K .

(ii) If w is bounded from below, and ŵ is bounded from above on int K , then we
automatically have ŵ � w.

123



Improved convergence analysis of Lasserre’s measure-based bounds 841

Fig. 1 Some examples of sets K , K̂ for which K ⊆a K̂ . The dot indicates the point a, and the gray area
indicates Bn

ε (a) ∩ K

3.2 Local similarity

Assuming that the global minimizer a of f on K is unique, sum-of-squares density
functions q for which the integral

∫
K q(x) f (x)dμ(x) is small should in some sense

approximate the Dirac delta function centered at a. With this in mind, it seems rea-
sonable to expect that the quality of the bound f (r) depends in essence only on the
local properties of K and μ around a. We formalize this intuition here.

Definition 2 Suppose K ⊆ K̂ ⊆ R
n . Given a ∈ K , we say that K and K̂ are locally

similar at a, which we denote by K ⊆a K̂ , if there exists ε > 0 such that

Bn
ε (a) ∩ K = Bn

ε (a) ∩ K̂ .

Clearly, K ⊆a K̂ for any point a ∈ int K .

Figure 1 depicts some examples of locally similar sets.

Proposition 1 Let K ⊆ K̂ ⊆ R
n, let a ∈ K be a global minimizer of f on K and

assume K ⊆a K̂ . Let w, ŵ be two weight functions on K , K̂ , respectively. Assume
that ŵ(x) ≥ w(x) for all x ∈ int K, and that ŵ �a w. Then there exists an upper
estimator g of f on K̂ which is exact at a and satisfies

E (r)
K ,w(g) ≤ 2

ma
E (r)
K̂ ,ŵ

(g)

for all r ∈ N large enough. Here ma > 0 is the constant defined by (7).

Recall that if g is an upper estimator for f which is exact at one of its globalminimizers,
we then have E (r)

K ,w( f ) ≤ E (r)
K ,w(g) byLemma3. Proposition 1 then allows us to bound

E (r)
K ,w( f ) in terms of E (r)

K̂ ,ŵ
(g). For its proof, we first need the following lemma.

Lemma 7 Let a ∈ K, and assume that K ⊆a K̂ . Then any normal vector of K at a is
also a normal vector of K̂ . That is, NK (a) ⊆ NK̂ (a).
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Proof Let v ∈ NK (a). Suppose for contradiction that v /∈ NK̂ (a). Then, by definition
of the normal cone, there exists y ∈ K̂ such that 〈v, y − a〉 < 0. As K ⊆a K̂ ,
there exists ε > 0 for which K ∩ Bn

a (ε) = K̂ ∩ Bn
a (ε). Now choose 1 > η > 0

small enough such that y′ := ηy + (1 − η)a ∈ Bn
a (ε) . Then, by convexity, we have

y′ ∈ K̂ ∩ Bn
a (ε) = K ∩ Bn

a (ε). Now, we have 〈v, y′ − a〉 = η〈v, y − a〉 < 0. But, as
y′ ∈ K , this contradicts the assumption that v ∈ NK (a). ��
Proof (of Proposition 1) For simplicity, we assume here f (a) = 0, which is without
loss of generality by Remark 1. Consider the quadratic polynomial g from (6):

g(x) = 〈∇ f (a), x − a〉 + γ ||x − a||2,

where γ := γK̂ , f is defined in (5). By Taylor’s theorem (Theorem 1), we have that

g(x) ≥ f (x) for all x ∈ K̂ , and clearly g(a) = f (a). That is, g is an upper estimator
for f on K̂ , exact at a (cf. Lemma 4). We proceed to show that

E (r)
K ,w(g) ≤ 2

ma
E (r)
K̂ ,ŵ

(g).

We start by selecting a degree 2r sum-of-squares polynomial q̂r satisfying

∫

K̂
q̂r (x)ŵ(x)dx = 1 and

∫

K̂
g(x)q̂r (x)ŵ(x)dx = E (r)

K̂ ,ŵ
(g).

We may then rescale q̂r to obtain a density function qr ∈ �r on K w.r.t. w by setting

qr := q̂r∫
K q̂r (x)w(x)dx

.

By assumption, w(x) ≤ ŵ(x) for all x ∈ int K . Moreover, g(x) ≥ f (a) = 0 for all
x ∈ int K . This implies that

E (r)
K ,w(g) ≤

∫

K
g(x)qr (x)w(x)dx ≤

∫
K̂ g(x)q̂r (x)ŵ(x)dx
∫
K q̂r (x)w(x)dx

=
E (r)
K̂ ,ŵ

(g)
∫
K q̂r (x)w(x)dx

and thus it suffices to show that
∫
K q̂r (x)w(x)dx ≥ 1

2ma . The key to proving this
bound is the following lemma, which tells us that optimum sum-of-squares densities
should assign rather high weight to the ball Bn

ε (a) around a. ��
Lemma 8 Let ε > 0. Then, for any r ∈ N, we have

∫

Bn
ε (a)∩K̂

q̂r (x)ŵ(x)dx ≥ 1 −
E (r)
K̂ ,ŵ

(g)

γ ε2
.
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Proof By Lemma 1, we have ∇ f (a) ∈ NK (a) and so ∇ f (a) ∈ NK̂ (a) by Lemma 7.
As a result, we have g(x) ≥ γ ||x − a||2 for all x ∈ K̂ (cf. Lemma 4). In particular,
this implies that g(x) ≥ γ ||x − a||2 ≥ γ ε2 for all x ∈ K̂\Bn

ε (a) and so

E (r)
K̂ ,ŵ

(g) ≥
∫

K̂\Bn
ε (a)

g(x)q̂r (x)ŵ(x)dx ≥ γ ε2
∫

K̂\Bn
ε (a)

q̂r (x)ŵ(x)dx

= γ ε2
(

1 −
∫

Bn
ε (a)∩K̂

q̂r (x)ŵ(x)dx

)

.

The statement now follows from reordering terms. ��
As K ⊆a K̂ , there exists ε1 > 0 such that Bn

ε1
(a) ∩ K = Bn

ε1
(a) ∩ K̂ . As ŵ �a w,

there exist ε2 > 0, ma > 0 such that maŵ(x) ≤ w(x) for x ∈ Bn
ε2

(a) ∩ int K . Set

ε = min{ε1, ε2}. Choose r0 ∈ N large enough such that E (r)
K̂ ,ŵ

(g) <
ε2γ
2 for all r ≥ r0,

which is possible since E (r)
K̂ ,ŵ

(g) tends to 0 as r → ∞. Then, Lemma 8 yields

∫

Bn
ε (a)∩K̂

q̂r (x)ŵ(x)dx ≥ 1

2

for all r ≥ r0. Putting things together yields the desired lower bound:

∫

K
q̂r (x)w(x)dx ≥

∫

Bn
ε (a)∩K

q̂r (x)w(x)dx ≥ ma

∫

Bn
ε (a)∩K̂

q̂r (x)ŵ(x)dx ≥ 1

2
ma .

for all r ≥ r0. ��
Corollary 1 Let K ⊆ K̂ ⊆ R

n, let a ∈ K be a global minimizer of f on K , and assume
that K ⊆a K̂ . Let w, ŵ be two weight functions on K , K̂ , respectively. Assume that
ŵ(x) ≥ w(x) for all x ∈ int K and that ŵ � w. Then there exists an upper estimator
g of f on K̂ , exact at a, such that

E (r)
K ,w(g) ≤ 2

m
E (r)
K̂ ,ŵ

(g)

for all r ∈ N large enough. Here m > 0 is the constant defined by (8).

3.3 The unit cube

Here we consider optimization over the hypercube K = [−1, 1]n and we restrict to
reference measures on K having a weight function of the form

ŵλ(x) :=
n∏

i=1

wλ(xi ) =
n∏

i=1

(
1 − x2i

)λ

(9)
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844 L. Slot, M. Laurent

with λ > −1. The following result is shown in [10] on the convergence rate of the
bound E (r)

K ,ŵλ
( f ) when using the measure ŵλ(x)dx on K = [−1, 1]n .

Theorem 2 ([10]) Let K = [−1, 1]n and consider the weight function ŵλ from (9).

(i) If λ = − 1
2 , then we have:

E (r)
K ,ŵλ

( f ) = O

(
1

r2

)

. (10)

(ii) If n = 1 and f has a global minimizer on the boundary of [−1, 1], then (10) holds
for all λ > −1.

The key ingredients for claim (ii) above are: (a) when the global minimizer is a bound-
ary point of [−1, 1] then f has a linear upper estimator (recall Lemma 5), and (b) the
convergence rate of (10) holds for any linear function and any λ > −1 (see [10]).

In this section we show Theorem 3 below, which extends the above result to all
weight functions ŵλ(x) with λ ≥ − 1

2 . Following the approach in [10], we proceed in
two steps: first we reduce to the univariate case, and then we deal with the univariate
case. Then the new situation to be dealt with is when n = 1 and the minimizer lies
in the interior of [−1, 1], which we can settle by getting back to the case λ = − 1

2
through applying Proposition 1, the ‘local similarity’ tool, with K = K̂ = [−1, 1].
Reduction to the univariate case Let a ∈ K be a global minimizer of f in K =
[−1, 1]n . Following [10] (recall Remark 1 and Lemma 4), we consider the upper
estimator f (x) ≤a g(x) := f (a) + 〈∇ f (a), x − a〉 + γ f ,K ||x − a||2. This g is
separable, i.e., we canwrite g(x) = ∑n

i=1 gi (xi ), where each gi is quadratic univariate
with ai as global minimizer over [−1, 1]. Let qir be an optimum solution to the problem
(3) corresponding to the minimization of gi over [−1, 1] w.r.t. the weight function
wλ(xi ) = (1 − x2i )

λ. If we set qr (x) = ∏n
i=1 q

i
r (xi ), then qr is a sum of squares with

degree at most nr , such that
∫
K qr (x)ŵλ(x)dx = 1. Hence we have

f (rn)
K ,ŵλ

− f (a) ≤
∫

K
f (x)qr (x)ŵλ(x)dx − f (a)

≤
∫

K
g(x)qr (x)ŵλ(x)dx − g(a)

=
n∑

i=1

( ∫ 1

−1
gi (x)q

i
r (xi )wλ(xi )dxi − gi (ai )

)

=
n∑

i=1

(
(gi )

(r)
[−1,1],wλ

− gi (ai )
)

=
n∑

i=1

E (r)
[−1,1],wλ

(gi ).

As a consequence, we need only to consider the case of a quadratic univariate poly-
nomial f on K = [−1, 1]. We distinguish two cases, depending whether the global
minimizer lies on the boundary or in the interior of K . The case when the global
minimizer lies on the boundary of [−1, 1] is settled by Theorem 2(ii) above, so we
next assume the global minimizer lies in the interior of [−1, 1].

123



Improved convergence analysis of Lasserre’s measure-based bounds 845

Case of a global minimizer in the interior of K = [−1, 1] To deal with this case we
make use of Proposition 1 with K = K̂ = [−1, 1], weight function w(x) := wλ(x)
on K , and weight function ŵ(x) := w−1/2(x) on K̂ . We check that the conditions
of the proposition are met. As K̂ = K , clearly we have K ⊆a K̂ . Further, for any
λ ≥ − 1

2 , we have

wλ(x) =
(
1 − x2

)λ ≤
(
1 − x2

)− 1
2 = w−1/2(x)

for all x ∈ (−1, 1) = int K . As a ∈ int K , we also have wλ �a w−1/2 [see
Remark 3(i)]. Hence we may apply Proposition 1 to find that there exists a polynomial
upper estimator g of f on [−1, 1], exact at a, and having

E (r)
K ,w(g) ≤ 2

ma
E (r)
K̂ ,ŵ

(g)

for all r ∈ N large enough. Now, (the univariate case of) Theorem 2(i) allows us to
claim E (r)

K̂ ,ŵ
(g) = O(1/r2), so that we obtain:

E (r)
K ,wλ

( f ) ≤ E (r)
K ,wλ

(g) = Oa

(
E (r)
K̂ ,ŵ

(g)
)

= Oa

(
1/r2

)
.

In summary, in view of the above, we have shown the following extension of
Theorem 2.

Theorem 3 Let K = [−1, 1]n and λ ≥ − 1
2 . Let a be a global minimizer of f on K .

Then we have

E (r)
K ,ŵλ

( f ) = Oa

(
1

r2

)

.

The constant ma involved in the proof of Theorem 3 depends on the global minimizer
a of f on [−1, 1]. It is introduced by the application of Proposition 1 to cover the
case where a lies in the interior of [−1, 1]. When λ = 0 (i.e., when w = w0 = 1
corresponds to the Lebesgue measure), one can replace ma by a uniform constant
m > 0, as we now explain.

Consider K̂ := [−2, 2] ⊇ [−1, 1] = K , equipped with the scaled Chebyshev
weight ŵ(x) := w−1/2(x/2) = (1− x2/4)−1/2. Of course, Theorem 2 applies to this
choice of K̂ , ŵ as well. Further, we still have ŵ(x) ≥ w(x) = w0(x) = 1 for all
x ∈ [−1, 1]. However, we now have a uniform upper bound ŵ(x) ≤ ŵ(1) for ŵ on
K , which means that ŵ � w on K [see Remark 3(ii)]. Indeed, we have

ŵ(x)/ŵ(1) ≤ 1 = w0(x) = w(x) for all x ∈ [−1, 1].

We may thus apply Corollary 1 (instead of Proposition 1) to obtain the following.
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Corollary 2 If K = [−1, 1]n is equipped with the Lebesgue measure then

E (r)
K ( f ) = O

(
1

r2

)

.

3.4 The unit ball

We now consider optimization over the unit ball K = Bn ⊆ R
n (n ≥ 2); we restrict

to reference measures on Bn with weight function of the form

wλ(x) = (1 − ||x ||2)λ, (11)

where λ > −1. For further reference we recall (see e.g. [16, §6.3.2]) or [3, §11]) that

Cn,λ :=
∫

Bn
wλ(x)dx = π

n
2 �(λ + 1)

�
(
λ + 1 + n

2

) . (12)

For the case λ ≥ 0, we can analyze the bounds and show the following result.

Theorem 4 Let K = Bn be the unit ball. Let a be a global minimizer of f on K .
Consider the weight function wλ from (11) on K .

(i) If λ = 0, we have

E (r)
K ,wλ

( f ) = O

(
1

r2

)

.

(ii) If λ > 0, we have

E (r)
K ,wλ

( f ) = Oa

(
1

r2

)

.

For the proof, we distinguish the two cases when a lies in the interior of K or on its
boundary.

Case of a global minimizer in the interior of K Our strategy is to reduce this to the case
of the hypercubewith the help of Proposition 1. Set K̂ := [−1, 1]n ⊇ Bn = K . As a ∈
int K , we have K ⊆a K̂ . Consider the weight functionw(x) := wλ(x) = (1−‖x‖2)λ
on K , and ŵ(x) := 1 on the hypercube K̂ . Since λ ≥ 0, we have wλ(x) ≤ 1 ≤ ŵ(x)
for all x ∈ K . Furthermore, as a ∈ int K , we also have ŵ �a w. Hence we may apply
Proposition 1 to find a polynomial upper estimator g of f on K̂ , exact at a, satisfying

E (r)
K ,w(g) ≤ 2

ma
E (r)
K̂ ,ŵ

(g)
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for all r ∈ N large enough. Here ma > 0 is the constant from (7). Now, Theorem 3
allows us to claim E (r)

K̂ ,ŵ
(g) = Oa(1/r2). Hence we obtain:

E (r)
K ,w( f ) ≤ E (r)

K ,w(g) = Oa

(
E (r)
K̂ ,ŵ

(g)
)

= Oa

(
1/r2

)
.

As in the previous section, it is possible to replace the constant ma by a uniform
constant m > 0 in the case that λ = 0, i.e., in the case that we have the Lebesgue
measure on K . Indeed, in this case we have ŵ = w (= w0 = 1), and so in particular
ŵ � w. We may thus invoke Corollary 1 (instead of Proposition 1) to obtain

E (r)
K ,w(g) ≤ 2E (r)

K̂ ,ŵ
(g)

and so

E (r)
K ,w( f ) = O

(
E (r)
K̂ ,ŵ

(g)
)

= O
(
1/r2

)
.

Note that in this case, we do not actually make use of the fact that K = Bn . Rather,
we only need that a lies in the interior of K and that K ⊆ [−1, 1]n . As we may freely
apply affine transformations to K (by Lemma 2), the latter is no true restriction. We
have thus shown the following result.

Theorem 5 Let K ⊆ R
n be a compact set, with non-empty interior, equipped with the

Lebesgue measure. Assume that f has a global minimizer a on K with a ∈ int K.
Then we have

E (r)
K ( f ) = O

(
1

r2

)

.

Case of a global minimizer on the boundary of K Our strategy is now to reduce to
the univariate case of the interval [−1, 1]. For this, we use Lemma 5, which claims
that f has a linear upper estimator g on K , exact at a. Up to applying an orthogonal
transformation (and scaling) we may assume that g is of the form g(x) = x1. It
therefore suffices now to analyze the behaviour of the bounds for the function x1
minimized on the ball Bn . Note that when minimizing x1 on Bn or on the interval
[−1, 1] theminimum is attained at the boundary in both cases. The following technical
lemma will be useful for reducing to the case of the interval [−1, 1].

Lemma 9 Let h be a univariate polynomial and let λ > −1. Then we have

∫

Bn
h(x1)wλ(x)dx = Cn−1,λ

∫ 1

−1
h(x1)wλ+ n−1

2
(x1)dx1,

where Cn−1,λ is given in (12).
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Proof Change variables and set u j = x j√
1−x21

for 2 ≤ j ≤ d. Then we have

wλ(x) =
(
1 − x21 − x22 + · · · − x2n

)λ =
(
1 − x21

)λ (
1 − u22 − . . . − u2n

)λ

and dx2 . . . dxn = (1 − x21 )
n−1
2 du2 . . . dun . Putting things together we obtain the

desired result. ��
Let qr (x1) be an optimal sum-of-squares density with degree at most 2r for the

problem of minimizing x1 over the interval [−1, 1], equipped with the weight function
w(x) := wλ+ n−1

2
(x). Then, its scaling C−1

n−1,λqr (x1) provides a feasible solution for

the problem of minimizing g(x) = x1 over the ball K = Bn . Indeed, using Lemma 9,
we have

∫
Bn C

−1
n−1,λqr (x1)wλ(x)dx = ∫ 1

−1 qr (x1)w(x)dx1 = 1, and so

g(r)
K ,wλ

≤
∫

Bn
x1C

−1
n−1,λqr (x1)wλ(x)dx =

∫ 1

−1
x1qr (x1)w(x1)dx1.

The proof is now concluded by applying Theorem 2(ii).

3.5 Ball-like convex bodies

Here we show a convergence rate of E (r)
K ( f ) in O(1/r2) for a special class of smooth

convex bodies K with respect to the Lebesgue measure. The basis for this result is a
reduction to the case of the unit ball.

We say K has an inscribed tangent ball (of radius ε) at x ∈ ∂K if there exists ε > 0
and a closed ball Binsc of radius ε such that x ∈ ∂Binsc and Binsc ⊆ K . Similarly, we
say K has a circumscribed tangent ball (of radius ε) at x ∈ ∂K if there exists ε > 0
and a closed ball Bcirc of radius ε such that x ∈ ∂Bcirc and K ⊆ Bcirc.

Definition 3 We say that a (smooth) convex body K is ball-like if there exist (uniform)
εinsc, εcirc > 0 such that K has inscribed and circumscribed tangent balls of radii
εinsc, εcirc, respectively, at all points x ∈ ∂K .

Theorem 6 Assume that K is a (smooth) ball-like convex body, equipped with the
Lebesgue measure. Then we have

E (r)
K ( f ) = O

(
1

r2

)

.

Proof Let a ∈ K be a global minimizer of f on K . We again distinguish two cases
depending on whether a lies in the interior of K or on its boundary.

Case of a global minimizer in the interior of K This case is covered directly by
Theorem 5.
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Case of a global minimizer on the boundary of K By applying a suitable affine
transformation, we can arrange that the following holds: f (a) = 0, a = 0, e1 is an
inward normal of K at a, and the radius of the circumscribed tangent ball Bcirc at a
is equal to 1, i.e., Bcirc = Bn

1 (e1). See Fig. 2 for an illustration. Now, as a is a global
minimizer of f on K , we have∇ f (a) ∈ NK (a) by Lemma 1. But NK (a) = NBcirc (a),
and so ∇ f (a) ∈ NBcirc (a). As noted in Remark 2, we may thus use Lemma 5 to find
that f (x) ≤a c〈e1, x〉 = cx1 on Bcirc for some constant c > 0. In light of Remark 1(i),
and after scaling, it therefore suffices to analyze the function f (x) = x1.

Again, we will use a reduction to the univariate case, now on the interval [0, 2]. For
any r ∈ N, let qr ∈ �r be an optimum sum-of-squares density of degree 2r for the
minimization of x1 on [0, 2] with respect to the weight function

w′(x1) := w n−1
2

(x1 − 1) =
[
1 − (x1 − 1)2

] n−1
2 =

[
2x1 − x21

] n−1
2

.

That is, qr ∈ �r satisfies

∫ 2

0
x1qr (x1)w

′(x1)dx1 = O
(
1/r2

)
and

∫ 2

0
qr (x1)w

′(x1)dx1 = 1, (13)

where the first equality relies on Theorem 2(ii). As x �→ qr (x1)/(
∫
K qr (x1)dx) is a

sum-of-squares density on K with respect to the Lebesgue measure, we have

E (r)
K ( f ) ≤

∫
K x1qr (x1)dx∫
K qr (x1)dx

. (14)

We will now show that, on the one hand, the numerator
∫
K x1qr (x1)dx in (14) has an

upper bound in O(1/r2) and that, on the other hand, the denominator
∫
K qr (x1)dx in

(14) is lower bounded by an absolute constant that does not depend on r . Putting these
two bounds together then yields E (r)

K ( f ) = O(1/r2), as desired.

The upper bound We make use of the fact that K ⊆ Bcirc to compute:

∫

K
x1qr (x1)dx ≤

∫

Bcirc
x1qr (x1)dx

=
∫

Bn
(y1 + 1)qr (y1 + 1)dy [y = x − e1]

= Cn−1,0

∫ 1

−1
(y1 + 1)qr (y1 + 1)w n−1

2
(y1)dy1 [by Lemma 9]

= Cn−1,0

∫ 2

0
zqr (z)w

′(z)dz [z = y1 + 1]

= O
(
1/r2

)
. [by (13)]
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Fig. 2 An overview of the situation in the second case of the proof of Theorem 6

The lower bound Here, we consider an inscribed tangent ball Binsc of K at a = 0.
Say Binsc = Bn

ρ (ρe1) for some ρ > 0. See again Fig. 2. We may then compute:

∫

K
qr (x1)dx ≥

∫

Binsc
qr (x1)dx

=
∫

Bn
qr

(
ρ(y1 + 1)

)
ρndy

[

y = x − ρe1
ρ

]

= ρnCn−1,0

∫ 1

−1
qr

(
ρ(y1 + 1)

)
w n−1

2
(y1)dy1 [by Lemma 9]

= ρn−1Cn−1,0

∫ 2ρ

0
qr (z)w n−1

2
(z/ρ − 1)dz [z = ρ(y1 + 1)]

≥ ρn−1Cn−1,0

∫ ρ

0
qr (z)w

′(z)
w n−1

2
(z/ρ − 1)

w n−1
2

(z − 1)
dz

[
w′(z) = w n−1

2
(z − 1)

]

≥
(

ρ

2 − ρ

) n−1
2

Cn−1,0

∫ ρ

0
qr (z)w

′(z)dz,

where the last inequality follows using the fact that 1−(z/ρ−1)2

1−(z−1)2
≥ 1

ρ(2−ρ)
for z ∈ [0, ρ].

It remains to show that

∫ ρ

0
qr (z)w

′(z)dz ≥ 1

2
for all r large enough.

The argument is similar to the one used for the proof of Lemma 8. By (13), there is a
constant C > 0 such that

∫ 2
0 zqr (z)w′(z)dz ≤ C

r2
for all r ∈ N. So we have

C

r2
≥

∫ 2

ρ

zqr (z)w
′(z)dz ≥ ρ

∫ 2

ρ

qr (z)w
′(z)dz = ρ

(

1 −
∫ ρ

0
qr (z)w

′(z)dz
)

,

123



Improved convergence analysis of Lasserre’s measure-based bounds 851

which implies
∫ ρ

0 qr (z)w′(z)dz ≥ 1 − C
ρr2

≥ 1
2 for r large enough.

This concludes the proof of Theorem 6. ��
Classification of ball-like setsWith Theorem 6 in mind, it is interesting to understand
under which conditions a convex body K is ball-like. Under the assumption that K
has a C2-boundary, the well-known Rolling Ball Theorem (cf., e.g., [17]) guarantees
the existence of inscribed tangent balls.

Theorem 7 (Rolling Ball Theorem) Let K ⊆ R
n be a convex body with C2- boundary.

Then there exists εinsc > 0 such that K has an inscribed tangent ball of radius εinsc
for each x ∈ ∂K.

Classifying the existence of circumscribed tangent balls is somewhat more involved.
Certainly, we should assume that K is strictly convex, which means that its boundary
should not contain any line segments. This assumption, however, is not sufficient.
Instead we need the following stronger notion of 2-strict convexity introduced in [4].

Definition 4 Let K ⊆ R
n be a convex body withC2-boundary and let� ∈ C2(Rn,R)

such that K = �−1((−∞, 0]) and ∂K = �−1(0). Assume ∇�(a) �= 0 for all
a ∈ ∂K . The set K is said to be 2-strictly convex if the following holds:

xT∇2�(a)x > 0 for all x ∈ TaK\{0} and a ∈ ∂K .

In other words, the Hessian of � at any boundary point should be positive definite,
when restricted to the tangent space.

Example 1 Consider the unit ball for the �4-norm:

K =
{
(x1, x2) : �(x1, x2) := x41 + x42 ≤ 1

}
⊆ R

2.

Then, K is strictly convex, but not 2-strictly convex. Indeed, at any of the points
a = (0,±1) and (±1, 0), the Hessian of� is not positive definite on the tangent space.
For instance, for a = (0,−1), we have ∇�(a) = (0,−4) and xT�2(a)x = 12x22 ,
which vanishes at x = (1, 0) ∈ TaK . In fact, one can verify that K does not have a
circumscribed tangent ball at any of the points (0,±1), (±1, 0).

It is shown in [4] that the set of 2-strictly convex bodies lies dense in the set of
all convex bodies. For K with C2-boundary, it turns out that 2-strict convexity is
equivalent to the existence of circumscribed tangent balls at all boundary points.

Theorem 8 ([5, Corollary 3.3]) Let K be a convex body with C2-boundary. Then K is
2-strictly convex if and only if there exists εcirc > 0 such that K has a circumscribed
tangent ball of radius εcirc at all boundary points a ∈ ∂K.

Combining Theorems 7 and 8 then gives a full classification of the ball-like convex
bodies K with C2-boundary.

Corollary 3 Let K ⊆ R
n be a convex body with C2-boundary. Then K is ball-like if

and only if it is 2-strictly convex.
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Fig. 3 From left to right: the curve Ck for k = 0, 1, 2, 8

A convex body without inscribed tangent balls We now give an example of a convex
body K which does not have inscribed tangent balls, going back to de Rham [14].
The idea is to construct a curve by starting with a polygon, and then successively
‘cutting corners’. Let C0 be the polygon in R2 with vertices (−1,−1), (1,−1), (1, 1)
and (−1, 1), i.e., a square. For k ≥ 1, we obtain Ck by subdividing each edge of Ck−1
into three equal parts and taking the convex hull of the resulting subdivision points
(see Fig. 3). We then let C be the limiting curve obtained by letting k tend to∞. Then,
C is a continuously differentiable, convex curve (see [6] for details). It is not, however,
C2 everywhere. We indicate below some point where no inscribed tangent ball exists
for the convex body with boundary C .

Consider the pointm = (0,−1) ∈ C , which is an element ofCk for all k. Fix k ≥ 1.
If we walk anti-clockwise along Ck starting at m, the first corner point encountered is
sk = (1/3k,−1), the slope of the edge starting at sk is lk = 1/k and its end point is

ek =
(
(2k + 1)/3k, 2/3k − 1

)
.

Now suppose that there exists an inscribed tangent ball Bε(c) at the point m. Then,
ε > 0, c = (0, ε − 1) and any point (x, y) ∈ C lies outside of the ball Bε(c), so that

x2 + (y + 1)2 − 2ε(y + 1) ≥ 0 for all (x, y) ∈ C .

As C is contained in the polygonal region delimited by any Ck , also ek /∈ Bε(c) and
thus

( 2k+1
3k

)2 + ( 2
3k

)2 − 4ε
3k

≥ 0. Letting k → ∞, we get ε = 0, a contradiction.

3.6 The simplex

We now consider a full-dimensional simplex
n := conv({v0, v1, v2, . . . , vn}) ⊆ R
n ,

equipped with the Lebesgue measure. We show the following.

Theorem 9 Let K = 
n be a simplex, equipped with the Lebesgue measure. Then

E (r)

n ( f ) = O

(
1

r2

)

.

Proof Let a ∈ 
n be a global minimizer of f on 
n . The idea is to apply an affine
transformation φ to 
n whose image φ(
n) is locally similar to [0, 1]n at the global
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Fig. 4 The map φ from the proof of Theorem 9 for n = 2

minimizer φ(a) of g := f ◦ φ−1, after which we may ‘transport’ the O(1/r2) rate
from the hypercube to the simplex.

Let F := conv(v1, v2, . . . , vn) be the facet of 
n which does not contain v0. By
reindexing, we may assume w.l.o.g. that a /∈ F . Consider the map φ determined by
φ(v0) = 0 and φ(vi ) = ei for all i ∈ [n], where ei is the i-th standard basis vector of
R
n . See Fig. 4. Clearly, φ is nonsingular, and φ(
n) ⊆ [0, 1]n . ��

Lemma 10 We have φ(
n) ⊆φ(x) [0, 1]n for all x ∈ 
n\F.
Proof By definition of F , we have


n\F =
{

n∑

i=0

λivi :
n∑

i=1

λi < 1, λ ≥ 0

}

,

and so

φ(
n\F) =
{

y ∈ [0, 1]n :
n∑

i=1

yi < 1

}

,

which is an open subset of [0, 1]n . But this means that for each y = φ(x) ∈ φ(
n\F)

there exists ε > 0 such that

Bn
ε (y) ∩ [0, 1]n ⊆ Bn

ε (y) ∩ φ(
n\F),

which concludes the proof of the lemma. ��
The above lemma tells us in particular that φ(
n) ⊆φ(a) [0, 1]n . We now apply

Corollary 1 with K = φ(
n), K̂ = [0, 1]n and weight functions w = ŵ = 1 on
K , K̂ , respectively. This yields a polynomial upper estimator h of g on [0, 1]n having

E (r)
φ(
n)(g) ≤ 2E (r)

[0,1]n (h) = O(1/r2),

for r ∈ N large enough, using Theorem 3 for the right most equality. It remains to
apply Lemma 2 to obtain:

E (r)

n ( f ) = E (r)

φ(
n)(g) = O
(
1/r2

)
,
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which concludes the proof of Theorem 9. ��

4 General compact sets

In this section we analyze the error E (r)( f ) for a general compact set K equipped
with the Lebesgue measure. We will show the following two results: when K satisfies
a mild assumption (Assumption 1) we prove a convergence rate in O(log r/r) (Theo-
rem 10), which improves on the previous rate in O(1/

√
r) from [12], and when K is a

convex body we prove a convergence rate in O((log r/r)2) (Theorem 11), improving
the previous rate in O(1/r) from [8]. As a byproduct of our analysis, we can show
the stronger bound O((log r/r)β) when all partial derivatives of f of order at most
β − 1 vanish at a global minimizer (see Theorem 14). We begin with introducing
Assumption 1.

Assumption 1 There exist constants εK , ηK > 0 such that

vol
(
Bn

δ (x) ∩ K
) ≥ ηK vol

(
Bn

δ (x)
) = δnηK vol(Bn) for all x ∈ K and 0 < δ ≤ εK .

In other words, Assumption 1 claims that K contains a constant fraction ηK of the full
ball Bn

δ (x) around x for any radius δ > 0 small enough. This rather mild assumption
is discussed in some detail in [12]. In particular, it is implied by the so-called interior
cone condition used in approximation theory; it is satisfied by convex bodies and,
more generally, by sets that are star-shaped with respect to a ball.

Theorem 10 Let K ⊆ R
n be a compact set satisfying Assumption 1. Then we have

E (r)( f ) = O

(
log r

r

)

.

Theorem 11 Let K ⊆ R
n be a convex body. Then we have

E (r)( f ) = O

(
log2 r

r2

)

.

Outline of the proofs First of all, if f has a global minimizer which lies in the interior
of K , then we may apply Theorem 5 to obtain a convergence rate in O(1/r2) =
O((log r/r)2) and so there is nothing to prove. Hence, in the rest of the section, we
assume that f has a global minimizer which lies on the boundary of K .

The basic proof strategy for both theorems is to construct explicit sum-of-squares
polynomials qr giving good feasible solutions to the program (3). The building blocks
for these polynomials qr will be provided by the needle polynomials from [19]; these
are degree r univariate polynomials νhr , ν̂hr , parameterized by a constant h ∈ (0, 1),
that approximate well the Dirac delta at 0 on [−1, 1] and [0, 1], respectively.

For Theorem10,we are able to use the needle polynomials νhr directly after applying
the transform x �→ ‖x‖ and selecting the value h = h(r) carefully. We then make use
of Lipschitz continuity of f to bound the integral in the objective of (3).
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For Theorem 11, a more complicated analysis is needed. We then construct qr
as a product of n univariate well-selected needle polynomials, exploiting geometric
properties of the boundary of K in the neighbourhood of a global minimizer.

Simplifying assumptions In order to simplify notation in the subsequent proofs we
assume throughout this section that 0 ∈ K ⊆ Bn ⊆ R

n , and fmin,K = f (0) = 0, so
a = 0 is a global minimizer of f over K . As K is compact, and in light of Lemma 2,
this is without loss of generality.

We now introduce needle polynomials and their main properties in Sect. 4.1, and
then give the proofs of Theorems 10 and 11 in Sects. 4.2 and 4.3, respectively.

4.1 Needle polynomials

We begin by recalling some of the basic properties of the Chebyshev polynomials.
The Chebyshev polynomials Tr ∈ R[t]r can be defined by the recurrence relation (4),
and also by the following explicit expression:

Tr (t) =
{
cos(r arccos t) for |t | ≤ 1,
1
2 (t + √

t2 − 1)r + 1
2 (t − √

t2 − 1)r for |t | ≥ 1.
(15)

From this definition, it canbe seen that |Tr (t)| ≤ 1on the interval [−1, 1], and thatTr (t)
is nonnegative and monotone nondecreasing on [1,∞). The Chebyshev polynomials
form an orthogonal basis of R[t] with respect to the Chebyshev measure (with weight
(1 − t2)−1/2) on [−1, 1] and they are used extensively in approximation theory. For
instance, they are the polynomials attaining equality in theMarkov brother’s inequality
on [−1, 1], recalled below.

Lemma 11 (Markov Brothers’ Inequality; see, e.g., [27]) Let p ∈ R[t] be a univariate
polynomial of degree at most r . Then, for any scalars a < b, we have

max
t∈[a,b] |p

′(t)| ≤ 2r2

b − a
· max
t∈[a,b] |p(t)|.

Kroó and Swetits [19] use the Chebyshev polynomials to construct the so-called (uni-
variate) needle polynomials.

Definition 5 For r ∈ N, h ∈ (0, 1), we define the needle polynomial νhr ∈ R[t]4r by

νhr (t) = T 2
r

(
1 + h2 − t2

)

T 2
r

(
1 + h2

) .

Additionally, we define the 1
2 -needle polynomial ν̂hr ∈ R[t]4r by

ν̂hr (t) = T 2
2r

(
2 + h − 2t

2 − h

)

· T−2
2r

(
2 + h

2 − h

)

.
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-1.5 -1 -h 0 h 1 1.5

0.5

1

Fig. 5 The needle polynomials νh4 (dashed), νh6 (solid) and the 1
2 -needle ν̂h

2

4 (dotted) for h = 1/5

By construction, the needle polynomials νhr and ν̂hr are squares and have degree 4r .
They approximate well the Dirac delta function at 0 on [−1, 1] and [0, 1], respectively.
In [26], a construction similar to the needles presented here is used to obtain the best
polynomial approximation of the Dirac delta in terms of the Hausdorff distance.

The needle polynomials satisfy the following bounds (see Fig. 5 for an illustration).

Theorem 12 (cf. [18–20]) For any r ∈ N and h ∈ (0, 1), the following properties hold
for the polynomials νhr and ν̂hr :

νhr (0) = 1, (16)

0 ≤ νhr (t) ≤ 1 for t ∈ [−1, 1], (17)

νhr (t) ≤ 4e− 1
2 rh for t ∈ [−1, 1] with |t | ≥ h, (18)

ν̂hr (0) = 1, (19)

0 ≤ ν̂hr (t) ≤ 1 for t ∈ [0, 1], (20)

ν̂hr (t) ≤ 4e− 1
2 r

√
h for t ∈ [0, 1] with t ≥ h. (21)

As this result plays a central role in our treatment we give a short proof, following the
argument given in [22]. We need the following lemma.

Lemma 12 For any r ∈ N, t ∈ [0, 1) we have Tr (1+ t) ≥ 1
2e

r
√
t log(1+√

2) ≥ 1
2e

1
4 r

√
t .

Proof Using the explicit expression (15) for Tr , we have
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2Tr (1 + t) ≥
(
1 + t +

√
(1 + t)2 − 1

)r =
(
1 + t +

√
2t + t2

)r

≥ (1 + √
2t)r = e

r log
(
1+√

2·√t
)

.

By concavity of the logarithm, we have

log
(
1 + √

2
√
t
)

= log
(√

t ·
(
1 + √

2
)

+
(
1 − √

t
)

· 1
)

≥ √
t · log

(
1 + √

2
)

+
(
1 − √

t
)
log(1) = √

t · log
(
1 + √

2
)

≥ 1

4

√
t,

and so, using the above lower bound on Tr (1 + t), we obtain

Tr (1 + t) ≥ 1

2
e
r
√
t log

(
1+√

2
)

≥ 1

2
e
1
4 r

√
t .

��
Proof (of Theorem 12) Properties (16), (19) are clear. We first check (17)–(18). If |t | ≤
h then 1+h2 ≥ 1+h2−t2 ≥ 1, giving νhr (t) ≤ νhr (0) = 1 bymonotonicity of Tr (t) on
[1,∞). Assume now h ≤ |t | ≤ 1. Then T 2

r (1+h2 − t2) ≤ 1 as 1+h2 − t2 ∈ [−1, 1],
and T 2

r (1 + h2) ≥ 1 (again by monotonicity), which implies νhr (t) ≤ 1. In addition,

since Tr (1+ h2) ≥ 1
2e

1
4 rh by Lemma 12, we obtain νhr (t) ≤ T−2

r (1+ h2) ≤ 4e− 1
2 rh .

We now check (20)–(21). If t ∈ [0, h] then ν̂hr (t) ≤ ν̂hr (0) = 1 follows by mono-
tonicity of T2r (t) on [1,∞).Assume now h ≤ t ≤ 1. Then, 2+h−2t

2−h ∈ [−1, 1] and thus
T 2
2r

( 2+h−2t
2−h

) ≤ 1. On the other hand, we have T 2
2r

( 2+h
2−h

) ≥ 1, which gives ν̂hr (t) ≤ 1.

In addition, as 2+h
2−h ≥ 1+ h ≥ 1, using again monotonicity of T2r and Lemma 12, we

get T 2
2r

( 2+h
2−h

) ≥ T 2
2r (1 + h) ≥ 1

4e
1
2 r

√
h , which implies (21). ��

We now give a simple lower estimator for a nonnegative polynomial p with p(0) = 1.
This lower estimator will be useful later to lower bound the integral of the needle and
1
2 -needle polynomials on small intervals [−h, h] and [0, h], respectively.
Lemma 13 Let p ∈ R[t]r be a polynomial, which is nonnegative overR≥0 and satisfies
p(0) = 1, p(t) ≤ 1 for all t ∈ [0, 1]. Let �r : R≥0 → R≥0 be defined by

�r (t) =
{
1 − 2r2t if t ≤ 1

2r2
,

0 otherwise.

Then �r (t) ≤ p(t) for all t ∈ R≥0.

Proof Suppose not. Then there exists s ∈ R≥0 such that �r (s) > p(s). As p ≥ 0
on R≥0, p(0) = 1 and �r (t) = 0 for t ≥ 1

2r2
, we have 0 < s < 1

2r2
. We find that

p(s) − p(0) < �r (s) − 1 = −2r2s. Now, by the mean value theorem, there exists
an element z ∈ (0, s) such that p′(z) = p(s)−p(0)

s < −2r2s
s = −2r2. But this is in

contradiction with Lemma 11, which implies that maxt∈[0,1] |p′(t)| ≤ 2r2. ��
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Corollary 4 Let h ∈ (0, 1), and let νhr , ν̂hr as above. Then �4r (t) ≤ νhr (t) = νhr (−t)
and �4r (t) ≤ ν̂hr (t) for all t ∈ [0, 1].

4.2 Compact sets satisfying Assumption 1

In this section we prove Theorem 10. Recall we assume that K satisfies Assumption 1
with constants εK and ηK .We also assume that 0 ∈ ∂K is a global minimizer of f over
K , f (0) = 0, and K ⊆ Bn , so that εK < 1. By Lemma 6, we have f (x) ≤0 βK , f ‖x‖
on K . Hence, in view of Lemma 3, it suffices to find a polynomial qr ∈ �2r for each
r ∈ N such that

∫
K qr (x)dx = 1 and

∫

K
qr (x)‖x‖dx = O

(
log r

r

)

.

The idea is to set qr (x) ∼ σ h
r (x) := νhr (‖x‖) and then select carefully the constant

h = h(r). The main technical component of the proof is the following lemma, which
bounds the normalized integral

∫
K σ h

r (x)‖x‖βdx in terms of r , h and β ≥ 1. For
Theorem10weonly need the caseβ = 1, but allowingβ ≥ 1 permits to showa sharper
convergence rate when the polynomial f has special properties at the minimizer (see
Theorem 14).

Lemma 14 Let r ∈ N and h ∈ (0, 1) with εK ≥ h ≥ 1/64r2. Let β ≥ 1. Then

1
∫
K σ h

r (x)dx

∫

K
σ h
r (x)‖x‖βdx ≤ hβ + Cr2ne− 1

2 hr , (22)

where C > 0 is a constant depending only on K .

Proof Set ρ = 1/64r2, so that ρ ≤ h ≤ εK . We define the sets

Bh := Bn
h (0) ∩ K and Bρ := Bn

ρ (0) ∩ K ⊆ Bh .

Note that vol(Bh) ≥ vol(Bρ) ≥ ηKρn vol(Bn) by Assumption 1. For x ∈ Bh , we
have the bounds σ h

r (x) ≤ 1 (by (17), since ‖x‖ ≤ 1 as K ⊆ Bn) and ‖x‖β ≤ hβ .
On the other hand, for x ∈ K\Bh , we have the bound ‖x‖β ≤ 1, but now σ h

r (x) is
exponentially small (by (18)). We exploit this for bounding the integral in (22):

∫

K
σ h
r (x)‖x‖βdx =

∫

Bh
σ h
r (x)‖x‖βdx +

∫

K\Bh
σ h
r (x)‖x‖βdx

≤ hβ

∫

Bh
σ h
r (x)dx +

∫

K\Bh
σ h
r (x)dx .

Combining with the following lower bound on the denominator:

∫

K
σ h
r (x)dx ≥

∫

Bh
σ h
r (x)dx ≥

∫

Bρ

σ h
r (x)dx,
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we get

1
∫
K σ h

r (x)dx

∫

K
σ h
r (x)‖x‖βdx ≤ hβ +

∫
K\Bh σ h

r (x)dx
∫
Bρ

σ h
r (x)dx

.

It remains to upper bound the last term in the above expression. By (18) we have

σ h
r (x) ≤ 4e− 1

2 hr for any x ∈ K\Bh and so

∫

K\Bh
σ h
r (x)dx ≤ 4e− 1

2 hr · vol(K\Bh) ≤ 4e− 1
2 hr · vol(Bn).

Furthermore, by Lemma 13, we have σ h
r (x) ≥ �4r (‖x‖) = 1 − 32r2‖x‖ ≥ 1

2 for all
x ∈ Bρ . Using Assumption 1 we obtain

∫

Bρ

σ h
r (x)dx ≥ 1

2
vol(Bρ) ≥ 1

2
ηKρn vol(Bn) = ηK vol(Bn)

2 · 64nr2n . (23)

Putting things together yields

∫
K\Bh σ h

r (x)dx
∫
Bh

σ h
r (x)dx

≤ 4e− 1
2 hr · vol(Bn)

2 · 64nr2n
ηK vol(Bn)

= 8 · 64n
ηK

r2ne− 1
2 hr .

This shows the lemma with the constant C = 8·64n
ηK

. ��
It remains to choose h = h(r) to obtain the polynomials qr . Our choice here is

essentially the same as the one used in [18,26]. With the next result (applied with
β = 1) the proof of Theorem 10 is now complete.

Proposition 2 For r ∈ N and β ≥ 1, set h(r) = 2(2n + β) log r/r and define the
polynomial qr := σ

h(r)
r /

∫
K σ

h(r)
r (x)dx. Then qr is a sum-of-squares polynomial of

degree 4r with
∫
K qr (x)dx = 1 and

∫

K
qr (x)‖x‖βdx = O

(
logβ r

rβ

)

.

Proof For r sufficiently large, we have h(r) < εK and h(r) ≥ 1/64r2 and so we may
use Lemma 14 to obtain

∫

K
qr (x)‖x‖βdx ≤ h(r)β + Cr2ne− 1

2 h(r)r

=
(

2(2n + β)
log r

r

)β

+ C

rβ
= O

(
logβ r

rβ

)

.

��
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4.3 Convex bodies

We now prove Theorem 11. Here, K is assumed to be a convex body, hence it still
satisfies Assumption 1 for certain constants εK , ηK . As before we also assume that
0 ∈ ∂K is a global minimizer of f in K , f (0) = 0 and K ⊆ Bn .

If∇ f (0) = 0, then in view of Taylor’s theorem (Theorem 1) we know that f (x) ≤0
γK , f ‖x‖2 on K . Hence we may apply Proposition 2 (with β = 2) to this quadratic
upper estimator of f to obtain E (r)( f ) = O(log2 r/r2) (recall Lemma 3).

In the rest of this section, we will therefore assume that ∇ f (0) �= 0. In this case,
we cannot get a better upper estimator than f (x) ≤0 βK , f ‖x‖ on K , and so the choice
of qr in Proposition 2 is not sufficient. Instead we will need to make use of the sharper
1
2 -needles ν̂hr . We will show how to do this in the univariate case first.

The univariate case If K ⊆ [−1, 1] is convex with 0 on its boundary, we may assume
w.l.o.g. that K = [0, b] for some b ∈ (0, 1] (in which case we may choose εK = b).
By using the 1

2 -needle ν̂hr instead of the regular needle νhr , we immediately get the
following analog of Lemma 14.

Lemma 15 Let b ∈ (0, 1]and K = [0, b]. Let r ∈ Nand h ∈ (0, 1)with b ≥ h ≥ 1
64r2

.
Then we have

1
∫
K ν̂hr (x)dx

∫

K
ν̂hr (x)|x |dx ≤ h + Cr2e− 1

2

√
hr , (24)

where C > 0 is a universal constant.

Proof Same proof as for Lemma 14, using now the fact that ν̂hr (x) ≤ 1 on K and

ν̂hr (x) ≤ 4e− 1
2

√
hr on K\Bh from (20) and (21). ��

Since the exponent in (24) now contains the term ‘
√
h’ instead of ‘h’, we may

square our previous choice of h(r) in Proposition 2 to obtain the following result.

Proposition 3 Assume K = [0, b]. Set h(r) = (
2 log(r4)

r

)2 = (
8 log r

r

)2
and define the

polynomial qr := ν̂
h(r)
r /

∫
K ν̂

h(r)
r (x)dx. Then qr is a sum-of-squares polynomial of

degree 4r satisfying
∫
K qr (x)dx = 1 and

∫

K
qr (x)xdx = O

(
log2 r

r2

)

.

Proof For r sufficiently large, we have h(r) < b and h(r) ≥ 1/64r2 and so we may
use Lemma 15 to obtain

∫

K
qr (x)xdx ≤ h(r) + Cr2e− 1

2 r
√
h(r) =

(

8
log r

r

)2

+ C

r2
= O

(
log2 r

r2

)

.

��
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Since f (x) ≤0 βK , f ·x on K weobtain E (r)( f ) = O((log r/r)2), the desired result.

The multivariate case Let v := ∇ f (0)/‖∇ f (0)‖ and let w1, w2, . . . wn−1 be an
orthonormal basis of v⊥. Then

U = U ( f ) := {v,w1, w2, . . . , wn−1} (25)

is an orthonormal basis, which we will use as basis of Rn .
The basic idea of the proof is as follows. For any j ∈ [n − 1], if we minimize f

in the direction of w j then we minimize the univariate polynomial f̃ (t) = f (tw j ),
which satisfies: f̃ ′(0) = 〈∇ f (0), w j 〉 = 0. Hence, by Taylor’s theorem, there is a
quadratic upper estimator when minimizing in the directionw j , so that using a regular
needle polynomial will suffice for the analysis. On the other hand, if we minimize
f in the direction v, then mintv∈K f (tv) = mint∈[0,1] f (tv), since K ⊆ Bn and
v ∈ NK (0). As explained above this univariate minimization problem can be dealt
with using 1

2 -needle polynomials to get the desired convergence rate. This motivates
defining the following sum-of-squares polynomials.

Definition 6 For r ∈ N, h ∈ (0, 1) we define the polynomial σ h
r ∈ �2nr by

σ h
r (x) = ν̂h

2

r (〈x, v〉) ·
n−1∏

j=1

νhr (〈x, w j 〉).

This construction is similar to the one used byKroó in [18] to obtain sharpmultivariate
needle polynomials at boundary points of K .

Proposition 4 We have σ h
r (0) = 1 and

σ h
r (x) ∈ [0, 1] for x ∈ K ,

σ h
r (x) ≤ 4e− 1

2 hr for x ∈ K with 〈x, v〉 ≥ h2, (26)

σ h
r (x) ≤ 4e− 1

2 hr for x ∈ K with max
j∈[n−1] |〈x, w j 〉| ≥ h. (27)

Proof Note that for any x ∈ K we have 0 ≤ 〈x, v〉 ≤ ‖x‖ ≤ 1 and |〈x, w j 〉| ≤ ‖x‖ ≤
1 for j ∈ [n − 1]. The required properties then follow immediately from those of the
needle and 1

2 -needle polynomials discussed in Theorem 12. ��
It remains to formulate and prove an analog of Lemma 14 for the polynomial σ h

r .
Before we are able to do so, we first need a few technical statements. For h > 0 we
define the polytope

Ph :=
{
x ∈ R

n : 0 ≤ 〈x, v〉 ≤ h2, |〈x, w j 〉| ≤ h for all j ∈ [n − 1]
}

.

Note that for h ∈ (0, 1), the inequalities (26) and (27) can be summarized as

σ h
r (x) ≤ 4e− 1

2 hr for x ∈ K\Ph,
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which means σ h
r (x) is exponentially small for x ∈ K outside of Ph . When instead

x ∈ K ∩ Ph , the following two lemmas show that the function value f (x) is small.

Lemma 16 Let h ∈ (0, 1). Then ‖x‖ ≤ √
nh for all x ∈ Ph.

Proof Let x ∈ Ph . By expressing x in the orthonormal basis U from (25), we obtain

‖x‖2 = 〈x, v〉2 +
n−1∑

i=1

〈x, wi 〉2 ≤ nh2,

using the definition of Ph for the second inequality. ��
Lemma 17 Let h ∈ (0, 1). Then f (x) ≤ (

βK , f + nγK , f
)
h2 for all x ∈ K ∩ Ph .

Proof Using Taylor’s Theorem 1, Lemma 16 and 〈x, v〉 ≤ h2 for x ∈ Ph , we obtain

f (x) ≤ 〈∇ f (0), x〉 + γK , f ‖x‖2 ≤ ‖∇ f (0)‖〈x, v〉 + nγK , f h
2 ≤ (

βK , f + nγK , f
)
h2.

��
We now give a lower bound on

∫
K∩Ph

σ h
r (x)dx [compare to (23)]. First we need

the following bound on vol(K ∩ Ph).

Lemma 18 Let h ∈ (0, 1). If h < εK then we have: vol(K ∩ Ph) ≥ ηK h2n vol(Bn).

Proof Consider the halfspace Hv := {x ∈ R
n : 〈v, x〉 ≥ 0}. As v ∈ NK (0), we have

the inclusion K ⊆ Hv . We show that Bn
h2

(0)∩ Hv ⊆ Ph , implying that Bn
h2

(0)∩ K ⊆
Bn
h2

(0) ∩ Hv ⊆ Ph . Let x ∈ Bn
h2

(0) ∩ Hv . By expressing x in the orthonormal basis

U ( f ) from (25), we get ‖x‖2 = 〈v, x〉2 + ∑n−1
j=1〈w j , x〉2 ≤ h4. Since x ∈ Hv

and 0 < h < 1, we get 0 ≤ 〈v, x〉 ≤ h2 and |〈w j , x〉| ≤ h2 ≤ h, thus showing
x ∈ Ph . See Fig. 6 for an illustration. We may now apply Assumption 1 to find
vol(Ph) ≥ vol(Bn

h2
(0) ∩ K ) ≥ ηK h2n vol(Bn). ��

Lemma 19 Let r ∈ N, h ∈ (0, 1). Assume that εK > h > ρ = 1/64r2. Then

∫

K∩Ph
σ h
r (x)dx ≥ 1

2n
ηKρ2n vol(Bn).

Proof The integral
∫
K∩Ph

σ h
r (x)dx is equal to

∫

K∩Ph
ν̂h

2

r (〈x, v〉) ·
n−1∏

i=1

νhr (〈x, wi 〉)dx [using Definition 6]

≥
∫

K∩Ph
�4r (〈x, v〉) ·

n−1∏

i=1

�4r (|〈x, wi 〉|)dx [using Corollary 4]
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Fig. 6 Overview of the situation
in the proof of Lemma 18. Note
that as long as v ∈ NK (0), the
entire region Bn

h2
(0) ∩ K (in

dark gray) is contained in Ph

≥
∫

K∩Pρ

�4r (〈x, v〉) ·
n−1∏

i=1

�4r (|〈x, wi 〉|)dx [since Pρ ⊆ Ph]

≥
∫

K∩Pρ

�4r (ρ) ·
n−1∏

i=1

�4r (ρ)dx [since �4r (t) ≥ �4r (ρ) if t ∈ [0, ρ]]

≥
∫

K∩Pρ

1

2n
dx = 1

2n
vol(K ∩ Pρ)

[

as�4r (ρ) = 1

2

]

≥ 1

2n
ηKρ2n vol(Bn) [using Lemma 18]

��
We are now able to prove an analog of Lemma 14.

Lemma 20 Let r ∈ N and h ∈ (0, 1). If εK > h > 1/64r2 then we have

1
∫
K σ h

r (x)dx

∫

K
σ h
r (x) f (x)dx ≤ (βK , f + nγK , f )h

2 + C ′r4ne− 1
2 hr ,

where C ′ is a constant depending only on K .

Proof Set ρ = 1/64r2. By Lemma 17, f (x) ≤ (βK , f +nγK , f )h2 for all x ∈ K ∩ Ph .

Moreover, by Proposition 4, we have σ h
r (x) ≤ 4e− 1

2 hr for all x ∈ K\Ph . Hence,
∫

K
σ h
r (x) f (x)dx =

∫

K∩Ph
σ h
r (x) f (x)dx +

∫

K\Ph
σ h
r (x) f (x)dx

≤ (βK , f + nγK , f )h
2
∫

K∩Ph
σ h
r (x)dx + 4e− 1

2 hr fmax,K vol(Bn),

where fmax,K = maxx∈K f (x). Combining with

∫

K
σ h
r (x)dx ≥

∫

K∩Ph
σ h
r (x)dx ≥ 1

2n
ηKρ2n vol(Bn),
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where we use Lemma 19 for the last inequality, we obtain

1
∫
K σ h

r (x)dx

∫

K
σ h
r (x) f (x)dx ≤ (βK , f + nγK , f )h

2 + 4 · 2n · 642n fmax,K

ηK
r4ne− 1

2 hr .

This shows the lemma, with the constant C ′ = 4·2n ·642n fmax,K
ηK

. ��
From the preceding lemma we get the following corollary, which immediately implies
Theorem 11.

Corollary 5 For any r ∈ N, set h(r) = (8n + 4) log rr and consider the polynomial

qr := σ
h(r)
r /

∫
K σ

h(r)
r (x)dx. Then qr is a sum-of-squares polynomial of degree 4nr,

which satisfies
∫
K qr (x)dx = 1 and

∫

K
qr (x) f (x)dx = O

(
log2 r

r2

)

.

Proof For r sufficiently large, we have εK > h(r) > 1/64r2 and so we may apply
Lemma 20, which implies directly

∫

K
qr (x) f (x)dx ≤ (βK , f + nγK , f )h(r)2 + C ′r4ne− 1

2 rh(r) = O

(
log2 r

r2

)

.

��

5 Numerical experiments

In this section, we illustrate some of the results in this paper with numerical examples.
We consider the test functions listed below in Table 2, the latter four of which are
well-known in global optimization and also used for this purpose in [12].

We compare the behaviour of the error E (r)
K ( f ) for these functions on different sets

K , namely the hypercube, the unit ball, and a regular octagon in R
2. On the unit ball

and the regular octagon, we consider the Lebesgue measure. On the hypercube, we

Table 2 Polynomial test functions

Name Formula fmin,[−1,1]2

Linear fli (x) = x1 fli (−1, 0) = −1

Quadratic fqu(x) = x1 + x22 fqu(−1, 0) = −1

Booth fbo(x) = (10x1 + 20x2 − 7)2 + (20x1 + 10x2 − 5)2 fbo(
1
10 , 3

10 ) = 0

Matyas fma(x) = 26(x21 + x22 ) − 48x1x2 fma(0, 0) = 0

Camel fca(x) = 50x21 − 2625
4 x41 + 15625

6 x61 + 25x1x2 + 25x22 fca(0, 0) = 0

Motzkin fmo(x) = 64x41 x
2
2 + 64x21 x

4
2 − 48x21 x

2
2 + 1 fmo(± 1

2 ,± 1
2 ) = 0
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consider both the Lebesgue measure and the Chebyshev measure. In each case, we
compute the Lasserre bounds of order r in the range 1 ≤ r ≤ 20, corresponding to
sos-densities of degree up to 40.

Computing the bounds As explained in Sect. 1, it is possible to compute the degree
2r Lasserre bound f (r)

K ,μ by finding the smallest eigenvalue of the truncated moment
matrix Mr , f of f , defined by

Mr , f (α, β) =
∫

K
f pα pβdμ(x) (α, β ∈ N

n
r ),

assuming that one has an orthonormal basis {pα : α ∈ N
n
r } of R[x]r w.r.t. the inner

product induced by the measure μ, i.e., such that
∫
K pα pβdμ(x) = δα,β .

More generally, if we use an arbitrary linear basis {pα} of R[x]r then the bound
f (r)
K ,μ is equal to the smallest generalized eigenvalue of the system:

Mr , f v = λBrv, (28)

where Br := Mr ,1 is the matrix with entries Br (α, β) = ∫
K pα pβdμ(x). Note that if

the pα are orthonormal, then Br is the identity matrix and one recovers the eigenvalue
formulation of Sect. 1. For details, see, e.g., [21].

This formulation in terms of generalized eigenvalues allows us to work with the
standard monomial basis of R[x]r . To compute the entries of the matrices Mr , f and
Br , we therefore only require knowledge of the moments:

∫

K
xαdμ(x) (α ∈ N

n).

For the hypercube, simplex and unit ball, closed form expressions for these moments
are known (see, e.g., Table 1 in [9]). For the octagon, they can then be computed
by triangulation. We solve the generalized eigenvalue problem (28) using the eig
function of the SciPy software package.

The linear caseWeconsider first the linear case f (x) = fli (x) = x1 and K = [−1, 1]2
equipped with the Lebesgue measure. Figure 7 shows the values of the parameters
E (r)
K ( fli ) and E

(r)
K ( fli )·r2. In accordancewith Theorem 3 [and 2(ii)], it appears indeed

that E (r)
K ( fli ) = O(1/r2), as suggested by the fact that the parameter E (r)

K ( fli ) · r2
approaches a constant value as r grows.

The unit ball Next, we consider the unit ball B2, again equipped with the Lebesgue
measure. Figure 8 shows the values of the ratio

E (r)
B2 ( f∗)/E

(r)
[−1,1]2( f∗) (29)

for ∗ ∈ {li, qu, bo,ma, ca,mo}. In each case, the ratio (29) appears to tend to a
constant value, suggesting that the error E (r)

K ( f∗) has similar asymptotic behaviour
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Fig. 7 The error of upper bounds for f (x) = x1 computed on [−1, 1]2 w.r.t. the Lebesgue measure

Fig. 8 Comparison of the errors of upper bounds for the functions in Table 2 computed on [−1, 1]2 and the
unit ball B2 w.r.t. the Lebesgue measure

for K = [−1, 1]2 and K = B2. This matches the result of Theorem 4 both in the case
of a minimizer on the boundary (∗ ∈ {li, qu}) and in the case of a minimizer in the
interior (∗ ∈ {bo,ma, ca,mo}).
The regular octagon Consider now the regular octagon (with the Lebesgue measure)

O = conv

{

(±1, 0), (0,±1),

(

±1

2

√
2,±1

2

√
2

)}

⊆ [−1, 1]2, (30)

which is an example of a convex body that is not ball-like (see Definition 3). Note that
as a result, the strongest theoretical guarantee we have shown for the convergence rate
of the Lasserre bounds on O is in O(log2 r/r2) (see Theorem 11). Figure 9 shows the
values of the ratio

E (r)
O ( f∗)/E (r)

[−1,1]2( f∗) (31)
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Fig. 9 Comparison of the errors of upper bounds for the functions in Table 2 computed on [−1, 1]2 and the
regular octagon O [see (30)] w.r.t. the Lebesgue measure

for ∗ ∈ {li, qu, bo,ma, ca,mo}. As for the unit ball, the ratio (31) seemingly tends to
a constant value for each of the test polynomials. This indicates a similar asymptotic
behaviour of the error E (r)

K ( f∗) for K = [−1, 1]2 and K = O and suggests that the
convergence rate guaranteed by Theorem 11 might not be tight in this instance.

The Chebyshev measure Finally, we consider the Chebyshev measure dμ(x) = (1 −
x21 )

−1/2(1 − x22 )
−1/2dx on [−1, 1]2, which we compare to the Lebesgue measure.

Figure 10 shows the values of the fraction

E (r)
[−1,1]2,μ( f∗)/E (r)

[−1,1]2( f∗) (32)

for ∗ ∈ {li, qu, bo,ma, ca,mo}. Again, we observe that the fraction (32) appears to
tend to a constant value in each case, matching the result of Theorem 3.

6 Concluding remarks

Extension to non-polynomial functionsThroughout, we have assumed that the function
f is a polynomial. Strictly speaking, this assumption is not necessary to obtain our
results. For the results in Sect. 3 and in Theorem 11, it suffices that f has an upper
estimator, exact at one of its global minimizers on K , and satisfying the properties
given in Lemma 4. In light of Taylor’s Theorem, such an upper estimator exists for
all f ∈ C2(Rn,R). For Theorem 10, it is even sufficient that f satisfies f (x) ≤
f (a)+ M f ||x −a|| for all x ∈ f , where M f > 0 is a constant. That is, it suffices that
f is Lipschitz continuous on K . Finally, as shown in [11, Theorem 10], results on the
convergence rate of the bounds f (r) for polynomials f extend directly to the case of
rational functions f .
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Fig. 10 Comparison of the errors of upper bounds for the functions in Table 2 computed on [−1, 1]2 w.r.t.
the Lebesgue and Chebyshev measures

Accelerated convergence results For the minimization of linear polynomials the
convergence rate of the bounds f (r) is shown to be in the order �(1/r2) for the
hypercube [10] and the unit sphere [11]. Hence, for arbitrary polynomials, a quadratic
rate is the best we can hope for. On the other hand, if we restrict to a class of func-
tions with additional properties, then a better convergence rate can be shown. Indeed,
a faster convergence rate can be achieved when the function f has many vanishing
derivatives at a global minimizer. We will make use of the following consequence of
Taylor’s theorem.

Theorem 13 (Taylor’s theorem) Assume f ∈ Cβ(Rn,R) with β ≥ 1. Then we have

f (x) ≤
∑

α∈Nn ,|α|≤β−1

1

α! (D
α)( f )(a)(x − a)α + δK , f ‖x − a‖β for all x ∈ K

for some constant δK , f > 0.

Theorem 14 Let f ∈ Cβ(Rn,R) (β ≥ 1) and let a be a global minimizer of f on K .
Assume that all partial derivatives (Dα f )(a) vanish for 1 ≤ |α| ≤ β −1. Then, given
any ε > 0 we have

E (r)( f ) = O

(
logβ r

rβ

)

= o

(
1

rβ−ε

)

.

Proof This follows as a direct application of Proposition 2. ��
This applies, e.g., for the univariate polynomial f (x) = xβ on the interval K = [0, 1].
As an application we can answer in the negative a question posed in [10], where the
authors asked about the existence of a ‘saturation result’ for the convergence rate of
the Lasserre upper bounds, namely whether
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E (r)( f ) = o

(
1

r2

)
?⇐⇒ f is a constant polynomial.

Application to the generalized problem of moments (GPM) and cubature rules As
shown in [7] results on the convergence analysis of the bounds E (r)( f ) have direct
implications for the following generalized moment problem (GMP):

val := inf

{∫

K
f0(x)dν(x) :

∫

K
fi (x)dν(x) = bi (i ∈ [m])

}

,

where bi ∈ R and fi ∈ R[x] are given, and the variable ν is a Borel measure on K .
Bounds can be obtained by searching for measures of the form qrdμ with μ a given
Borel measure on K and qr ∈ �r . Their quality can be analyzed via the parameter


(r) = min
qr∈�r

m
max
i=0

∣
∣
∣
∣

∫

K
fi (x)qr (x)dμ(x) − bi

∣
∣
∣
∣ ,

setting b0 = val. It is shown in [7] (see also [9]) that, if E (r)
K ,μ( f ) = O(ε(r)) for all

polynomials f , then
(r) = O(
√

ε(r)). Hence, our results in this paper imply directly
that 
(r) = O(log r/r) for general convex bodies and O(1/r) for hypercubes, balls
and simplices (recall Table 1 for exact details). An important instance of (GMP) is
finding cubature schemes for numerical integration on K (see, e.g., [9] and references
therein). If {x ( j), λ j : j ∈ [N ]} form a cubature scheme with positive weights λ j > 0
that permits to integrate any polynomial of degree at most d + 2r on K w.r.t. measure
μ, then, as shown in [23], we have

f (r)
K ,μ ≥ f (r)

cub := N
min
j=1

f
(
x ( j)

)
≥ fmin,K .

Hence any upper bound on f (r)
K ,μ directly gives an upper bound on the parameter f (r)

cub.

Conversely, any lower bound on f (r)
cub implies a lower bound on f (r)

K ,μ, which is the fact

used in [10,11] to show the lower bound �(1/r2) for the hypercube and the sphere.
Finally, let us mention that the needle polynomials are used already in [18] to

study cubature rules. There, the author considers degree r cubature rules for which
the sum

∑
j∈[N ] |λ j | is polynomially bounded in r . For all x ∈ K , A ⊆ K , define the

parameters

ρ(x, A) := sup
{
h > 0 : Bn

h (x) ∩ A = ∅}
, ρ(K , A) := sup

x∈K
ρ(x, A),

which indicate how densely A is distributed at x or in K , respectively. Kroó [18] shows
that if Xr is the set of nodes of a degree r cubature rule on a convex body K , we then
have

ρ(K , Xr ) = O(log r/r)
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and that, if x0 ∈ K is a vertex of K , we even have

ρ(x0, Xr ) = O
(
log2 r/r2

)
.

Although the asymptotic rates here are the same as the ones we find in Theorems 10
and 11, we are not aware of any direct link between the density of cubature points and
the convergence rate of the Lasserre upper bounds.

Some open questions There are several natural questions left open by this work. The
first natural question is whether the convergence rate in O(1/r2) can be proved for all
convex bodies. So far we can only prove a rate in O(log2 r/r2), but we suspect that the
log r term is just a consequence of the analysis technique used here. The computational
results for the octagon in Sect. 5 seem to support this. Another question is whether
this also applies to general compact sets under Assumption 1, since we know of no
example showing this is not possible.

In particular, it is interesting to determine the exact rate of convergence for poly-
topes.We could so far only deal with hypercubes and simplices. Themain tool we used
was the ‘local similarity’ of the simplex with the hypercube. For a general polytope K ,
if theminimum is attained at a point lying in the interior of K or of one of its facets, then
we can still apply the ‘local similarity’ tool (and deduce the O(1/r2) rate). However,
at other points (like its vertices) K is in general not locally similar to the hypercube, so
another proof technique seems needed. A possible strategy could be splitting K into
simplices and using the known convergence rate for the simplex containing a global
minimizer; however, a difficulty there is keeping track of the distribution of mass of
an optimal sum-of-squares on the other simplices.
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