
Improved Coverings of a Square with Six and Eight Equal CirclesJ. B. M. Melissen* and P. C. Schuury*Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands. melis-sen@natlab.research.philips.comyUniversity of Twente, School of Management Studies, P.O. Box 217, 7500 AE Enschede, The Nether-lands. P.C.Schuur@sms.utwente.nlSubmitted June 5, 1996; Accepted: October 22, 1996AbstractIn a recent article [19], Tarnai and G�asp�ar used computer simulations to �nd thincoverings of a square with up to ten equal circles. We will give improved coveringswith six and eight circles and a new, thin covering with eleven circles, found by theuse of simulated annealing. Furthermore, we present a combinatorial method forconstructing lower bounds for the optimal covering radius.AMS Subject Classi�cation: Primary 52C151 IntroductionThe classical problem of packing equal circles in a square has been very popular in theliterature. Since the sixties at least twenty articles have been published containing eitherproofs of densest packings or improvements on previous dense packings, see [2] for a partialoverview.Densest packings in a square are now known for up to 20 circles [8, 13, 15, 16, 17, 18,21, 22] and for 25 and 36 circles [5, 23]. The computer-aided proof method of Peikert etal. has been extended recently up to n = 26 [11, 12]. For more values than one wouldprobably ever want to know about, extremely good packings have been found, most ofwhich are likely to be optimal, see [3, 7, 10].The \dual" problem of determining thinnest coverings of a square has remained sin-gularly devoid of attention so far. Apart from an article by Verblunsky [20], which givesa lower bound for the covering radius, there is only one recent article [19] in which Tar-nai and G�asp�ar construct \locally optimal" circle coverings of the square with up to 10circles. They use an engineering approach where the covering problem is transformedinto the construction of an extremal bipartite graph. This graph is optimized by using acomputer simulation of an equivalent shrinking bar model. No proofs of optimality aregiven, though. Their con�gurations for up to �ve circles and for seven circles are indeedoptimal. These cases are treated in [4], as well as generalizations to a rectangle. Forloosest coverings of an equilateral triangle with up to six circles, see [9]. We will show here



the electronic journal of combinatorics 3 (1996), #R32 2that the con�gurations with six and eight circles as given by Tarnai and G�asp�ar are notoptimal by presenting better coverings. Finally, we will give a new covering with elevencircles. The con�gurations were found by means of simulated annealing.The paper runs as follows. Section 2 briey discusses the methods that we used toobtain new coverings. In Section 3 the new coverings are presented. Also, in Section 4we will demonstrate how simple combinatorial arguments can be used to obtain relevantlower bounds for the radius of the circles in a thinnest covering.2 The annealing approachTo obtain an approximate solution to our covering problem via simulated annealing [1, 6]we place a uniform grid over the unit square. During the optimization process this grid isgradually re�ned. As con�gurations we take all the assignments of the n circle centers togrid points. The cost function is chosen as the corresponding covering radius, i.e., as thesmallest number r such that the n circles with the above centers and with radius r coverthe unit square. Below we shall describe how r is determined.The algorithm starts o� from an arbitrary initial con�guration. In each iteration a newcon�guration is generated by slightly perturbing the current con�guration. This is doneby randomly choosing one of the n centers and displacing it over a small distance. Thedi�erence in cost is compared with an acceptance criterion which accepts all improvementsbut also admits, in a limited way, deteriorations in cost.Initially, the acceptance criterion is taken such that deteriorations are accepted witha high probability. In this way the optimization process may be prevented from gettingstuck in a local optimum. As the optimization process proceeds, the acceptance criterionis modi�ed such that the probability for accepting deteriorations decreases. At the end ofthe process this probability tends to zero. The process comes to a halt when - during aprescribed number of iterations - no further improvement of the best value found so faroccurs.Let us now describe how to determine the covering radius r of a given con�guration.Let U denote the unit square and P = fpij1 � i � ng the set of circle centers. Considerthe Voronoi tessellation of U [14], i.e., the \partition" of U into cells obtained by assigningto each center p the set V (p) de�ned as the closure of the set of points of U which arecloser to p than to any other center. Clearly, each cell V (p) is a closed convex polyhedralset. Let L denote the set consisting of all perpendicular bisectors of pipj (pi; pj 2 P; i 6= j),augmented with the four lines that de�ne the boundary of U . The boundary of each cellV (p) is de�ned by lines from L. Let S denote the set of all intersections in U of any pairof lines from L. The covering radius is then given byr = maxp2P maxs2S\V (p)d(p; s);



the electronic journal of combinatorics 3 (1996), #R32 3where d denotes the euclidean distance. Evidently, we may rewrite this in the computa-tionally more manageable form r = maxs2S minp2P d(p; s):In our program the latter formula is used only once, namely for the initial con�guration.From then on, r is calculated incrementally, where we take advantage of the fact that onlyone out of n centers is moved in generating a new con�guration.3 New coveringsThe techniques described in the previous section were used to generate thin coverings.These coverings su�er from a discretization e�ect of the numerical method, so generallythey can still be improved by analytical methods. Once the topology of the covering hasbeen determined, it is possible to �nd a polynomial equation that has the optimal radiusas a root. The degree of the polynomial may be very high. In this way we have been ableto improve the best existing coverings with six and eight circles.3.1 Six circlesAn obvious, but excellent covering of the unit square with six circles is obtained by dividingthe square into six equal rectangles of dimensions 12 by 13 , and covering each small rectangleby a circle of radius p13=12 = 0:3004626062 : : : as is shown in Fig. 1.
r = 0:300462 : : :Figure 1: Obvious covering of a square with six equal circles.



the electronic journal of combinatorics 3 (1996), #R32 4Although this covering may appear to be a reasonable candidate for the thinnestcovering it is not optimal. Tarnai and G�asp�ar [19] recently succeeded in �nding a superiorcovering shown in Fig. 2a with a covering radius of 0:2989506811 : : :
a) r = 0:298950 : : : b) r = 0:298727 : : :Figure 2: Covering with six equal circles by Tarnai and G�asp�ar, and theimproved covering. The dotted line segments are of length r.This is not the end of the story, because our annealing approach turned up an evenbetter con�guration. The covering shown in Fig. 2b has a di�erent topology than thecovering found by Tarnai and G�asp�ar, and the covering radius is also slightly better:0:2987270622 : : :The covering of Tarnai and G�asp�ar has an axis of symmetry, whereas ourcovering is point symmetric.3.2 Eight circlesThe covering of the unit square with eight circles found by Tarnai and G�asp�ar is shownin Fig 3a. It has a covering radius of 0:2605481431 : : : and has one axis of symmetry.Using our simulated annealing approach we have found a covering which is in�nites-imally better, see Fig. 3b. The con�guration has two axes of symmetry. The coveringradius is the smallest positive root of the following irreducible polynomial:16� 448r+ 5312r2 � 42400r3+ 275368r4� 1149520r5+ 1983264r6+ 1454904r7�9608359r8+ 40979416r9� 156419796r10� 85939696r11+ 1520647364r12�1614074304r13� 2118065856r14+ 4165942016r15� 20361006976r16+
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a) r = 0:260548 : : : b) r = 0:260300 : : :Figure 3: Covering of a square with eight equal circles found byTarnai and G�asp�ar, and the improved covering.48683897856r17+ 60092338176r18� 266335027200r19+ 25000870912r20+495949447168r21� 104762015744r22� 583206961152r23� 187925004288r24+974294876160r25� 69986156544r26� 684913065984r27+ 309841625088r28:The numerical value of the root is r = 0:2603001058 : : : The polynomial was constructedin the following way. First, we note that due to symmetry it is su�cient to determine�ve vertices of the pentagon that lies in a quarter of the unit square. Together withthe covering radius this makes six unknowns. Unfortunately, the geometric restrictionsgive only �ve quadratic equations in these unknowns, so we have to use the fact thatthe covering radius must also be minimal within the above constraints. We introducethe derivatives of the unknowns with respect to one of the coordinates as new variablesand di�erentiate the original equations. This yields eleven quadratic equations in elevenunknowns. By determining a Gr�obner basis, this set can be reduced to the above equationfor r only.3.3 Eleven circlesThe best covering that we have found with eleven circles is shown in Fig. 4. The coveringradius is 0:2125160164 : : : The covering has two axes of symmetry. Following the best oftraditions we of course conjecture this con�guration to be optimal.
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r = 0:212516 : : :Figure 4: Covering of a square with eleven equal circles.4 Combinatorial methods for �nding lower boundsWhereas upper bounds for the optimal covering radius cn can be obtained by \simply"providing good coverings, good lower bounds are more di�cult to �nd. One way toconstruct a lower bound is as follows. Suppose that we have a covering of the unit squarewith n circles of radius cn. As the square can be used to tile the plane, we obtain a globalcircle covering of the plane with a covering density of �nc2n. Verblunsky [20] has shownthat this density is larger than or equal to 2�=p27, the density of the regular hexagonalcovering. This results in the following inequality.cn � vn := 4r 427 1pn:We will now describe a simple way, based on the pigeon hole principle, to �nd lowerbounds for the optimal covering radius, using the results for densest circle packings. If wehave n+ 1 points in a square that is covered by n equal discs, then two points must be inthe same disc. The smallest distance between the points is therefore a lower bound for thediameter of the discs. If the points are distributed such that the smallest distance betweenthe points is maximal, we obtain a lower bound that is optimal for this approach. Themaximum separation distance dn of n points in the unit square is related to the densestpacking radius rn of the unit square in the following way:dn = 2rn1� 2rn :



the electronic journal of combinatorics 3 (1996), #R32 7The lower bounds resulting from the exact results that are known for the packing problem(see the references in the Introduction) are shown in the following table.upper lower boundsboundn cn dn+1=2 R2n+1 vn1 0.707106 0.707106 0.707106 0.6204032 0.559016 0.517638 0.559016 0.4386913 0.503891 0.500000 0.500000 0.3581894 0.353553 0.353553 0.353553 0.3102015 0.326160 0.300462 0.310339 0.2774526 0.298727 0.267949 0.290225 0.2532787 0.274291 0.258819 0.260118 0.2344908 0.260300 0.250000 0.250000 0.2193459 0.230636 0.210639 0.216175 0.20680110 0.218233 0.199103 0.204365 0.19618811 0.212516 0.194365 0.195845 0.187058A possible re�nement of the previous argument would be as follows. If we take 2n+ 1points, then one of the discs must cover at least three points. This will also give a lowerbound for the covering radius. We need, however, to determine con�gurations of 2n + 1points that maximize the radius R2n+1 of the smallest disc that covers three of thesepoints. The smallest circle that covers a triangle is either the circumscribed circle, or thecircle that has the longest edge as diameter. If the triangle has edge lengths a, b and c,where a � b; c, then the radius of this circle is given byabcps(s � a)(s� b)(s� c) if a2 < b2 + c2;a2 else:Here, s is the semicircumference, s = a + b+ c2 :Placing pairs of points on the positions of the n + 1 points in the maximum separationcon�guration shows that the corresponding radius satis�es R2n+1 � R2n+2 � dn+1=2, sothe lower bound obtained in this way will not be inferior to the previous bounds. Aninteresting question is, therefore, whether this approach can in fact improve the lowerbounds found by the previous method, bearing in mind that there are no exact resultsavailable for R2n+1. We have found good con�gurations by using a multiple starting non-linear optimization, and the results are shown in the Table. It turns out that improvementis possible in almost all cases, and that the method actually yields a proof for n = 1; 2and 4.



the electronic journal of combinatorics 3 (1996), #R32 8It should be noted that the values under cn in the Table are upper bounds that areonly known to be sharp for n � 7, and that most of the values under R2n+1 are numericalvalues that may still be improved slightly. This, and the extension of the method to fourpoints per circle and higher will be subject of further study.
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