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Abstract: The literature on portfolio selection and risk measurement has considerably advanced in 
recent years. The aim of the present paper is to trace the development of the literature and identify 
areas that require further research. This paper provides a literature review of the characteristics of 
financial data, commonly used models of portfolio selection, and portfolio risk measurement. In the 
summary of the characteristics of financial data, we summarize the literature on fat tail and 
dependence characteristic of financial data. In the portfolio selection model part, we cover three 
models: mean-variance model, global minimum variance (GMV) model and factor model. In the 
portfolio risk measurement part, we first classify risk measurement methods into two categories: 
moment-based risk measurement and moment-based and quantile-based risk measurement. 
Moment-based risk measurement includes time-varying covariance matrix and shrinkage 
estimation, while moment-based and quantile-based risk measurement includes semi-variance, VaR 
and CVaR. 

Keywords: portfolio selection; risk measure; fat tail; Copula; shrinkage; semi-variance; CVaR 
 

1. Introduction 

This paper is motivated by three stylized facts about the operation of real-world financial 
markets. First, as real-world financial data are asymmetric and fat-tailed, the return series cannot be 
approximated by normal distribution. Second, financial time series are marked by volatility 
clustering and last, dependence structure of multivariate distribution is required to model such data 
and the model needs to be flexible enough to accommodate different types of financial data. Given 
these characteristics of financial data, many portfolio selection and risk measurement models have 
been developed to account for such data. Interestingly, we have not come across literature that 
reviews these developments in recent years. The present research would help fills this important gap. 
Accordingly, the aim of this paper is to review of development of the literature in the above areas 
and identify the directions for future research. 

As already stated, financial data are known to exhibit some unique characteristics such as fat 
tails (leptokurtosis), volatility clustering and possible asymmetry. When the tails of distribution have 
a higher density than that expected under conditions of normality, it is known as fat tailed data 
distribution. It is ‘a distribution that has an exponential decay (as in the normal) or a finite endpoint 
is considered thin tailed, while a power decay of the density function in the tails is considered a fat 
tailed distribution’ (LaBaron and Samanta 2004, p. 1). As financial data typically exhibit asymmetry 
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and fat tails, the Gaussian distribution cannot adequately represent it. Consequently, alternative 
parametric distributions that can account for skewness and fat tails have been suggested in the 
literature. Over the years, the fat tail phenomenon and the various methods used to capture the 
characteristics of the fat tail of financial data has generated considerable interest among researchers. 
Similarly, complex dependency patterns such as asymmetry or dependence in the extremes are found 
in the financial data. The full characteristics of such data cannot be adequately captured by 
multivariate Gaussian distributions given that it cannot model extreme events. The multivariate 
Student’s t and its skewed version could be valid alternatives but also have some disadvantages as 
outlined by Bauwens and Laurent (2005) and others. Consequently, for such data increasingly the 
copula approach is being used. It not only can describe the dependence characteristics but also can 
be combined with other distributions such as Student t distribution to describe fat tails. 

We proceed as follows: Section 2 provides an overview of the above characteristics of financial 
data, Section 3 reviews the literature on portfolio selection models, Section 4 reviews the literature on 
factor models, Section 5 is devoted to portfolio risk measurement literature review and Section 6 
provides directions for future research and conclusions of the study. 

2. Fat tail of Financial Data and Data Dependence 

In this section, we review the literature on fat tails and data dependence. 

2.1. The Concept of Fat Tails 

Mandelbrot (1963) first introduced the concept of fat tails in mathematical finance to describe 
cotton price changes. It was followed by many econometric studies devoted to the quest for suitable 
classes of models that capture the essential statistical properties of stock and stock index returns, for 
example, Heyde et al. (2001), McAleer (2005), Liu and Heyde (2008) and Tsay (2010), among many 
others. 

The fat tail distribution may have more than one definition, as there is no universal definition 
for the term tail in the first place. It generally refers to a probability distribution with a tail that looks 
fatter than usual or the normal distribution. A good example may be the Student t distribution which 
is a fat tailed distribution and exhibits tails that are fatter than the normal. It is also a leptokurtic 
distribution which has excess positive kurtosis as illustrated in Figure 1. 

 

Figure 1. Student t distribution is leptokurtic and has a fatter tail when compared to a standard normal 
distribution. 

Some researchers consider that a fat tail distribution refers to a subclass of heavy tailed 
distributions that exhibit power law decay behavior as well as infinite variance. One example may be 
a distribution X defined with a fat right tail by P(X > x) ∼ x−α as x → ∞, where P is the probability for 
the cumulative distribution, α > 0 is a (small) constant and referred to as the tail index, and the tilde 
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notation “~” is used to mean that there exists some finite value of x above which the probability 
distribution follows the right-hand side of the expression, that is, asymptotically the tail of the 
distribution decays like a power law (for more, see e.g., Kausky and Cooke (2009). It may be noted 
that a Student t distribution can be considered to be fat tailed by rewriting its cumulative or density 
function form, and it has finite variance if the degrees of freedom is larger than 2. In addition, a fat-
tailed distribution is heavy tailed, although not every heavy tailed distribution has a fat tail. For 
example, the Weibull distribution is heavy-tailed but not fat-tailed. 

Empirically, we present two figures as an example for real-world data. The real data is the daily 
Tableau Software close price data from 15 March 2018 to 14 March 2019 collected via Yahoo! Finance 
at https://au.finance.yahoo.com/quote/DATA/history?p=DATA. Figure 2 shows its time series plots, 
with the upper panel for the simple returns and lower panel for the log returns. Figure 3 compares 
the empirical Tableau densities with normal densities and shows that the Tableau data reveals 
obviously a fat tail and high peak. 

 

Figure 2. Time series plots of daily returns of Tableau data. 

The initial studies that followed the seminal work of Mandelbrot (1963) used the stable Pareto 
distribution to simulate the fat tail of such data. Fama (1965), Fama and Roll (1968) also used stable 
Pareto distribution to study the fat tail characteristics of financial data. Such distributions have many 
properties exhibited by normal distribution such as closeness under summation. However, Upton 
and Shannon (1979) as well as Friedman and Vandersteel (1982) claimed that a stable Pareto 
distribution was inappropriate for simulating the fat tail shape of financial data because the return 
was more peaked and had fatter tails. Ghose and Kroner (1995) found that the GARCH model and 
the stability model had something in common, which meant that many of the discoveries of the stable 
distributions with fat tail in finance were caused by temporary volatility aggregation. 
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Figure 3. A comparison of simple return and log return of daily Yahoo finance densities 
(blue) with normal densities (green). The above figure compares the empirical Tableau 
densities with normal densities and shows that the Tableau data reveals obviously a fat tail 
and high peak. 

Subsequently, Sornette et al. (2000) introduced a multivariate fat tailed asset return distribution 
and depicted accurately the high-order cumulants of wealth changes in arbitrary portfolios. A 
computational technique of functional integrals and Feynman diagrams borrowed from particle 
physics was used. Most of the empirical applications of the stochastic volatility (SV) model assume 
that the conditional distribution of returns, given the latent volatility process, is normal. Liesenfeld 
and Jung (2000) used German stock data to compare stochastic volatility model based on conditional 
normal distribution and conditional fat tail distribution. These conditional fat tail distributions were 
mainly Student t distributions and generalized error distributions. Cont (2001) presented a set of 
stylized empirical facts (including fat tail) emerging from the statistical analysis of price variations in 
various types of financial markets and analyzed how these stylized empirical facts invalidated many 
of the common statistical approaches. Chib et al. (2002) discussed a class of generalized stochastic 
volatility models defined by the horizontal effects of fat tails, fluctuations, observational and 
evolutionary equations, and the covariate effects of the jumping part of the observational equation 
and provided two Markov Chain Monte Carlo (MCMC) fitting algorithms for the above models. In 
addition, simulation-based inference in generalized models of stochastic volatility was considered. 

Zhou (2002) used the multivariate normal mixture model to characterize the fat tail 
characteristics of market risk factors, examined the relationship between risk and return, and 
established an asset pricing model with fat tail characteristics excluding options. This model 
provided a new perspective to study asset pricing. Wong et al. (2009) proposed Student t mixture 
autoregressive model which is also able to capture serial correlations, time-varying means and 
volatilities, and the shape of the conditional distributions can be time varied from short-tailed to long-
tailed, or from unimodal to multimodal. Also, Chen and Yu (2013) proposed a novel nonlinear VaR 
method to model the risk of option portfolio under fat tailed market risk factors. Multivariate mixture 
of normal distributions was used to depict the heavy-tailed market risk factors. 

Glasserman (2004) used multivariate t distribution to characterize the risk factors of fat tailed 
market, and indirectly obtained an expression of closed moment generating function. This expression 
reflects the change of portfolio value when the fat tailed problem was transformed into thin tailed 
problem. On this basis, the moment generating function was obtained by using the structure of 
multivariate t distribution. Albanese et al. (2004) used multivariate t distribution to characterize the 
fat tail of market risk factors. First, the matrix transformation of option portfolio value was derived 
from Delta-Gamma-Theta model. Thereafter, the density function of option portfolio value was 
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discretized. Finally, the approximate VaR value was calculated by Fourier inverse transformation 
and linear interpolation. This new method does not assume that the characteristic function for the 
return model is known explicitly. Considering the difference between multivariate normal 
distribution and multivariate t distribution in the description of market risk factors, Albanese and 
Campolieti (2006) proposed the probability density function for calculating the change of option 
portfolio value and the Monte Carlo simulation method for estimating the multivariate VaR at a given 
confidence level and explored the relationship between a normal distribution and a fat tail 
distribution. Like Glasserman (2004), Johannes et al. (2009) deduced the closed expression of moment 
generating function in the case of multivariate t distribution and compared Fourier-Inversion method 
with Monte Carlo simulation method. The results showed that the Fourier-inversion method was 
much quicker than Monte Carlo simulation method and that Fourier-Inversion was a good way to 
calculate option VaR. Asai (2008) studied two models for describing fat tail and volatility dependence: 
autoregressive stochastic volatility model with Student t distribution (ARSV-T) and multifactor 
stochastic volatility (MFSV) model, and the results showed that ARSV-T model provided a better fit 
than MFSV model based on Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC). 

Asai (2009) compared stochastic volatility models defined by normal distribution and other fat 
tailed distributions, such as Student t distribution and generalized error distribution. Delatola and 
Griffin (2013) proposed a Bayesian semiparametric stochastic volatility model, and this model 
allowed the distribution of returns to be fat tail and allowed the correlation between returns and 
fluctuations. Abanto-Valle et al. (2015) proposed a stochastic volatility model which assumed that the 
return followed the biased Student t distribution. This model could flexibly control the skewness and 
the fat tail distribution of the return condition. Meanwhile, an effective MCMC algorithm was given 
to estimate and predict the parameters. Lafosse and Rodríguez (2018) combined stochastic volatility 
model with GH Skew Student t distribution to characterize the skewness and fat tail of financial data 
and showed the evidence of asymmetries and heavy tails of daily stocks returns data. Gunay et al. 
(2018) noted that capturing conditional distributions, fat tails and price spikes was the key to 
measuring risk and accurately simulating and predicting the volatility of energy futures. These 
researchers tried to model the volatility of energy futures under different distributions. 

2.2. The Dependence of Financial Data 

Financial data are usually interdependent. They also exhibit a tendency of volatility clustering, 
that is, temporal dependence, in which large financial returns are followed by large financial returns. 
The interdependence of financial data has been extensively researched in various fields of finance, 
for example, following the US stock market crash of 1987, the contagion spread to the UK and other 
developed countries (King and Wadhwani 1990). To model the non-linear dependence in data, 
following Engle (1982), many ARCH-type models have been proposed. However, assumption of iid 
in such models makes their use inappropriate to model non-linear dependence in a univariate series 
or simultaneous dependence in two or more timeseries. Copula comes to rescue here. Some important 
publications are listed in the following table. 

Copula proposed by Sklar (1959) can identify the dependency structure, capture the potential 
nonlinear correlation, and fit the dependency of financial data well, which makes it a good choice to 
measure correlation (Embrechts 1999). Copula refers to “functions that join or couple multivariate 
distribution functions to their one-dimensional marginal distribution functions” (Nelsen 1999, p. 1). 
The copula decomposes an n-dimensional distribution function in to the marginal distribution 
functions and the dependence part. It is the latter that the copula describes. In Table 1 below some 
key research work on copula has been included.  
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Table 1. Selected work on Copula. 

Author Year  Paper/Book/Thesis Title (Please See References for Details)  
Sklar 1959 Fonctions derépartitionàn dimensions et leurs marges 
Joe 1997 Multivariate Models and Dependence Concepts 
Embrechts 1999 An Introduction to Copulas 
Mashal and Zeevi 2002 Beyond correlation: Extreme co-movements between financial assets 
Van den Goorbergh et al. 2005 Bivariate option pricing using dynamic copula models 
Kole et al. 2007 Selecting Copulas for risk management 
Hafner and Reznikova 2010 Efficient estimation of a semiparametric dynamic copula model 

“Modern risk management calls for an understanding of stochastic dependence going beyond 
simple linear correlation” (Embrechts et al. 2001). These researchers emphasized the necessity to use 
Copula to simulate multivariate correlations in financial data given its stochastic dependence and 
pitfalls. Mashal and Zeevi (2002) showed that Student t Copula had an advantage over other 
multivariate Copulas in fitting financial data. Kole et al. (2007) used goodness-of-fit test for t, 
Gaussian and Gumbel Copula in risk management of linear assets and found that t Copula had more 
advantages than Gaussian and Gumbel Copula. Sak et al. (2010) used a flexible and accurate model, 
such as t Copula dependency structure and generalized hyperbolic distribution, to simulate 
logarithmic returns. They also calculated the tail probability of the current asset portfolio. 

Studies have shown evidence of two types of asymmetries in the joint distribution of stock 
returns: skewness in the distribution of individual stock returns and an asymmetry in the dependence 
between stocks. Patton (2004) showed that the rotational Gumbel Copula function was superior than 
the normal and the Student t Copula, in describing the asymmetric dependency structure of two stock 
indexes. Trivedi and Zimmer (2006) considered the use of the copula approach for a model with three 
jointly determined outcomes. The model could handle the discrete case in which outcomes include a 
mixture of dichotomous choices and discrete count data. They applied this technique to study self-
selection and interdependence between health insurance and health care demand among married 
couples. Hu (2006) proposed a hybrid Copula+ model to capture different types of dependent 
structures, in which the marginal distribution of each market asset was estimated by nonparametric 
method and the mixed Copula was estimated by quasi-maximum likelihood method. Patton (2006) 
extended the Copula theory to allow conditional variables, analyzed two important exchange rates 
using different forms of Copula-GARCH model, and used them to construct a flexible model of 
conditional dependency structure of these exchange rates. Liu and Luger (2009) adapted and 
examined an iterative (fixed-point) algorithm for the maximum-likelihood estimation of copula-
based models that circumvents the need to compute second-order derivatives of the full-likelihood 
function. The algorithm exploits the natural decomposition of a potentially complicated likelihood 
function: the first part is a working likelihood that only involves the parameters of the marginals and 
the residual part is used to update estimates from the first part. 

Van den Goorbergh et al. (2005) studied the price problem of Binary Options with correlations 
between assets and used the parameter Copula family with multiple alternative Gaussian 
dependency structures to fit the correlation. The relationship was assumed to be a function of asset 
volatility and it changed with time. Since then, time-varying Copula model has been extensively 
studied. Bartram et al. (2007) used the time-varying Copula model to study the effect of the 
introduction of the euro on the dependence between 17 European stock markets from 1994 to 2003. 
The time-varying Copula model used the GJR-GARCH-T model to realize the marginal distribution 
and Gauss Copula to realize the joint distribution. These could capture the time-varying nonlinear 
correlations. The correct modeling of non-Gaussian dependences is a key issue in the analysis of 
multivariate time series, Giacomini et al. (2009) used copula functions with adaptively estimated 
time-varying parameters for modeling the distribution of returns and applied it to the portfolio VaR. 
Hafner and Reznikova (2010) proposed a new semiparametric dynamic Copula model in which the 
marginal of Copula was assigned as a parameter GARCH-type process while the dependent 
parameters of Copula could change with time in a nonparametric manner. Negative extreme changes 
were common in international stock markets, Garcia and Tsafack (2011) pointed out the limitations 
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of some common methods and proposed a regime-switching Copula model, which included a normal 
system with symmetric dependencies and an asymmetric dependency. The system was applied to 
allow changes in the market between the international stock and bond markets. Hafner and Manner 
(2012) proposed a dynamic Copula model in which dependent parameters followed an 
autoregressive process. Since this kind of model includes Gaussian Copula with stochastic correlation 
process, it can be regarded as a generalization of multivariate stochastic volatility model. Mendes and 
Marques (2012) found that the dependency structure between assets was not only linear but also used 
robust estimation of dual Copula model to fit logarithmic returns. Chen and Tu (2013) used four 
different types of time-varying Copula to fit the index futures and spot returns by relaxing the 
traditional normal joint distribution hypothesis and improved the hedging portfolio VaR. Creal and 
Tsay (2015) constructed a series of Copula families with time-varying dependent parameters by 
writing Copula as a factor model with random loads. 

The Vine Copula (Joe 1997) has great advantages in describing the relationship between multiple 
financial assets and is widely used in financial risk management. Maugis and Guegan (2010) 
compared the Vine Copula method with several traditional GARCH models and concluded that the 
Vine Copula method could give better portfolio VaR prediction. As distinct from the existing Vine 
Copula structure strategy, DiβMann et al. (2013) proposed automatic Copula selection and estimation 
technology based on graph theory. It enabled flexible modeling of complex dependencies, that is, 
even those with larger dimensions. So and Yeung (2014) discussed the construction+ of Vine Copula 
structure and studied the relationship between financial markets and Vine Copula theory. Geidosch 
and Fischer (2016) confirmed the advantages of Vine Copulas over traditional Copula in simulating 
the dependent structure of credit portfolios. Aiming to measure risk and finding the optimal weights 
of portfolios containing three financial instruments, Pastpipatkul et al. (2018) used C-D vine Copulas 
method to establish the dependence relationship of each pair of financial instruments and used Monte 
Carlo simulation technology to generate simulation data to calculate risk value (VaR) and expected 
shortfall. 

3. Portfolio Selection: A Review of Common Models 

A commonly used model for portfolio selection is the mean-variance model, in which, the 
optimal portfolio weight depends on the mean and covariance matrix of asset returns. Usually, the 
available portfolio weights are obtained by using sample mean and sample covariance matrix to 
replace the true mean and covariance matrices of asset returns respectively. However, the estimation 
of sample means, and covariance usually involves errors and the estimation errors in sample mean 
are much larger than those in sample covariance. This makes the mean-variance model more sensitive 
to estimation errors. Therefore, the global minimum variance models whose optimal portfolio weight 
only depends on the covariance matrix is used. Furthermore, for the measurement of portfolio risk, 
the factor model is commonly used to estimate covariance matrix. 

Accordingly, the literature on portfolio selection has developed in three strands: the traditional 
mean-variance model and the newer, global minimum variance model and the factor model. 

3.1. Mean-Variance Model 

In the traditional mean-variance model proposed by Markowitz (1952), the return of financial 
assets is represented by a random variable with Gaussian distribution. The assumption of normal 
(Gaussian) distribution means that the return of assets depends only on the mean and variance. 
Markowitz (1959) extended the mean-variance model in a pioneering book on portfolio selection. 
Merton (1972) studied the application of the mean-variance model allowing short-sale in portfolio 
selection. Over the years, many studies have used the above models. Some groundbreaking articles 
are summarized in Table 2 below. 
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Table 2. Selected works on Portfolio Selection. 

Author Year  Paper/Book/Thesis Title (Please See References for Details)  
Markowitz 1952 Portfolio Selection 
Samuelson 1969 Lifetime portfolio selection by dynamic stochastic programming 
Merton 1969 Life time portfolio selection under uncertainty: The continuous-time case 

Pogue 1970 
An extension of the Markowitz portfolio selection model to include 
variable transactions’ costs, short sales, leverage policies and taxes 

Merton 1972 An analytic derivation of the efficient portfolio frontier 
Fernández and Gómez 2007 Portfolio selection using neural networks 

Markowitz’s traditional mean-variance model is a static model in which investors can only make 
investment decisions at the beginning of the investment period and then wait until the end of the 
investment period. Based on this, the mean-variance model was later extended to the multi-period 
case. Samuelson (1969) proposed a discrete time multi-period consumption-investment model to 
maximize the end-of-term expected utility for investors. Grauer and Hakansson (1993) compared the 
effects of mean-variance asymptotic and quadratic asymptotic in a discrete time dynamic investment 
model. Yi et al. (2008) used the mean-variance model to consider the discrete time portfolio 
optimization of asset liability management under uncertain investment level and deduced the 
analytical optimal strategy by using embedding technology. Wu and Li (2011) studied the discrete 
time mean-variance portfolio model with regime switching under the assumption of stochastic cash 
flow. 

Merton (1969, 1971) studied the maximized expected return of continuous time model under a 
given planning period, which is a pioneering work of continuous time research. Karatzas et al. (1987) 
considered a generalized consumption-investment model with a single member, which aimed to 
maximize the linear combination of the total expected discount utility and the end-of-term wealth 
utility from the consumption over a continuous investment period. Li and Ng (2000) firstly used 
embedding technology to solve the problem of inseparability and constructed a framework with 
mean-variance model in a discrete case. Xie et al. (2008) used the stochastic optimal linear-quadratic 
control technique to obtain the optimal dynamic strategy for continuous time mean-variance 
portfolio selection in incomplete markets. Using dynamic programming and embedding techniques, 
the closed form optimal strategy and efficient frontier were derived. Xu and Wu (2014) studied the 
continuous time mean-variance portfolio selection problem with inflation in incomplete markets and 
obtained the efficient bounds of dynamic optimal strategy and mean-variance model. Wu and Chen 
(2015) studied the time-consistent multi-period mean-variance portfolio selection problem under the 
assumption that risk aversion was dynamically dependent on market conditions. 

Pogue (1970) first gave a description of the mean-variance portfolio problem in the presence of 
transaction costs. Davis and Norman (1990) further explored the portfolio selection problem under 
proportional transaction costs. Dumas and Luciano (1991), Morton and Pliska (1995) studied portfolio 
selection with proportional transaction costs and fixed transaction costs, respectively. Yoshimoto 
(1996) first assumed that the transaction cost was a V-shaped function, and then obtained the optimal 
portfolio strategy. Oksendal and Sulem (2002) studied the optimal consumption and portfolio under 
fixed and proportional transaction costs, with the objective of maximizing cumulative consumption 
expected utility within the scope of planning. Xue et al. (2006) constructed a mean-variance portfolio 
selection model with concave transaction costs to capture real market conditions. The authors 
provide a branch and bound algorithm as a solution. Dai and Zhong (2008) proposed a numerical 
penalty method to solve the continuous time portfolio selection problem with proportional 
transaction costs. Peng et al. (2011) studied portfolio optimization with quadratic transaction costs in 
the framework of the mean-variance model. Wang and Liu (2013) studied the multi-period mean-
variance portfolio selection problem with fixed and proportional transaction costs and defined the 
indirect utility function to solve the problem by using dynamic programming and Lagrange 
multiplier. Liagkouras and Metaxiotis (2018) proposed a new multi-period fuzzy portfolio 
optimization algorithm for multistage mean-variance fuzzy portfolio optimization with transaction 
costs. 
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To make the model more practical, different constraints were introduced in the mean-variance 
model. Fernández and Gómez (2007) generalized the standard mean-variance model including 
cardinality and boundary constraints, and the constraints guaranteed investment in a given set of 
different assets and limited the amount of capital invested in each asset. Soleimani et al. (2009) 
proposed a portfolio selection model based on mean-variance model framework, which included 
cardinality constraints, minimum trading lot sizes and market (sector) capitalization. Castellano and 
Cerqueti (2014) studied the mean-variance optimal portfolio selection problem for risky assets with 
low-frequency trading and low liquidity. To simulate the dynamics of illiquid assets, pure-jump 
processes were introduced, which enabled the development of portfolio selection models in mixed 
discrete/continuous time settings. 

Simaan (2014) provided a framework that allowed performance comparisons of within and out 
of sample between mean-variance portfolios and portfolios that maximize expected utility. To 
develop the best market timing strategy, Gao et al. (2015) considered the mean-variance dynamic 
portfolio selection problem with management cost time constraints. Lioui and Poncet (2016) 
proposed a new portfolio decomposition formula to reveal the economics of investor portfolio 
selection according to the mean-variance criterion and noted that the number of components of the 
dynamic portfolio strategy could be reduced to two: the first was to hedge the risk of discounted 
bonds maturing within the investor’s time limit without preference, while the second was to hedge 
against time variation in pseudo relative risk tolerance. 

3.2. Global Minimum Variance Model 

The global minimum variance model (GMV) is a specific optimal portfolio with minimum 
variance on the effective boundary. Haugen and Baker (1991) used the GMV model to verify whether 
the capitalization weighted (cap weights) portfolio was an efficient investment as claimed by 
sponsors of such plans. These researchers found that even assuming informationally efficient capital 
market and that all investors rationally optimized the relationship between risk and expected return, 
the portfolio of cap weights was not efficient except under extreme restrictive conditions. Chopra and 
Ziemba (1993) promoted the use of GMV in finance and pointed out that the error in expected returns 
was 10 times than the error in variance and covariance. Chan et al. (1999) focused on the GMV 
portfolio and emphasized that the GMV portfolio performed better than the Markowitz mean-
variance model. Jagannathan and Ma (2003) pointed out that the weight of the GMV portfolio should 
be more stable than that of the standard mean-variance model because the estimation error of the 
covariance was smaller than that of the mean. Kempf and Memmel (2006) noted that the GMV 
portfolio could provide better out-of-sample results than the tangent portfolio theory and studied the 
distribution of portfolio weights under the GMV model. DeMiguel and Nogales (2009) claimed that 
GMV model relied only on covariance matrices and were insensitive to estimation errors. These 
studies have led to the popularity of GMV in portfolios selection. 

Traditional GMV only solves the portfolio weights from the perspective of optimization, but 
many scholars are interested in the distribution and nature of the portfolio weights of GMV. Under 
the assumption of normal distribution, Okhrin and Schmid (2006) derived the multivariate density 
function of GMV portfolio. Clarke et al. (2006) noted that the stock weights on the left of the effective 
boundary under the minimum variance model were independent of the expected safe return. At this 
point, the portfolio could be obtained only by using the covariance matrix of stocks without involving 
the equilibrium expectation or the active forecast return. Bodnar and Schmid (2008) discussed 
portfolio weights in GMV model under the assumption that returns followed a matrix elliptical 
contoured distribution. Assuming that securities returns were neither normal nor independent, they 
found that the stochastic nature of the portfolio in GMV model did not depend on the mean vector 
and the assumption of the distribution of securities returns. Bodnar and Schmid (2009) derived the 
variance and expected return of sample GMV portfolio distribution. Frahm (2010) derived a small 
sample hypothesis test for global and local minimum variance portfolios and calculated the exact 
distribution of portfolio weight estimation. At the same time, the first two moments of the estimation 
of portfolio expected return were given. On the assumption that the conditional distribution of 
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logarithmic returns was normal, Bodnar et al. (2017) considered the weight estimation problem of the 
optimal portfolio from the perspective of Bayes and obtained the posterior distribution of the weight 
of GMV portfolio by using the standard prior of mean vector and covariance matrix. 

Following the research on distribution and nature of the portfolio weights of GMV, parameter 
uncertainties, Glombek (2014) analyzed the mean, variance, weight and Sharpe ratio estimators of 
excess returns of GMV portfolio under consistent and asymptotic distributions, discussed the 
problem of high-dimensional assumptions and demonstrated the applicability of this method. Maillet 
et al. (2015) proposed a robust approach to mitigate the effects of parameter uncertainties for a 
decision maker using GMV strategy to optimize portfolio selection. Based on Taylor’s robust M-
estimator and Ledoit-Wolf shrinkage estimator, Yang et al. (2015) proposed a hybrid covariance 
matrix estimator under the GMV model for portfolios, with outliers of financial data, fat tailed 
distribution of sample data and obtained a consistent estimate of portfolio risk by minimizing the 
optimum linear shrinkage strength using random matrix theory. Bodnar et al. (2017) analyzed the 
GMV portfolio model under the Bayesian framework, adding the prior beliefs of investors to the 
investment decision. Carroll et al. (2017) evaluated the performance of GMV portfolio strategy and 
equal weight portfolio strategy under time-varying conditions between assets. They found that 
conditional correlation is more important than conditional variance in portfolio performance. The 
also found that frequent asset rebalancing does not help improve portfolio performance. Bodnar et 
al. (2018) estimated the GMV portfolio in high-dimensional case by using the results of random 
matrix theory, gave a shrinkage estimator in the sense of non-distribution assumption and 
minimizing the variance of samples, and obtained the asymptotic properties of the estimator under 
the assumption of the existence of fourth-order moments. 

The mean-variance models are highly data intensive. Consequently, search was on for models 
that can capture enough of reality but are simpler. This led to the development of factor models. 

4. Factor Model 

The literature on factor models has evolved in two stages: single factor models and multi-factor 
models. 

A factor model that is linear in form posits that the return of an asset can be expressed by the 
following equation: r = a + b f +⋯+ b f + e,  

where r is the return of an asset, a, b ,… , b  are the parameters, e is the error term. We call it a single 
factor model when k = 1, and we call it a multi-factor model when k ≥ 2. 

4.1. Single Factor Models 

The factor models have drawn attention of researchers, after Sharpe (1963) used, the factor 
model to estimate the covariance matrix. Geweke (1977) used dynamic factors to analyze the 
economic time series data and found that the results supported the methodology. 

Geweke and Singleton (1981) proposed the theory of identification, estimation and inference in 
the dynamic confirmatory factor model of economic time series data and pointed out that the 
dynamic confirmatory factor model could accommodate the important characteristics of prior 
constraints in the parameter matrix. Watson and Engle (1983) studied the problem of specification 
and estimation of the dynamic unobserved component model and provided the method of estimating 
unknown parameters based on score method and EM algorithm by maximizing the likelihood 
function. Diebold and Nerlove (1989) identified and estimated the univariate ARCH model, and then 
used the results of the univariate ARCH model to propose the multivariate latent variable ARCH 
model. Engle et al. (1990) suggested the use of Factor-ARCH model as a concise structure of 
conditional covariance matrix of asset excess returns, which made it possible to study the dynamic 
relationship between asset risk premium and volatility in multivariate systems. Through a variety of 
diagnostic tests and compared with the previous empirical results, it was shown that the Factor-
ARCH model was better as compared to other models given that it had the advantage of stability 
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over time. Lanne and Saikkonen (2007) proposed a multivariate generalized orthogonal factor 
GARCH model and gave a program to test the correctness of the number of factors. Also, a mixture 
of Gaussian distributions was considered, and it was found that some parameters of the conditional 
covariance matrix that were not identifiable under normality could be identified when the mixture 
specification was used. Cardinali (2012) used orthogonal factors to model the structure of conditional 
covariance matrices. The advantage of this approach was that the estimated factors could be 
simulated using a univariate GARCH process, and the model could be extended to multivariate cases. 

4.2. Multi-Factor Models 

Litterman and Scheinkman (1991) empirically determined the common factors of treasury bond 
returns based on past securities. The analysis showed that most of the fluctuations of fixed income 
securities return could be explained by three factors, and the three-factor model was particularly 
useful for hedging. Chen and Scott (1993) considered that it was necessary to establish a formal 
theoretical structure model for bonds and other different types of interest rate options. Based on this, 
a multi-factor equilibrium model was proposed to estimate the parameters driving the interest rate 
change process and to determine the number of factors necessary to characterize the interest rate 
structure model. Duffie and Kan (1996) proposed a consistent and arbitrage-free multifactor model 
of the term structure of interest rates. The model assumed that the returns on a fixed maturity date 
followed a parametric multivariate Markov diffusive process with stochastic volatility parameters 
and provided the necessary and sufficient condition for numerical algorithm and the stochastic affine 
representation of the model. Fama and French (1993) proposed that the return on excess assets could 
be explained by three factors: sensitivity to market excess returns, market capitalization and book 
price ratio. Campbell (1996) noted that adding human capital to common factors could improve the 
performance of multi-factor asset pricing model in predictability of returns. Chan et al. (1999) found 
that the market, size and stock market value can capture the common structure of the return 
covariance matrix and found that the use of three factor model for the minimum variance portfolio 
model was adequate. Stock and Watson (2002) studied predictions with multiple predictors, 
observations, and a single time series, and noted that a small number of principal component 
estimators could be used for prediction when data followed an approximate factor model. Bai (2003) 
used principal component estimator to establish the inference theory of large-dimensional factor 
model and derived the finite distribution of convergence rate and factor, factor load and common 
component. Han (2006) studied the effects of time-varying expected return and volatility on asset 
allocation in a high-dimensional context, and proposed a dynamic factor multivariate stochastic 
volatility model, which allowed the first two moments of many assets returns to change with time. 
Adrian and Franzoni (2009) used conditional CAPM models to allow unobserved changes in risk load 
factors over time. Based on the assumption that investors could rationally learn the long-term level 
of the load factor from the observed returns, Kalman filter was used to simulate conditional beta. Fan 
et al. (2013) used the multifactor model to estimate the covariance matrix in the high-dimensional 
case. Jungbacker et al. (2014) studied the dynamic factor model and showed how to use cubic spline 
function to smoothly limit the factor load. Hou et al. (2015) put forward a new four factor model by 
combining market and scale with investment and profitability. Jungbacker and Koopman (2015) 
presented a new method of dynamic factor model based on likelihood analysis. These researchers 
used linear dynamic stochastic processes to simulate latent factors and autoregressive processes with 
correlations to determine the singular perturbation sequence. The method was found to be effective 
in estimating the factors and maximum likelihood parameters. Fama and French (2015) added 
profitability and investment to the three-factor model and constructed a five-factor model to reveal 
several abnormal phenomena of average returns. Fama and French (2016) used five-factor model to 
explain the abnormal phenomenon of average returns. Chiah et al. (2016) confirmed that the five-
factor model was superior to the multifactor model in explaining the changes of asset returns in global 
asset market. Stambaugh and Yuan (2017) proposed a four-factor model that combined the two 
mispricing factors with market and size factors. They found that the ability of the model to account 
for many anomalies is much better than the earlier models. 
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Fama and French (2017) used international data to test the five-factor model. The global three 
factor and five factor models did not perform well in the test of regional portfolio. Therefore, local 
variables were used to establish the model that is, the factors and returns to be explained came from 
the same region. Kubota and Takehara (2018) used five factor model (Fama and French 2015) to test 
whether the model could well explain the pricing structure of Japanese long-term data stocks. They 
found that the original version of the five-factor model was not the best benchmark pricing model for 
Japanese data from 1978 to 2014. Roy and Shijin (2018) proposed a balanced six factor asset pricing 
model, which explained the change of asset returns by adding human capital to the five-factor model 
and tested the six-factor asset pricing model with four different portfolios. Tu and Chen (2018) 
developed a new factor-augmented model for calculating the value at risk (VaR) of bond portfolios 
based on the Nelson-Siegel structural framework and tested whether the information contained in 
macroeconomic variables and financial stress shocks could enhance the accuracy of VaR prediction. 

5. Portfolio Risk Measure 

Several methods are available for the measurement of portfolio risk and we divide them into (a) 
moment-based risk measurement and (b) moment-based and quantile-based risk measurement. The 
moment-based methods include time-varying covariance matrix and the shrinkage estimation use 
the covariance matrix in the risk measurement. The semi-variance method calculates the risk below 
the target value, and the target can be regarded as a quantile. VaR is based on quantile measures of 
risk, while CVaR is a measure of risk based on the idea of VaR quantile and mean value. Therefore, 
semi-variance, VaR and CVaR are risk measures based on moments and quantiles. 

5.1. Moment-Based Risk Measurement 

5.1.1. Time-Varying Covariance Matrix 

Some groundbreaking publications are summarized in Table 3 below. 

Table 3. Selected work on Correlation/Covariance and GARCH. 

Author Year  Paper/Book/Thesis Title (Please See References for Details)  
Engle 1982 Autoregressive conditional heteroscedasticity and estimates of UK inflation 
Engle et al. 1984 Combining competing forecasts of inflation using a bivariate ARCH model 
Bollerslev 1986 Generalized autoregressive conditional heteroscedasticity 
Bollerslev et al. 1988 A capital asset pricing model with time-varying covariances 

Bollerslev 1990 
Modelling the coherence in short-run nominal exchange rates: A multivariate 
generalized ARCH model 

Engle and Kroner 1995 Multivariate simultaneous generalized ARCH 

Tse and Tsui 2002 
A multivariate generalized autoregressive conditional heteroscedasticity 
model with time-varying correlations 

Engle 2002 
Dynamic conditional correlation: A simple class of multivariate generalized 
autoregressive conditional heteroskedasticity models 

McAleer et al. 2008 Generalized autoregressive conditional correlation 

Engle (1982) introduced the autoregressive conditional heteroscedasticity (ARCH) family model 
and used it to estimate the means and variances of inflation in the U.K. The ARCH effect is found to 
be significant and the estimated variances increased substantially during the chaotic 1970s. Bollerslev 
(1986) extended the ARCH family model to the Generalized autoregressive conditional 
heteroskedasticity (GARCH). To capture the dynamic changes of financial markets, time-varying 
dynamic covariance matrix has been widely used in portfolio investment. Since the GARCH model 
can successfully describe one-dimensional time-varying variance, many researchers have tried to 
extend the time-varying variance to the multivariate case by using the multivariate GARCH model. 

Bollerslev et al. (1988) used multivariate GARCH (MGARCH) model to estimate the earnings of 
bills, bonds and stocks. The expected return of bills, bonds and stocks was proportional to the return 
of each diversified or market portfolio. The results showed that conditional covariance varied greatly 
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over time and this time-varying factor was an important determinant of time-varying risk premium. 
Kroner and Claessens (1991) used similar technologies to get a series of optimal dynamic hedge 
funds. Lien and Luo (1994) assessed the multi-period hedging ratio of currency futures in the 
framework of MGARCH. 

Engle et al. (1984) provided a necessary condition for the conditional covariance matrix in the 
two-dimensional ARCH model to be a positive definite. However, it was not feasible to extend the 
necessary condition of positive definite conditional covariance to a more generalized model. 
Bollerslev (1990) suggested that the constant conditional correlations (CCC) MGARCH model could 
overcome the difficulty of positive definite. Because of the simplicity of calculation, constant 
conditional correlations MGARCH model has been widely used in practice, but some researchers 
find that some assumptions of constant correlations MGARCH model are not supported by financial 
data in practice. Engle and Kroner (1995) gave the formulas and the theoretical results of estimations 
for multivariate GARCH models in simultaneous equations, proposed a new parameterization 
method (BEKK) for multivariate ARCH processes, and discussed the equivalent relations of various 
ARCH parameterizations. At the same time, the sufficiency constraints for the conditional covariance 
matrix to guarantee positive definiteness were proposed, and the ‘sufficient and necessary 
conditions’ for the stability of covariance were given. 

Bera et al. (1997) pointed out that the BEKK model proposed by Engle and Kroner (1995) did not 
perform well in estimating the optimal hedging ratio. Also, Lien et al. (2002) pointed out that BEKK 
was difficult to converge in estimating the conditional variance structure of spot and futures prices. 
Tsui and Yu (1999) used the dual GARCH model to study stock returns in two emerging markets, 
Shanghai and Shenzhen of China, and the information matrix test statistic did not support the 
hypothesis of the constant conditional correlation of stock returns. Tse (2000) introduced the 
Lagrange Multiplier test to the multivariate GARCH model with constant correlation assumption 
and this test verified the limitations of the multivariate GARCH model with constant correlation. The 
data of stock market returns in China was used to draw a conclusion that the correlation was time-
varying. 

The fact that the correlation is time-varying has been accepted by many scholars. Tse and Tsui 
(2002) proposed a MGARCH model with time-varying correlation. The conditional covariance matrix 
could be decomposed into conditional variance matrix and conditional correlation coefficient matrix. 
Each conditional variance term was assumed to follow a unitary GARCH model, and the conditional 
correlation coefficient matrix followed a similar autoregressive moving average. At the same time, 
Engle (2002) proposed a new family of multivariate GARCH models, a dynamic conditional 
correlation (DCC) model to estimate time-varying correlations. 

MGARCH model settings are usually determined by practical considerations such as easy 
estimation, which often leads to serious losses in general. The deficiencies and developments on the 
DCC and BEKK models have been extensively reviewed by McAleer (2019a, 2019b). Alexander (2001) 
proposed an orthogonal GARCH model in which the time-varying covariance matrix was derived 
from a small number of uncorrelated factors. Van der Weide (2002) proposed a new MGARCH 
model: the covariance matrix with many parameters could be parameterized with considerable 
degrees of freedom and the estimation of parameters was still feasible. This model could be regarded 
as a natural generalization of O-GARCH model and nested in a more general BEKK model. To avoid 
the difficulty of convergence, the unconditional information was used to make the number of 
parameters estimated by conditional information more than half. Vrontos et al. (2003) proposed a 
new parameter method for MGARCH with time-varying covariance: the covariance matrix 
guaranteed positive definiteness and the number of parameters of the method was relatively small, 
which could be easily applied to high-dimensional time series data model. The parameter estimation 
of multivariate model was realized by classical Bayesian technique, and the maximum likelihood 
estimation was realized by Fisher scoring method. Ledoit et al. (2003) proposed a new method for 
estimating the time-varying covariance matrix in the framework of the MGARCH (1,1) model for the 
diagonal VECH. This method was numerically feasible in dealing with large-scale problems and 
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could generate semi-definite conditional covariance matrix without imposing impractical prior 
restrictions. 

Cappiello et al. (2006) studied the existence of asymmetric conditional second-order moments in 
international equity and bond yields and analyzed them by the asymmetric version of Engle (2002) 
dynamic conditional correlation (DCC) model. A large amount of evidence showed that the series of 
national stock index returns indicated strong asymmetric conditional volatility, while there was little 
evidence that bond index returns showed such behavior. McAleer et al. (2008) established the 
generalized autoregressive conditional correlation (GARCC) model on the assumption that the 
normalized residual followed the random coefficient vector autoregressive process. The GARCC 
model enabled conditional correlation to change over time. GARCC was also more general than Engle 
(2002) Dynamic Conditional Correlation (DCC) and Tse and Tsui (2002) time-varying correlation 
model and did not impose excessive restrictions on the parameters of DCC models. At the same time, 
the structural properties of GARCC model, especially the analytical form of regularity conditions, 
were deduced, and the asymptotic theory was established. Hafner and Franses (2009) extended Engle 
(2002)’s DCC model to allow asset-specific correlation sensitivity. This model was useful for investors 
holding large asset returns. At the same time, they proposed two estimation methods, one based on 
complete likelihood maximization and the other based on individual correlation estimation. 
Applying the generalized DCC (GDCC) model to the daily data of stock returns of 39 UK firms on 
FTSE, they found convincing evidence that the GDCC model was improved on the DCC model and 
on the constant conditional correlations MGARCH model of Bollerslev (1990). Haas et al. (2009) 
proposed an asymmetric multivariate extension of a new normal mixed GARCH model, discussed 
the parameterization and estimation problems, derived the covariance stationarity condition and the 
existence of the fourth moment, and gave the expression of the dynamic correlation structure of the 
process. 

Diamantopoulos and Vrontos (2010) used multiple student t error distributions to simulate the 
fat tail nature of conditional distribution of financial returns data, extended the Vrontos (2003) model, 
and then proposed a student t full factor multivariate GARCH model. Combined with the reduction 
parameterization of covariance matrix in the full factor multivariate GARCH model, the model could 
be applied to high dimensional problems. Ausin and Lopes (2010) argued that the conditional 
ellipsoid joint distribution of MGARCH model required strong symmetry, and financial data did not 
satisfy this assumption in many cases. Therefore, they proposed a time-varying correlation Copula 
GARCH model to deal with portfolio selection problems. Wei et al. (2010) used a greater number of 
linear and nonlinear GARCH class models (see McCulloch (1985); Polasek et al. (2007) to capture the 
volatility features of two crude oil markets and found that the nonlinear GARCH-class models 
exhibited greater forecasting accuracy than the linear ones. Christoffersen et al. (2012) combined the 
DCC model with partial t Copula to study the conditional correlation of emerging stock market 
indices in 33 developed countries. Santos and Moura (2014) proposed a new method for conditional 
covariance matrix estimation based on flexible dynamic multivariate GARCH model. 

Klein and Walther (2016) incorporated an Expectation-Maximization algorithm for parameter 
estimation of the mixture memory GARCH (MMGARCH) and found MMGARCH was also able to 
cover asymmetric and long memory effects. Also, for variance forecasting and Value-at-Risk 
prediction, they found MMGARCH performed better due to its dynamic approach in varying the 
volatility level and memory of the process. Conrad and Mammen (2016) established the asymptotic 
theory of quasi-maximum likelihood estimator for the parametric GARCH-in-Mean model. The 
asymptotic behavior was based on the study of fluctuations of the parametric process of the model. 
Although time-varying GARCH-M models are commonly used in econometrics and finance, the 
recursive nature of conditional variance makes likelihood analysis computationally infeasible. 
Therefore, Anyfantaki and Demos (2016) suggested using Markov Chain Monte Carlo algorithm, 
which allowed classical estimators to be computed by simulating EM algorithm or only using 
simulated Bayes in O(T) operations (T is sample size), and derived the theoretical dynamic properties 
of time-varying parameter EGARCH (1,1)-M. Dias (2017) proposed an estimation strategy for 
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stochastic time-varying risk premium parameters in time-varying GARCH-in-mean model, and 
Monte Carlo study showed that the algorithm had good finite sample properties. 

Although time-varying covariance matrix performs well in capturing the dynamic change of 
finance markets, sample covariance matrix is used to replace the truly unknown covariance matrix 
in practice and there is estimation error in sample covariance matrix. Therefore, shrinkage estimation 
is introduced to reduce estimation error in sample covariance matrix. 

5.1.2. Shrinkage Estimation 

Jobson and Korkie (1980) used James-Stein estimator in mean-variance portfolio to demonstrate 
that the estimator provides more reasonable results than the traditional estimators. Jorion (1985) 
revealed the disadvantages of replacing expected returns with corresponding sample estimate 
without considering the inherent uncertainty in these parameter values. On this basis, Stein’s method 
of estimating initial returns was studied. By shrinking the sample average to a common mean, it was 
found that the out-of-sample performance of the optimal portfolio increased significantly. Frost and 
Savarino (1986) studied the portfolio selection problem by maximizing expected returns, based on 
the forecasting distribution of securities returns under the Bayesian framework, and found that the 
method could improve the performance of portfolio by reducing the priori information of estimation 
error. Jorion (1991) compared the active investment strategies of expected return under three 
alternative models: historical sample mean, shrinkage or Bayesian estimation and CAPM-based 
estimation and found that exchange risk is not factored in to stock prices despite its significance. Like 
Jorion (1991), Grauer and Hakansson (1995) compared the investment strategies and returns of the 
three estimated dynamic investment models. Mori (2004) studied the performance of mean-variance 
model on the optimal portfolio weights of proportional estimator and Stein estimator when the 
parameters were unknown. Kan and Zhou (2007) discussed the problem of investing in riskless assets 
and tangent portfolio funds and proposed a combination of sample tangent portfolio and sample 
global minimum variance portfolio. Okhrin and Schmid (2007) provided a comparison between the 
exact and asymptotic distributions of portfolio weight estimates and a sensitivity analysis of asset 
return moments. At the same time, considering the shrinkage estimation of several types of moments, 
the portfolio weights and its corresponding estimators were compared based on moment estimation. 

The use of linear shrinkage to estimate covariance matrix has also attracted wide attention 
among researchers. Ledoit and Wolf (2003, 2004) used a linear combination of sample covariance 
matrices and a target matrix to estimate the covariance matrix, where the target matrix could be the 
identity matrix, or the covariance matrix estimated by the one factor model and applied this method 
to the portfolio selection problem. Bai and Shi (2011) summarized the methods commonly used in 
high-dimensional covariance matrix estimation, including shrinkage, observable and implicit factors, 
Bayesian method and random matrix theory. Yang et al. (2014) proposed a hybrid covariance matrix 
estimation method based on robust M estimation and Ledoit and Wolf (2004) shrinkage estimation. 
Ikeda and Kubokawa (2016) considered a class of general weighted estimators, including the linear 
combination of sample covariance matrices and the model-based estimators and the linear shrinkage 
estimators without special factors under the factor model. 

On the other hand, the optimal portfolio is directly dependent on the inverse of the covariance 
matrix. Accordingly, the direct shrinkage of the inverse covariance matrix is also a good strategy. 
Stevens (1998) dealt with portfolio optimization problems by primitively constructing several direct 
characteristics of the inverse covariance matrix. Kourtis et al. (2012) used the linear combination of 
the inverse covariance matrix and the target matrix to estimate the inverse covariance matrix, where 
the target matrix could be the identity matrix, the inverse of the covariance matrix estimated by the 
one factor model and the linear combination of the former two and applied this method to the 
portfolio selection problem. Bodnar et al. (2016) gave an explicit stochastic representation of the 
weights of mean-variance portfolios by using the linear transformation distribution of the inverse 
covariance matrix. 

Bickel and Levina (2008a) discussed the regularization of covariance matrices with n observation 
samples and p variables by hard threshold method. Under the conditions that: the true covariance 
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matrix was sparse in a proper sense, the variables were Gaussian or sub-Gaussian distribution, (Log 
p)/n approached zero and the explicit rate could be obtained, then the threshold estimation was 
consistent. Bickel and Levina (2008b) studied the estimation of banded and tapered sample 
covariance matrix and the banded inverse covariance matrix. Rothman et al. (2009) proposed a new 
generalized threshold algorithm combining shrinkage and threshold and studied the generalized 
threshold of sample covariance matrix in high-dimensional case. The generalized threshold of the 
covariance matrix has good theoretical properties and almost no computational burden. At the same 
time, an explicit convergence rate can be obtained in the operator norm, showing the tradeoff 
between sparsity, dimensionality and sample size of the real model. It was found that the generalized 
threshold is consistent in a large class of models if the dimension p and sample size n satisfy log (p/n) 
approaching zero. Konno (2009) considered the estimation of large-dimensional covariance matrices 
for multivariate real normal and complex normal distributions when the dimensions of variables 
were larger than the number of samples. For real and complex cases, the Stein-Haff equations and 
eigen structures of singular Wishart matrices were respectively, provided. By using these techniques, 
unbiased risk estimates for some classes of global covariance matrices under real and complex 
invariant quadratic loss functions were obtained. Chen et al. (2010) considered the shrinkage method 
in a high-dimensional case and, proposed a covariance estimation method based on minimizing 
mean square error in Gaussian samples. Firstly, under the condition of sufficiency of statistics, Rao-
Blackwell theory was used to propose a new method, RBLW estimator, which was superior to Ledoit-
Wolf method under mean square error. Secondly, the iterative method of the clairvoyant shrinkage 
estimator was proposed to reduce estimation error. At the same time, the convergence of the iterative 
method was established, the closed-form expression of the limit was determined, and this method 
was an Oracle approximate contraction (OAS) estimator. Fisher and Sun (2011) used the convex 
combination of the sample covariance matrix and the well-conditioned target matrix to estimate the 
covariance matrix and introduced a new set optimal convex combination estimates of three 
commonly used target matrix. Cai and Liu (2011) considered the estimation of sparse covariance 
matrix using the threshold step of single element change. The estimator is completely data-driven 
and has good data and theoretical results. Moreover, the estimator adaptively achieves the optimal 
convergence rate on a large class of sparse covariance matrices under spectral norm. Ledoit and Wolf 
(2012) further studied the linear shrinkage of Ledoit and Wolf (2004) by nonlinear transformation of 
sample eigenvalues and extended the nonlinear shrinkage method to the precision matrix. Fan et al. 
(2013) proposed the principal orthogonal complement thresholding method (POET) to discuss the 
estimation of high-dimensional covariance with conditional sparse structure and fast divergent 
eigenvalues. By assuming the sparse error covariance matrix in the approximate factor model, some 
cross-sectional correlations were allowed even after the common but unobservable factors were 
excluded. The POET estimator included sample covariance matrix, factor covariance matrix, 
threshold estimator and adaptive threshold estimator. At the same time, the convergence rates of 
sparse residual covariance matrix and conditional sparse covariance matrix under different norms 
were studied. With the increase of dimension, the sample covariance matrix becomes ill-conditioned 
and even singular. A commonly used method to estimate covariance matrix is Stein-type type 
compression estimation when the dimension is high. Touloumis (2015) proposed a new family of 
nonparametric Stein-type shrinkage covariance estimators, which were convex linear combinations 
of sample covariance matrices and predefined reversible target matrices. Under the Frobenius norm, 
the optimal shrinkage strength for defining the optimal convex linear combination depended on the 
unobserved covariance matrix and must be estimated from the data. At the same time, a simple and 
effective estimation process was proposed, which could obtain the nonparametric uniform estimator 
of the optimal contraction intensity for three commonly used target matrices. Zhang and Zhang 
(2018) combined the advantages of shrinkage estimation, vine copula structure and Black-Litterman 
model that could satisfy three investment objectives: estimation sensitivity, asymmetric risks 
appreciation, and portfolio stability.  

5.2. Moment-Based and Quantile-Based Risk Measurement 
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5.2.1. VaR and CVaR 

Some important articles are summarized in Table 4 below. 

Table 4. Selected work on Portfolio Selection and VaR/CVaR. 

Author Year  Paper/Book/Thesis Title (Please See References for Details)  
Baumol 1952 The transactions demand for cash: An inventory theoretic approach 
Goldfarb and Iyengar 2003 Robust portfolio selection problems 
McKay and Keefer 1996 VaR Is a Dangerous Technique 
Artzner et al. 1997 Thinking coherently 
Pflug 2000 Some remarks on the value-at-risk and the conditional value-at-risk 
Uryasev 2000 Optimization of Conditional Value-at-Risk 

Chen and Yang 2017 
Multiperiod portfolio investment using stochastic programming with 
conditional value at risk 

Zhang and Gao 2017 
Portfolio selection based on a benchmark process with dynamic value-at-risk 
constraints 

With the in-depth study of portfolio optimization theory and financial data, VaR attracted 
increasing attention in risk measurement. Baumol (1952) put forward the idea of VaR and used it to 
study the choice of securities. After Morgan (1996)’s risk measurement system, VaR has gained more 
attention (see Beder 1995; Jorion 1996). The basic principle recommended by the Basel Committee on 
Banking Supervision in 2001 states that VaR is a key indicator of risk (Szegö 2002). Goldfarb and 
Iyengar (2003) considered the robust VaR portfolio selection problem under the assumption of 
normal distribution and the objective of these robust formulations was to systematically combat the 
sensitivity of the optimal portfolio to statistical and modeling errors in the estimates of the relevant 
market parameters. Ghaoui et al. (2003) studied the portfolio selection problem with the worst case 
VaR when some of the distributed information was known. VaR is also used in insurance contracts. 
Wang et al. (2005) designed an optimal insurance contract by maximizing the expected final wealth 
of the insured under VaR constraints. Based on Wang et al. (2005), Huang (2006) established an 
insurance contract under the risk constraint of VaR assuming that the insured was risk-averse. Giot 
(2005) used GARCH model and Riskmetrics model with residuals following normal distribution and 
Student t distribution to study VaR of three stocks traded on NYSE in 15 and 30 min. Chin (2008) 
compared the power of VaR under quantile and nonlinear time-varying volatility, proposed a simple 
Pareto distribution to explain the fat tail property in the empirical distribution of return, and 
implemented the measure of non-parametric quantile estimation of VaR using interpolation method. 
Batten et al. (2014) used the modified version of the multifractal model of asset returns (MMAR) with 
a series of asset returns data characterized by second. Considering the fat tail of financial data, long-
term dependence and inconsistency with the MMAR scale, the out-of-sample VaR prediction was 
derived, and the difference between this method and GARCH (1,1) position scale VaR model was 
compared. Zhao and Xiao (2016) proposed an optimal portfolio selection model with VaR constraints 
and the asset price process was modeled by a non-generalized statistical mechanics rather than a 
classical Wiener process. This model could describe the characteristics of fat tails of returns. Also, a 
Hamilton Jacobi Bell equation was obtained by using the dynamic programming principle and the 
closed form solution of logarithmic utility was obtained by Lagrange multiplier method. Jang and 
Parkb (2016) incorporated VaR constraints into the wealth and fuzziness of fund management and 
provided an optimal portfolio selection model for fund managers who divided assets into risk and 
risk-free. Chang et al. (2016) used the Granularity Adjustment (GA) method to calculate VaR in 
portfolio credit risk model and used Monte Carlo simulation to study the impact of concentrated risk 
on risk value. Naimy (2016) used CDS portfolio data from March 2013 to November 2015 in the 
United States, Europe and Asia to study the accuracy of VaR by measuring risk under the Delta 
normal and historical methods. Based on the VaR calculation method of portfolio composed of 
options and bonds, Wang et al. (2017) proposed a Monte Carlo simulation method to allow jump 
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diffusion in underlying assets and provided a layout suitable for various models, including non-
parametric and semi-parametric structures. 

Several nonlinear VaR models for the calculation of option portfolio VaR have also been 
extensively studied. These models concentrate on relaxing the assumption that the change of option 
portfolio value is linear with the change of market risk factors while maintaining the computational 
feasibility. They improve the correlation between market risk factors and option portfolio value, 
including quadratic and linear terms, and are called Delta-Gamma-Theta-Normal VaR models. 
Morgan (1996) calculated the VaR value of option portfolio using the method of Johnson distribution 
transformation. Hardle et al. (2002) evaluated the accuracy and speed of computational methods for 
nonlinear VaR, including Johnson transformation, Cornish-Fisher, Monte Carlo and Fourier-
Inversion methods. Data experiments showed that Johnson transformation and Cornish-Fisher 
method were faster but inexact, and Monte Carlo method was accurate but inefficient. Accordingly, 
the Fourier-Inversion method was found to be the best choice. Castellacci and Siclari (2003) used the 
Cornish-Fisher method to calculate the first-order moments of the distribution of portfolio value 
changes. Cui et al. (2013) studied Delta-Normal and Delta-Gamma-Theta-Normal VaR as well as 
parametric VaR asymptotic methods for nonlinear portfolios and discussed their computational 
effectiveness. 

The widespread use of VaR has led many researchers to expand it to multidimensional case. 
However, there are many definitions of multidimensional quantile that make it difficult to generalize 
one-dimensional VaR to multivariate and still maintain many good properties of one-dimensional 
VaR (see Serfling 2002; Hallin et al. 2010; Fraiman and Pateiro-López 2012). In addition, McKay and 
Keefer (1996) believed that VaR may be ineffective in portfolio selection. Artzner et al. (1997) pointed 
out that VaR did not have subadditivity and convexity. Basak and Shapiro (2001) noted VaR-based 
optimal decisions had greater losses than expected expectation-based optimal decisions. Miller and 
Liu (2006) argued that under the current general assumption of joint normal distribution, there were 
many deviations in the VaR model of portfolio due to model set up errors. 

Fortunately, Artzner et al. (1997) and Embrechts et al. (1999) explained that CVaR could be a 
reasonable alternative to VaR. Pflug (2000) proved that CVaR was a coherent risk measure and 
emphasized several properties of CVaR, such as convexity and monotonicity. Uryasev (2000) 
provided a comprehensive description of CVaR. Assuming the distribution was ellipsoid and the 
VaR was computable, Embrechts et al. (2001) showed the result of CVaR under the restricted 
condition was consistent with that of VaR. Rockafellar and Uryasev (2002) argued that CVaR was 
superior to VaR as a risk measure and gave the properties of CVaR under the distribution of financial 
losses involving prudent behavior. Gaivoronski and Pflug (2005) gave a method to calculate the 
minimum VaR portfolio under specific returns. By removing local outliers and smoothing VaR, the 
VaR’s efficient boundaries were calculated. At the same time, the differences of VaR, CVaR and 
standard deviation as risk measures were compared. Kibzun and Kuznetsov (2006) compared the 
standards of VaR and CVaR and identified the links between them. Topaloglou et al. (2008) used 
CVaR as a risk measure to solve the international portfolio selection problem under the stochastic 
programming model. Huang et al. (2010) considered the relatively robust CVaR model when the 
potential distribution of asset returns belonged to a particular set. Under the worst case of uncertain 
distribution, the possible optimal decision was given according to the realization of each distribution. 
Mainik and Schaanning (2012) compared two possible concepts of CVaR available in the current 
literature, studied their general dependency consistency, and presented their performance in several 
stochastic models. Nguyen and Samorodnitsky (2013) proposed a multivariate tail estimator 
involving CVaR sequential statistical tests. Bernardino et al. (2014) constructed two multivariate 
CVaRs at the level of multivariate distribution functions and provided new risk measures based on 
Copula structure and random ordering of marginal distributions. Wang and Huang (2016) 
endogenously formulated the best form of insurance contract to maximize the expected utility of 
insurance under VaR and CVaR constraints. Date and Bustreo (2016) studied how to approximate 
VaR and CVAR using new heuristic methods when the net return of portfolio investment may be a 
nonlinear function of non-Gaussian risk factors. Chen and Yang (2017) used CVaR as a risk measure 
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to propose portfolio stochastic programming and stage wise portfolio stochastic programming based 
on the stock investment data. Zhang and Gao (2017) used the dynamic CVaR risk-constrained 
benchmarking process to deal with the dynamic portfolio problem. Using the dynamic programming 
technique, they derived the corresponding Hamilton Jacoby Bellman equation and obtained the 
optimal portfolio strategy by Lagrange multiplier method. Li et al. (2018) proposed a hybrid 
intelligent algorithm using genetic algorithm design and adaptive penalty function, Simulated 
Annealing Back Propagation neural network and fuzzy simulation technic to solve the fuzzy mean 
CVaR efficient portfolio model. At the same time, in order to further improve the computing speed, 
MPI technology was used to parallelize the hybrid intelligent algorithm. 

For both the VaR and CVaR, a probability level of cumulative loss needs to be specified 
(Benninga and Wiener 1998). Furthermore, (i) the optimal portfolios with the VaR constraints are 
sensitive to the confidence level selected (Campbell et al. 2001), (ii) the CVaR model requires either 
an assumption about the asset returns distribution or a substantial amount of return observations 
below the target return (Boasson et al. 2011). Comparison with VaR and CVaR, semi-variance is a 
good substitution for measuring the one-sided risk. 

5.2.2. Semi-Variance 

Some groundbreaking articles are summarized in Table 5 below. 

Table 5. Selected work on Portfolio Selection and Semi variance. 

Author Year  Paper/Book/Thesis Title (Please See References for Details)  
Roy  1952 Safety First and the Holding of Assets 
Markowitz  1959 Portfolio selection: Efficient diversification of investments 
Bawa and 
Lindenberg  

1977 Capital market equilibrium in a mean-lower partial moment framework 

Bawa  1978 Safety-first, stochastic dominance, and optimal portfolio choice 
Chen et al.  1991 A Method for Approximating Semivariance in Project Portfolio Analysis 
Hamza and 
Janssen  

1998 
The mean-semivariances approach to realistic portfolio optimization subject to 
transaction costs 

Ballestero  2005 
Mean-semivariance efficient frontier: A downside risk model for portfolio 
selection 

Huang  2008 Mean-semi variance models for fuzzy portfolio selection 

Sayilgan and Mut  2010 
Uses of Variance and Lower Partial Moment Measures for Portfolio 
Optimization 

Roy (1952) proposed the concept of downside risk and defined it as a risk below the target value. 
Markowitz (1959) proposed a well-known mean-semi-variance model to estimate the weights of 
portfolio. Hogan and Warren (1972) pointed out the advantage of using the mean-semi-variance 
criterion in portfolio selection over the mean-variance model. Stone (1973) gave two interrelated 
three-parameter risk measures, in which the semi-variance was a special case. Hogan and Warren 
(1974) compared the difference between mean-variance model and mean-semi-variance model. 
Porter (1974) analyzed the relationship between stochastic dominance and mean-semi-variance 
model. Jahankhani (1976) empirically verified the relationship between return and risk in the mean-
variance model and mean-semi-variance asset pricing model. Bawa and Lindenberg (1977) extended 
the semi-variance to the generalized lower partial moment framework, developed a Capital Asset 
Pricing Model (CAPM) using a mean-lower partial moment framework and derive explicitly 
formulae for the equilibrium values of risky assets that hold for arbitrary probability distributions. 
Fishburn (1977) applied the downside risk to the utility function model. Bawa (1978) extended the 
downside risk to higher order and showed its usability. Nantell and Price (1979) calculated variance 
and semi-variance by means of the distribution of prior portfolio returns and found that asset market 
portfolio prices with semi-variance were higher than variance at a certain risk level. Choobineh and 
Branting (1986) provided a simple form of semi-variance approximation by using mean, variance, 
critical value and cumulative probability below the critical value. Lee (1988) proposed a new asset 
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pricing model in the framework of mean lower partial moment, which used semi-variance and semi-
deviation to measure risk. Lewis (1990) used semi-variance as a measure of risk, applied it to the 
capital market and utility theory, and explained its advantages and disadvantages. Chen et al. (1991) 
proposed a set of linear regression models to approximate the semi-variance of the total returns of 
items with independent distribution. Chow et al. (1992) pointed out that in the absence of prior 
knowledge about the parametric structure of asset return distribution and the form of investor 
preference function, variance may no longer be an appropriate risk measure. They used various risk-
return measures independent of distribution to test the efficiency and decentralization effect of 
international portfolio investment and found that semi-variance could effectively and conveniently 
identify risks. Tse et al. (1993) put forward an optimal strategy for personal investment using 
downside risk and proposed a model for accurate calculation of failure probability under the 
assumption of Brown’s motion process. Markowitz (1993) transformed the mean-semi-variance 
portfolio optimization problem into the mean-variance optimization problem and used the critical 
line algorithm to obtain the optimal solution. Josephy and Aczel (1993) proposed an unbiased, 
consistent and effective estimators for the semi-variance. 

With the deepening of risk research, the downside risk has attracted more and more attention 
(Rom and Ferguson 1994). Kaplan and Alldredge (1997) used a specific risk-based index, which could 
maintain a certain level of risk in different periods of time, to make a series of trade-offs between risk 
and return and studied its properties and performance in the case of semi-variance. Hamza and 
Janssen (1998) took transaction cost into consideration and applied the mean-semi-variance model to 
the portfolio selection problem, introduced a series of binary variables and separable constraints, and 
finally solved the portfolio optimization problem using separable techniques. Grootveld and 
Hallerbach (1999) analyzed the similarities and differences of using variance and downside risk as 
risk measures from empirical data and theory. Costa and Nabholz (2002) considered different 
computational forms of mean and semi-variance with errors and formulated robust mean-semi-
variance portfolio selection problems based on linear matrix inequality optimization problems. 
Estrada (2004) noted that semi-variance was supported by theoretical facts and practical 
considerations and was a feasible measure of risk, and that the mean-semi-variance behavior criterion 
was perfectly consistent with the expected utility and the average compound return utility. Ballestero 
(2005) defined semi-variance as a weighted sum of squares deviating from the objective value of 
return on assets and applied it to portfolio selection. Jin et al. (2006) proved that no matter the market 
conditions and the distribution of stock returns, the effective strategy of mean-semi-variance in a 
single period could always be realized. They also established the realizability of the mean-semi-
variance model under the condition of no arbitrage and extended it to the general downside risk 
measurement problem. Sira (2006) described the significant differences in portfolio outcomes using 
variance and semi-variance to measure risk and emphasized that using semi-variance as a risk 
measure could lead to more robust and effective boundaries. Chabaane et al. (2006) used a group of 
hedge funds with significant deviations from normal to consider the portfolio problem by 
maximizing expected return under the constraints of standard deviation, semi-variance, VaR and 
CVaR. However, if the asset return data do not follow the normal distribution, the mean-semi-
variance model may produce inefficient portfolios. Consequently, Eldomiaty (2007) proposed the 
mean-semi-deviation model to measure the average loss rate. Huang (2008) proposed two fuzzy 
mean-semi-variance models and proved the properties of semi-variance in the case of fuzzy variables. 
Sayilgan and Mut (2010) regarded the portfolio problem as a multi-objective optimization, used the 
semi-variance and the lower partial moment as the risk measurement, and took genetic algorithm to 
solve the multi-objective optimization to achieve Pareto efficient portfolio. Cumova and Nawrocki 
(2011) transformed the exogenous asymmetric matrix into a symmetric matrix and proved that there 
was indeed a closed form of solution. On this basis, the critical line algorithm could be used to solve 
the mean semi-variance problem. Assuming investment capital and net cash flow as fuzzy variables, 
Zhang et al. (2011) proposed the reliability return index and the reliability risk index by using the 
expected value of credibility and the lower semi-variance of the fuzzy variables and gave the 
comprehensive risk return index for selecting the optimal investment strategy. Zhang et al. (2012) 
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proposed a probabilistic mean-semi-variance entropy model to deal with multi-period portfolio 
selection under fuzzy returns. Metaxiotis and Liagkouras (2012) used a multi-objective evolutionary 
algorithm to solve the constrained mean-semi-variance portfolio optimization problem. Alimi et al. 
(2012) used fuzzy programming technology to solve multi-objective fuzzy mean semi-variance 
portfolio optimization model. Brito et al. (2016) proposed a flexible approach to portfolio selection 
using skewness/semi-variance bio-objective optimization framework, which allowed investors to 
analyze the effective balance between biases and semi-variables. Salah et al. (2016) noted that 
estimating portfolio risk by conditional variance or conditional semi-variance could obtain 
information about the future development of different asset returns and help investors to obtain more 
effective portfolio. Chen et al. (2017) considered that stock returns limited by expert estimates were 
described as uncertain variables and then verified three properties of semi-variances of uncertain 
variables. Based on the concept of semi-variances of uncertain variables, the mean-semi-variance 
models of two types uncertain portfolio selection were proposed. 

The semi-variance is also used in the multi-period case. Bi et al. (2013) discussed the continuous 
time mean-semi-variance portfolio selection problem with probability distorted by nonlinear 
transformation, provided ‘necessary and sufficient’ conditions for the existence of feasibility and 
optimal strategy, and gave the general form of the solution when the optimal solution existed. Zhang 
(2015) considered the multi-period portfolio selection problem in a fuzzy investment environment, 
in which the return and risk of assets were characterized by probability mean and semi-variance, 
respectively. At the same time, based on the possibility theory, a new multi-period possible portfolio 
selection model was proposed, which includes risk control, transaction cost, borrowing constraints, 
threshold constraints and cardinality constraints. Liu and Zhang (2015) considered the multi-period 
fuzzy portfolio optimization problem with the shortest trading lot. Based on the possibility theory, a 
mean-semi-variance portfolio selection model was proposed to maximize the final wealth and 
minimize the cumulative risk within the entire investment level. Najafi and Mushakhian (2015) 
proposed a multi-stage stochastic mean-semi-variance CVaR model to deal with portfolio 
optimization problems. The parameters of semi-variance and CVaR were controlled at a certain 
confidence level. Huang et al. (2016) took the correlation between items and time sequence into 
account to propose a new mean-variance and mean-semi-variance model. Chen et al. (2018) took 
securities returns as uncertain variables to establish a multi-period mean-semi-variance portfolio 
optimization model with realistic constraints: transaction costs, cardinality and boundary constraints. 
Furthermore, if the security return was zigzag uncertain variable, they gave the equivalent 
deterministic form of mean-semi-variance model and proposed a modified imperialist competitive 
algorithm to solve the corresponding optimization problems. 

6. Conclusions 

In finance literature, the issues of portfolio selection, and risk measurement have always 
attracted attention of researchers globally. Accordingly, the present paper set out to review the 
development of related literature in the above areas and to identify the directions for future research. 
The study focused on three themes: (a) a review of literature on stylized facts that is, fat tails, volatility 
clustering and dependence structure of returns data, thereafter (b) a review of literature on portfolio 
selection and finally on (c) portfolio risk measurement. The objective was not only to trace the 
historical development but also identify possible research issues for future research. 

The two important models for portfolio selection are the mean-variance model and global 
minimum variance model. The portfolio risk is measured by the covariance matrix in these models. 
From the literature review of these two models, we stressed that the covariance matrix estimation is 
important because the optimal portfolio weights rely on the covariance matrix. Accordingly, one of 
our focuses is on the estimation of covariance matrix. However, the estimation error in the covariance 
matrix estimation of asset returns is so large that the portfolio weights are likely inefficient. Therefore, 
the shrinkage methods are adopted to cope the estimation error in the estimation of covariance 
matrix. The shrinkage methods include Stein-type shrinkage methods and linear shrinkage methods. 
In linear shrinkage methods, we find that the factor model can be used to estimate the covariance 
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matrix and the estimation is used as the target matrix. Consequently, the factor model is also included 
in the present paper. Also, to reflect the rapid changes of financial markets, we consider that the time-
varying structure of covariance matrix is effective, and we take it as one useful improvement of the 
estimation of covariance matrix. 

In addition to the covariance matrix to measure risk of portfolio, VaR and CVaR is another 
approach from the quantile perspective. Furthermore, many researchers think the risk is not 
symmetric and the risk should be the downside risk which measures the risk of falling below a target 
value. If the investor cares more about the loss, the downside risk measure could be a good solution. 

The fat tail feature of financial data has received considerable attention in the relevant literature 
and many studies are based on the multivariate t distribution. In the presence of fat tails, the risk 
measure becomes more difficult to examine and the dependence of financial data is more important 
because co-movements exacerbate negative portfolio returns. Consequently, the Copula method has 
become a popular tool to describe the dependence structure of financial data appropriately. 

However, there are many interesting questions that remain unsolved. For instance, in the stein-
type shrinkage estimation of covariance matrix for portfolio selection problem, could we give an 
explicit shrinkage parameters selection method with maximizing investors’ utility? How to measure 
the asymmetric relationship of asset returns and apply it to portfolio selection problems? 

One of the co-authors of this paper, Sun et al. (2018) have derived the Stein-type shrinkage 
strategy for optimal portfolio selection using the Cholesky decomposition of the covariance matrix 
under the mean-variance framework. The Stein-type shrinkage strategy is applied to simulation 
experiments and an empirical study to test its feasibility. Their proposed method works well in the 
simulation study and in the empirical analysis; however, there still exist interesting questions. For 
future work, the assumption of n > p may be replaced by p > n for high dimensional cases, where n 
is the sample size and p is the number of variables. A reasonable statistical loss function with a 
different objective function may be studied to take advantage of the proposed approach. In addition, 
the assumption of the normal distribution can be extended to elliptically symmetric or skewed 
distributions and take robustness into consideration as well. 

Please note that in the minimum variance model, the covariance matrix plays an important role 
because it measures the risk and relationship of asset returns simultaneously under the normality 
assumption. However, as discussed earlier, the distribution of asset returns is non-normal and has 
an obvious fat tail nature. In addition, the risk is one-sided. Hence it should be beneficial to study 
further and use a better tool to replace the covariance matrix, by involving the semi variance and 
distance correlation as discussed by e.g., Huang et al. (2016) and Sun et al. (2019). 

Similarly, studies are required to examine the extent to which investment managers in the real-
world incorporate the findings from the academic literature in practice. 
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