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Concrete cracks are very serious and potentially dangerous. -ere are three obvious limitations existing in the present machine
learning methods: low recognition rate, low accuracy, and long time. Improved crack detection based on convolutional neural
networks can automatically detect whether an image contains cracks and mark the location of the cracks, which can greatly
improve the monitoring efficiency. Experimental results show that the Adam optimization algorithm and batch normalization
(BN) algorithm can make the model converge faster and achieve the maximum accuracy of 99.71%.

1. Introduction

Traditional concrete which is used for various construction
purposes such as buildings, bridges, and dams often age due
to years of use which causes problems that affect the con-
struction facilities. In order to avoid the problems caused by
the aging of the facilities, it is necessary to continuously
monitor and maintain the facilities. -e traditional manual
inspection method obviously cannot meet the huge road
pavement inspection requirements. At present, many
computer vision technologies realize the detection of cracks.
Yiyang proposed a crack detection algorithm based on
digital image processing technology [1]. -rough pre-
processing, image segmentation, and feature extraction,
Yiyang obtained information about the crack image. -e
threshold segmentation method is used after smoothing the
accepted input image. To determine their image, Yiyang
calculated the area and circumference of the circle. -en, by
comparison, Yiyang evaluated the presence of cracks in the
image. Oliveira and Correia designed an automatic crack
detection system [2]. Crack detection here is based on a
sample. In the sample paradigm, a subset of the available

image databases is automatically selected and used for
unsupervised training of system images. -ey have char-
acterized operations based on the classification of non-
overlapping image blocks. -e width of the crack is then
estimated based on the detection of the crack block. An
improved dynamic programming-based algorithm is pro-
posed to detect cracks [3]. -e algorithm performs fast but
has low accuracy. -e Gabor filter is used to detect cracks [4],
which has a good effect on the detection of simple pavement
cracks and is severely broken for the detection of complex
cracks. Zhang et al. [5] adopted four-layer convolutional
neural network (CNN) to realize crack detection, with an
accuracy of 87%, which needs to be improved. Zhang et al.
[6] proposed a new region growth algorithm to detect road
cracks, which is not suitable for detecting small and scattered
cracks in the road. -e extended finite element formula
(XFEM) combined with the genetic algorithm (GA) has been
proven to be effective in detecting structural defects [7–9],
but this method also has many limitations. In this article, a
novel method [10] is used to improve the convolutional
neural network [11, 12], so that the convolutional neural
network can automatically detect the crack in the image and

Hindawi
Modelling and Simulation in Engineering
Volume 2019, Article ID 8796743, 8 pages
https://doi.org/10.1155/2019/8796743

mailto:3118268411@qq.com
https://orcid.org/0000-0002-9091-8258
https://orcid.org/0000-0003-0509-589X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8796743


mark the corresponding position. -e contribution of this
article is twofold. -e first system based on convolutional
neural network is a good technique for detecting cracks in
concrete structures, with an average accuracy of 99.71%.
Secondly, the automatic detection system for historical
buildings is introduced. In order to ensure the integrity of
historical building structure, especially the degradation of
masonry structure caused by aging and human activities, it
has certain reference value for periodic inspection and
maintenance of cultural relics. In practical, drones can easily
detect ancient buildings, bridges, dams, and temples that are
not easily monitored by humans. A convolutional neural
network is used to collect images, detect the presence of
cracks, and mark the corresponding cracks.

2. Improvement Based on Convolutional
Neural Network

2.1. Classical Convolutional Neural Network. Relative to
traditional neural network back propagation (BP neural
network) [12, 13], the use of weight sharing in convolutional
neural networks can greatly reduce network parameters and
accelerate the training speed of the network. -e perfor-
mance is stronger than that of BP neural networks. Con-
volutional neural networks have powerful feature extraction
capabilities. Using the advantages of convolutional neural
networks, convolutional neural networks are widely used in
various fields, including image classification, object de-
tection, autopilot, and image style migration.

A classic convolutional neural network usually includes
an input layer, a convolutional layer, a pooled layer (under
the layer), a fully connected layer, and an output layer, as
shown in Figure 1.

2.1.1. Convolution Layer

Hi � f Hi− 1 ⊗Wi + bi( , (1)

where i indicates the number of layers in the network, Hi− 1

represents the upper layer, i − 1 indicates the layer output
value, and wi indicates the weight of the network at the i
level. -e weight is generally carried out by random ini-
tialization. -e “⊗” symbol indicates a convolution opera-
tion, where f indicates that the result of the convolution is
input to an activation function that is nonlinearized.

2.1.2. Pooling Layer. -e pooling layer includes max pool-
ing, mean pooling, and random pooling. Here, the maxi-
mum pooling used in this paper is mainly discussed.
Maximum pooling, selects the maximum value in the area
within a certain area.

2.2. ImprovementBasedonConvolutionalNerve. Because the
crack to be identified is quite different from the background
color of the picture, the task of identification is relatively
simple. -erefore, the convolution kernel and pooling size
used in the network are generally large, and the network
structure is simple. -e network is batch normalized (BN)

[14] after each layer of pooling. -e mathematical expression
of batch normalization is normalized, as shown in the
formula (2)–(5). -e input is normalized to a data distri-
bution with an average of 0 and a variance of 1. -en, the
normalization operation destroys the possible data distri-
bution of the data itself and performs matrix shrinking and
translation on the normalized result to recover the data
distribution characteristics that the data itself may have.
Batch normalization can avoid the model overfitting to some
extent. At the same time, it can accelerate the convergence of
the model and improve the stability of training.
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2.2.1. Adam Algorithm. In terms of the choice of optimizer
for model training, instead of the traditional SGD [15]
optimization using the faster convergence Adam [16] al-
gorithm, Adam was submitted by OpenAI’s Diederik
Kingma and the University of Toronto’s Jimmy Ba to the
2015 ICLR paper (Adam), “A Method for Stochastic Opti-
mization.” Adam can set a learning rate for each weight
parameter, giving a smaller learning rate for those weights
that are updated more frequently and giving a larger learning
rate for those with fewer updates, while updating the pa-
rameters. -e momentum technique is introduced to con-
sider the past gradient in the parameter update, so that the
updated value of the current time is composed of the gra-
dient and the last updated gradient, which can effectively
reduce the oscillation of the loss function, stabilize the
training process, and speed up the training. -e updated
formula is as follows:

θt+1 � θt −
η�v√ t + ∈

mt, (6)

where θ represents the parameters in the network, the
number of iterations of the t, η represents the network
learning rate, and ε is a small floating-point number, which
is used to avoid meaningless operations when the de-
nominator M

���
(v)

Nt is zero Also, mt represents the gradient
after increasing the momentum factor, and the function of�v√ t is to set a separate learning rate for each parameter.

2.3. Network Structure. -e network structure used in this
paper is shown in Figure 2. -e input is a 227-pixel× 227-
pixel RGB 3-channel picture. After 24 convolution kernels
with a size of 20× 20 and a stride of 2, 114×114 is obtained.
-e tensor output of ×24, after 7× 7, the pooling layer with a

2 Modelling and Simulation in Engineering



step size of 2 outputs 57× 57× 24 tensor, then it is subjected
to nonlinearization by batch normalization (BN) and relu
activation function processing. -en, after 48 convolutions
of 15×15 steps of 2, a tensor of 22× 22× 48 is obtained, and
after 4× 4 steps of 2, a tensor of 10×10× 48 is obtained, also
after the tensor. Similarly, after the tensor is obtained, it is
processed by batch normalized processing (BN) and relu
activation function for nonlinear processing, the activated
10×10× 48 tensor is obtained, and then 96 convolutions of
10×10 steps are obtained to obtain 1× 1× 96 tensor. -en,
after passing through the fully connected layer of size 2, it is
then passed through softmax to convert the output value
into a probability output to obtain the result. Note that there
are many parameters in the fully connected layer. In order to
avoid overfitting, dropout [17] is used to ignore some nodes
randomly and proportionally, so that the node does not
work in this calculation, and to avoid the overfitting to some
extent. -e specific network parameter configuration is
shown in Table 1.

3. Empirical Research

3.1. Lab Environment

Translator: Python3.6

Operating environment: Spyder

Processor: Intel(R) Core(TM) i5-6200U CPU @
2.60 GHz 2.59 GHz

Running memory: 4G

Operating system: Windows 10 Enterprise

Machine learning framework: TensorFlow 1.8

3.2. Data Set. A training data set of concrete gap images
provided by Mendeley [18], including specific images with
cracks. -e test data comes from Middle East Technical
University campus building. -e data set is divided into two
categories, cracked and crack-free images. Each type of
image has 20,000 images, and each image has RGB pixels of
227-pixels× 227-pixels, for a total of 40,000 images. -e
crack data set image is shown in Figure 3 below. -ese 40,000
images are cut from 458 high-resolution (4032× 3024)
images, which are mentioned in Figure 3. High-resolution
images differ in terms of the lighting and the like.

3.3. Experimental Result. Before the experiment begins, the
data are divided into a part of the verification data set. -e
size of the model output data batch is 32. Before image input,
sample normalization of the image was conducted and label
data were encoded by one-hot encoding. Use the network
structure of Figure 2 for training. -e loss value is printed
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Figure 2: Network structure.
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Figure 1: Typical convolutional neural network.
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once in every 100 iterations, and the model is evaluated once
every 1000 iterations using the verification data set, as shown
in Figure 4. If the correct rate of this evaluation is greater
than the last time, the model is retained, and if 100 con-
secutive times are less than the correct rate of the previous
evaluation, then training is stopped, which experimentally
proves that the use of Adam optimization algorithm and
batch normalization (BN) can make the model converge
faster.

After 110 k iteration, the program automatically stops
training, and the correct rate of the model is about 99.71%.
As can be seen from Figure 5, after 11 k iterations, the
maximum correct rate is achieved. It takes about 50 minutes.
As can be seen from the figure, due to the continuous re-
duction of the learning rate, the correct rate is gradually
stabilized in the later stages of training.

Table 2 shows Zhang’s ConvNet built through the Caffe
framework and trained through the use of 5-fold cross-
validation [5]. -e results obtained from different methods
i.e., SVM and Boost are compared. Using ConvNes and
Adam, it can be seen that the accuracy result of each method
is 0.8112, 0.736, 0.8696, and 0.9971, respectively. -e most
accurate result is that of the Adam method.

3.4. Recognition Effect Display and Analysis. -e large size
images used for verification come from Google Images, all
containing cracks. Since the image resolution is much larger
than the 227× 227 input size of the model, the image is first
cut into small images of 227× 227 and placed into the model.
After detection, the results are returned and the crack lo-
cation is marked in the figure according to the returned
results. -e specific effect diagram is shown in Figure 6.

Figure 3: Crack image sample.

Table 1: Network parameter.

Layer Size Operator Filters Kernel_size Strides Padding

Input 227× 227× 3 C1 24 20× 20 2 Same

L1 114×114× 24 P2 — 7× 7 2 Same

L2 57× 57× 24
BN — — — —
relu — — — —
C3 48 15×15 2 Valid

L3 22× 22× 48 P4 — 4× 4 2 Valid

L4 10×10× 48
BN — — — —
relu — — — —
C4 96 10×10 2 Valid

L5 1× 1× 96
relu — — — —
Drop — — — —

L6 1× 1× 2 C5 2 1× 1 1 Valid

-e learning rate is set to 0.0001, and the learning rate drops to 0.99 for each iteration of 100; the dropout is set to 0.5.
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Figure 5: Correct rate change chart. -e light line is the set of real data points, and the solid line is the set of points after the smoothing
process.

Table 2: Performance comparison of different methods.

Method SVM Boosting ConvNets Adam

Precision 0.8112 0.736 0.8696 0.9971

Loss

0.328

0.314

0.326

0.322

0.320

0.318

0.316

0.312

0.000 10.00k 20.00k 30.00k 40.00k 50.00k 60.00k 70.00k 80.00k 90.00k 100.0k 110.0k

0.324

Figure 4: Printed loss value. Each iteration prints a loss of 100 times and evaluates the model once per 1000 iterations using the validation
data set.
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Figure 6: Continued.
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By comparing the results of the picture, it can be seen that
the model can better distinguish the picture with the contrast of
the background color of the crack and the picture, as shown in
Figures 6(a), 6(c), and 6(d). However, in Figures 6(b), 6(e), and
6(f), the identification effects are not properly visible for cracks
which is unapparent. -e reason behind this issue is that cracks
are narrow and the colour of the cracks is similar to the
background colour of the wall. -e result is poor in Figure 6(g)
as it does not identify a crack, which may be due to the model
itself is based on the black interpretation of the image to de-
termine whether there is a crack. -e solution to this problem is
to add black to the background in the training dataset or include
relatively dark lines of cracks on similar pictures while doing
analysis using the neural network.

4. Conclusion

In this paper, the use of relatively simple and improved con-
volutional neural networks has successfully achieved the
identification of cracks and has a very high accuracy rate. For the
analysis of relatively simple crack identification, it is suggested
that the use of large convolution and pooling methodology with
fewer network layers can be helpful to get better results.
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