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Abstract. The block cipher MISTY1 [9] proposed for the NESSIE pro-
ject [11] is a Feistel network augmented with key-dependent linear FL
functions. The proposal allows a variable number of rounds provided that
it is a multiple of four.
Here we present a new attack – the Slicing Attack – on the 4-round
version, which makes use of the special structure and position of
these key-dependent linear FL functions. While the FL functions were
introduced to make attacks harder, they also present a subtle weakness
in the 4-round version of the cipher.

Keywords: Block cipher, Cryptanalysis, Impossible Differential, Slicing
Attack.

1 Introduction

The MISTY1 block cipher [9] is a proposal for the NESSIE project [11] in the
class Normal-Legacy with a block size of 64 bits and a key length of 128 bits.
It is designed to be resistant against differential [2] and linear [8] cryptanalysis.
Another feature of the design is the use of key-dependent linear functions FL to
avoid possible attacks other than differential and linear cryptanalysis.

The best previous attacks on versions of MISTY1 without the linear functions
attack were on 5 rounds by higher-order differentials [12] and 6 rounds with
impossible differentials [7]. Additionally, the 4-round version including most of
the linear functions, leaving out the layer of final applications of the FL functions,
has been attacked by impossible differentials as well as collision searching [7].
Very recent results [6] using integral cryptanalysis yield attacks on 5 rounds of
MISTY1 without the final FL layer as well as on 4 rounds, also without the final
FL layer, having a very low data complexity.

In this paper we present attacks on the 4-round version of MISTY1 with all
FL functions by impossible differentials and by a new method called the Slic-
ing Attack. The slicing attack makes use of the position and the structure of
the key-dependent linear functions to derive knowledge about the key; further
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key bits can then be found with impossible differentials, or, in the chosen plain-
text/ciphertext model, by the meet-in-the-middle technique. Table 1 shows a
summary of the attacks.

While the computational effort for the attack using only impossible differen-
tials is very high, the slicing attack is surprisingly efficient; the existence of this
attack shows that augmenting the Feistel network with the linear FL functions,
which makes some attacks much harder, also introduces a new line of attack
that has to be considered a subtle weakness not being present in the underlying
Feistel network.

Table 1. Summary of the new and the best previously known attacks on MISTY1. A
memory unit is one block of 64 bits. Versions of MISTY1 with “most” FL functions do
not have the final FL layer.

Rounds FL Complexity Comments
Time Data Memory

5 none 217 11 × 27 [12]
6 none 261 254 [7], Section 4.1
4 most 290.4 223 [7], Section 4.2
4 most 262 238 [7], Section 4.2
4 most 289 220 [7], Section 4.2
4 most 276 228 [7], Section 4.2
4 most 227 25 [6]
5 most 248 234 [6]
4 all 2116 227.5 229.5 Impossible diff. (this paper)
4 all 245 222.25 231.2 Slicing Attack, preprocessing (this paper)
4 all 281.6 227.2 231.2 Slicing + impossible diff. (this paper)
4 all 248 223.25 233 Slicing Attack in chosen plaintext /

ciphertext model (this paper)

This paper is outlined as follows. In Section 2 the MISTY1 design is described,
Section 3 presents the attack on 4-round MISTY1 using impossible differentials
alone, Section 4 introduces the Slicing Attack, and finally Section 5 draws some
conclusions.

2 The Structure of MISTY1

The MISTY1 [9] proposal for the NESSIE project [11] is a block cipher with
a 64-bit block and a 128-bit key. It consists of a Feistel network augmented by
applying key-dependent linear functions FL to the left resp. right half of the
data in every second round, starting with the first, and additionally after all the
rounds (see left half of Figure 1). While the cipher is proposed with 8 rounds,
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the proposal allows a variable number of rounds provided that it is a multiple
of four. In this paper we will only consider the 4-round version.

The bijective round function FO is a 3-round network with a structure shown
in the right half of Figure 1. This network uses a bijective inner round function
FI, which itself is a 3-round network with the same structure, employing two
bijective S-boxes S9 and S7, which are 9 bits resp. 7 bits wide; the key to FI
is 16 bits wide. The details of the internal structure of FI will be of no further
concern in this paper.

The FL function is a linear or affine function for any fixed key; its internal
structure is a 2-round Feistel network (see Figure 2) with the round functions
being bitwise boolean AND resp. bitwise OR with key material.

The key scheduling takes a 128-bit key consisting of 16-bit values K1, . . . ,K8
and, as a first step, computes additional 16-bit values K ′

t = FIKt+1(Kt), 1 ≤ t ≤
8, K9 := K1. It produces three streams of sub-keys KOi = (KOi1, . . . ,KOi4),
KIi = (KIi1, . . . ,KIi3), and KLi = (KLi1,KLi2) as follows (i is identified with
i− 8 for i > 8):

KOi1 KOi2 KOi3 KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Ki Ki+2 Ki+7 Ki+4 K
′
i+5 K

′
i+1 K

′
i+3 K i+1

2
(odd i) K ′

i+1
2 +6

(odd i)
K ′

i
2+2 (even i) K i

2+4 (even i)

3 Differential Attack on 4-Round MISTY1

The attack given in this section works against the 4-round version of MISTY1
with all FL functions, improving the result of [7] as there the final applications
of the FL functions were left out. The attack applies impossible differentials [1,
5] and uses particular properties of the key scheduling, i.e. the fact that the keys
for the final FL functions and the fourth round have some key bits in common.

To be concrete, these sub-keys are KO4 = (K4,K6,K3,K8) and KI4 =
(K ′

1,K
′
5,K

′
7) for the fourth round’s FO resp. KL5 = (K3,K

′
1) and KL6 =

(K ′
5,K7) for the final FLs. The values K ′

1, K
′
5, and K3 are used twice.

For the attack we use Property 1 of FO from [7]:
Property 1. If the output difference of FO in round i is of the form (β, β)
with nonzero β from input with difference (αl, αr), then the input and output
differences of FI in the third round are zero; thus the sub-keys KOi3, KOi4, and
KIi3 cannot influence the output difference and are consequently of no concern.
The inputs to the first FI with difference αl yield an output difference αr under
the keys KOi1 and KIi1, while the second FI yields output difference β from the
inputs with difference αr under the keys KOi2 and KIi2.

The attack makes use of the 3-round impossible differential (0, α)
3R

�→ (0, β)
with nonzero α, β; this impossible differential works for any Feistel network with
bijective round functions, even when FL functions are used [7, Section 4.2]. The
attack proceeds as follows.
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Fig. 1. Global structure of MISTY1 with four rounds (left) and structure of outer
round functions FO (right).

1. Data Collection. Build a structure of 227.5 chosen plaintexts Pi = (x, y, ai, bi)
where all the (ai, bi) are different and obtain the corresponding ciphertexts
Ci = (ci, di, ei, fi) by encryption under the unknown key.

2. Processing. After guessing KL6 = (K ′
5,K7) and KL5 = (K3,K

′
1) obtain

C̃i = (c̃i, d̃i, ẽi, f̃i) by (c̃i, d̃i) = FL−1
KL6

(ci, di), (ẽi, f̃i) = FL−1
KL5

(ei, fi), and
compute wi = ẽi ⊕ f̃i. Every matching pair (i, j) with wi = wj results in a
difference C̃i ⊕ C̃j = (αl, αr, δ, δ). For each such matching pair (i, j) do the
following steps.
– (Round 1 of FO) Guess the value of K4 = KO41 (K ′

1 = KI41 is already
known) and check if

FIK′
1
(c̃i ⊕K4)⊕ FIK′

1
(c̃j ⊕K4) = d̃i ⊕ d̃j , (1)

where K ′
1 is known from the guess of KL5. Expect a single guess for K4

to fulfill this condition.
– (Round 2 of FO) Independently, guess the value of K6 = KO42 (K ′

5 =
KI42 is already known) and check the condition

FIK′
5
(d̃i ⊕K6)⊕ FIK′

5
(d̃j ⊕K6) = ẽi ⊕ ẽj = f̃i ⊕ f̃j , (2)



Improved Cryptanalysis of MISTY1 65

where K ′
5 is known from the guess of KL6. Again, expect a single guess

for K6 fulfilling this condition.
Any values of K4 and K6 that satisfy (1) and (2) must be wrong as they
would cause the impossible differential to hold. Use a map of 232 bits – which
can be reused for each guess of KL5, KL6 – to mark these wrong guesses of
(K4,K6).

Analysis. First, we determine the work needed for a structure of size 2m withm
to be determined later; note that m is necessarily bounded by m ≤ 32 due to the
block-size of 64 bits. For each Ci and all guesses of KL5 and KL6 the decryption
through FL−1 takes 232(1+232) ≈ 264 computations of FL−1 so for the structure
about 264+m computations of FL−1 are needed. Checking the conditions on K4
and K6 for each matching pair needs work of 2 · 2 · 216 computations of FI.

For the structure we expect about
(2m

2

)
/216 ≈ 22m−17 matching pairs for

each guess of the 32 bits in KL5. Each matching pair is expected to discard a
single wrong guess of 32 bits (K4,K6) for each guess of the 32 bits of KL6.

Thus, for the whole structure we expect in total about 22m−17 · 232 · 232 =
22m+47 wrong keys of 96 bit to be discarded. Assuming that the wrong keys
appear at random with equal probability, finding all wrong keys is the coupon
collector’s problem [3,10]. Therefore, with about 296 ln(296) ≈ 67 · 296 keys of 96
bits being discarded we expect only the right key to remain. Thus, m = 27.5
yielding a structure of size 227.5 is sufficient. As only the right key is expected
to remain, the bitmap – which is reused for each guess of KL5 and KL6 – is
expected to contain only a single unmarked position for the correct guess of KL5
and KL6.

The attack needs a single structure of 227.5 chosen plaintexts, 264+27.5 = 291.5

computations of FL−1, and 232 · 232 · 218 · 22·27.5−17 = 2120 computations of FI,
roughly equivalent to 2116 encryptions.

As we need to store only the ciphertexts Ci for the structure, a working copy
of all C̃i, and the wi, the memory consumption can be bounded by 228.5 blocks
of 64 bits each. In the processing step the map of 232 bits to mark wrong guesses
of (K4,K6) needs much less memory than the working copy of the ciphertexts.

Remark 1. The reduced number of chosen plaintexts required for this attack in
comparison to the attack given in [7, Section 4.2] (which did not include the final
FL functions) is due to the fact that here the use of one single structure allows
to make efficient use of the plaintexts; this technique can also be applied to [7,
Section 4.2] with a significant reduction in the plaintext requirements.

Remark 2. While the chosen plaintext requirements as well as the memory con-
sumption are well in reach of today’s attackers, the work factor makes the attack
only an academic possibility. But nevertheless, it is much faster than guessing
the 128-bit key by brute force.

Experimental results. This attack has been in part verified experimentally.
All key words except K6 (used as KO42) and K7 (second half of KL6) were
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❢✛ ∩❄
KLi2
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Fig. 2. Structure of FL (left), ∩ denotes the bitwise AND operation, ∪ the bitwise OR
operation. When looking only at differential behavior, the structure on the right results
(note the changed operation in the second round).

assumed to be known, thus reducing the work factor involved and also reducing
the map to 216 bits. Due to memory constraints only N = 5·223 chosen plaintexts
were used; due to time constraints only 511 passes with wrong values of K7 in
addition to the correct value of K7 have been tested.

Assume now a pass with a fixed guess for K7. As K4 is known and thus fixed,
we expect only a fraction of 2−16 of the pairs to fulfill (1), thus we expect about
M = N(N−1)

2 ·2−16 ·2−16 = 204800 pairs to have output XOR (β, β) and to fulfill
(1); each of these pairs is expected to remove one guess of K6 from the map.
With r = M/216 we expect 216 exp(−r) ≈ 2880 candidates for K6 to remain
unmarked in the map (see [10, Theorem 4.18] for this instance of the occupancy
problem).

The observed mean of removed guesses for K6 (including collisions) in the
experiments was 204759, the mean of remaining candidates for K6 was 2883,
thus matching the theory very accurately. The correct K6 was still in the map
when using the correct value of K7. For each guess of K7 about 80 minutes of
CPU-time were needed on a PC with Pentium III (800MHz), 256 MBytes of
RAM plus 512 MBytes of swap space; about 640 MBytes of memory were used.

4 The Slicing Attack on 4-Round MISTY1

In this section a new kind of attack is presented that makes essential use of
presence, position and structure of the key-dependent FL functions. This attack
bypasses the components of the cipher that provide the provable security against
differential and linear cryptanalysis.

4.1 Differential Properties of the FL Function

The FL function is a linear (or affine) function for any fixed key. It consists of a
2-round Feistel network with the round function being a bitwise AND resp. OR
operation with the key bits (see Figure 2).
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Notation. Denote bit i of a value a by a[i] counting the bits from LSB to MSB
starting with 0.

As only bitwise operations without any shifts or other means of diffusion are
involved, FL basically consists of 16 parallel versions of a cipher with a 2-bit
block. Let (a, b) be the input and (c, d) be the output of FL with 16-bit values
a, b, c, d. Then block i consists of the bits (a[i], b[i]) and (c[i], d[i]).

In the following the round functions are analysed algebraically in order to
obtain a closed description for the differential behavior of FL. Let k denote a
key bit and x an input. Then the round functions are as follows:

x ∩ k := xk

x ∪ k := x⊕ k ⊕ xk.

Now let x∗ denote a second input and let x′ = x ⊕ x∗; then the differential
behavior of these operations is as follows:

(x ∩ k)⊕ (x∗ ∩ k) = xk ⊕ x∗k = x′k
(x ∪ k)⊕ (x∗ ∪ k) = (x⊕ k ⊕ xk)⊕ (x∗ ⊕ k ⊕ x∗k) = x′ ⊕ x′k.

Therefore, for differences the FL function has the effective description given on
the right hand side of Figure 2. Call this function DFL.

4.2 Slicing 4-Round MISTY1

The attack in the previous section employed the 3-round impossible differential
(0, α) �→ (0, β). Any sub-key for the last round (including the FL functions that
follow) that yields the output difference of the impossible differential must be
wrong. This is used to discard all the wrong keys.

Another view on this situation is as follows. It focuses on the changes to the
nonzero difference in the half of the data that is the right half of the input. This
is shown in Figure 3. The input difference in the right half is α �= 0, causing an
nonzero output difference α′ of the FL function in round 1. The first round’s FO
has a zero output difference, so no further change occurs here. The difference is
modified again in round 3 by an FL function (α′′ �= 0) and by XOR with the
output difference γ of FO, yielding δ′. Finally, it is modified through the output
transformation by FL yielding a difference δ in the left half of the ciphertext.
This is shown in the right part of Figure 3.

The output difference γ of FO in round 3 must be nonzero, as can be seen
as follows. The input difference of the FO in round 2 is α′ �= 0, so β′ �= 0, as FO
is bijective. Therefore, in round 3, the input to FO is also nonzero, thus causing
γ �= 0.

It should be noted that the difference of concern here – right half of plaintext
difference, left half of ciphertext difference – is changed only by the keys to FL
with the single exception of the XOR with the difference γ in round 3.

Therefore, any set of keys (KL2,KL4,KL6) to a stack of three instances of
DFL that yields δ from α implies that γ = 0, thus it must be wrong. The
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Fig. 3. Slicing MISTY1. The differential path of the data from the right half of the
input to the left half of the output is shown on the right side. The difference γ is known
to be nonzero.

result is that we are dealing only with a slice of 4-round MISTY1. Note that
this property does not hold for the underlying Feistel network without the key-
dependent linear functions and that an extension to more rounds seems not to
work.
Definition 1. The slice of three instances of DFL consists of 16 parallel in-
stances of the same key-dependent function. Denote it by F , indexed by the 6-bit
key k, i.e. Fk : {0, 1}2 → {0, 1}2. The blocks are located in the same places as
for FL.

In the following some properties of F are shown that will subsequently be
used for the attack.

Lemma 1. Depending on the key, F realises one of six different bijective func-
tions. Thus F has six classes of equivalent keys. There are four classes with 11
keys and two with 10 keys.

Proof. From the structure of F it is clear that F is a bijective function, therefore
Fk(a) �= 0 for nonzero a. As the input and output of F are differences, it follows
that Fk(0) = 0 for any k. On the remaining three inputs F realises a permutation,
of which there are 3! = 6 different. Checking all 64 possible keys gives the number
of keys per class showing that all of these functions are indeed realised. �
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Notation. Let K1, . . . ,K6 denote the six classes of equivalent keys for F and
Fi denote the function realised by any of the keys in Ki for i ∈ {1, . . . , 6}.
Proposition 1. For any nonzero a, b there are exactly two i ∈ {1, . . . , 6} such
that Fi(a) = b holds.

4.3 Attacking the Slice

As a consequence of these classes of equivalent keys it should be clear that the
best one can hope for is to find a vector of 16 functions that never implies
the output difference of the third round’s FO being zero. Further conditions to
distinguish right vs. wrong keys must come from the key scheduling or other
means besides the slicing attack (see Section 4.4).
Definition 2. Let α = (αl, αr) be the input to the slice of three DFL functions
and δ = (δl, δr) its output. As both α and δ come from plaintext resp. ciphertext
differences, still call this a pair and denote it as α → δ. A vector (f15, . . . , f0) ∈
{F1, . . . ,F6}16 is called valid for α → δ if for each i ∈ {0, . . . , 15} the 2-bit block
(αl[i], αr[i]) is mapped to (δl[i], δr[i]) by fi.

As one cannot distinguish between functions with a zero input and output,
any pair that causes a zero input / output to any of the 16 parallel instances
of F cannot be used. Such a pair is called a bad pair whereas a pair with only
nonzero input and output blocks for each of the 16 instances of F is called a
good pair.

From Proposition 1 it follows that each good pair has 216 valid vectors of
functions while there are 616 ≈ 241.4 vectors in total. With 241.4/216 = 225.4

good pairs there are 241.4 valid vectors. Assuming that the valid vectors appear
at random with equal probability, this is the coupon collector’s problem [3,10]
Therefore, with about 241.4 ln(241.4) ≈ 246.2 valid vectors from about 230.2 good
pairs all valid vectors are expected to be found. As it is known that an invalid
vector exists, this one is expected be be singled out.

The chance that a random pair is a good pair is about (9/16)16 ≈ 2−13.3.
Therefore about 243.5 pairs are needed which can be gained from about 222.25

chosen plaintexts.
Now we are ready to state the actual Slicing Attack:

1. Data Collection. Build a structure of 222.25 plaintexts Pi = (r, s, ti, ui) with
constant (r, s) and (ti, ui) being arbitrary but all different; obtain the ci-
phertexts Ci = (vi, wi, xi, yi) encrypted under the unknown key.

2. Filtering. For each pair (i, j), i < j, check if α = (αl, αr) = (ti ⊕ tj , ui ⊕ uj),
δ = (δl, δr) = (vi ⊕ vj , wi ⊕ wj) form a good pair, i.e. (αl[m], αr[m]) �= 0,
(δl[m], δr[m]) �= 0 for all 0 ≤ m ≤ 15. For all good pairs store (α, δ) in a
table T .

3. Processing, Outer Loop. For each of the 66 assignments of (f5, . . . , f0) do
the following. First, select all those good pairs α → δ such that (f5, . . . , f0)
is valid for the corresponding six blocks; store the selected good pairs in a
table T ′.
Initialise a bit map B of 610 < 226 bits, then execute the inner loop:
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– Processing, Inner Loop. For all good pairs in T ′ set the bits in B that
correspond to the valid vectors (f15, . . . , f6) for the rightmost 10 blocks.
Finding these can be done by using a preprocessed table to get the
possibilities for each of the 10 blocks.

After all pairs in T ′ are processed check which bits in B are still cleared.
These correspond to possibly invalid vectors.

Analysis. The filtering is expected to keep
(222.25

2

)
/213.3 ≈ 230.2 good pairs,

thus from the discussion above it is clear that the algorithm is expected to single
out one invalid vector (f15, . . . , f0).

As by Proposition 1 exactly 2 out of 6 functions are valid for each given input
and output of a 2 bit block the chance that a good pair in T is included in T ′ is
about

( 1
3

)6 ≈ 2−9.5. Therefore T ′ is expected to have a size of 230.2/29.5 < 221.
The total running time consists of three components: first, the time for fil-

tering, second, the time for constructing table T ′ in step 3, and, third, the time
spent in the inner loop.

The filtering takes 243.5 checks to find the good pairs. The building of T ′ is
done 66 times where each time about 230.2 checks have to be done (a check can
be done with look-up tables, taking only constant time). This step thus takes a
total of roughly 246 checks.

Each execution of the inner loop sets about 210 · 221 = 231 bits, so the total
time spent here in all iterations of step 3 is roughly 66 · 231 ≈ 247 elementary
operations like computing indices plus setting bits in the bitmap etc.

This sums up to running time roughly equivalent to 245 encryptions. The
memory consumption can be bounded by the size of the plaintexts and cipher-
texts, the tables T and T ′, and the bitmap in the inner loop, totaling to about
231.2 blocks.

Remark 3. While the slicing attack does not directly reveal key bits, it gains
knowledge about the class of equivalent keys of the real key (KL2,KL4,KL6).
This class contains at most 1116 ≈ 255.4 keys. Comparing this to the initial set
of 296 keys shows a gain in knowledge of about 40 bits.

Remark 4. When also considering the key scheduling, the real key is (K ′
3,K5),

(K ′
4,K6), (K ′

5,K7) with K ′
5 = FIK6(K5), so that the real entropy is only 80 bits.

But for the keys in the equivalence class the same 16-bit condition holds, so that
about 240 keys are expected to remain. This is also a gain in knowledge about
the key of about 40 bits.

4.4 Finding the Real Key Bits

When using the knowledge gained in the slicing attack in a subsequent step of
analysis the work factor of the slicing attack is only involved as additive work
to what follows.
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A simple way is brute force, namely enumeration of the about 240 keys in the
equivalence class and guessing the remaining 48 key-bits, requiring expected 1

22
88

encryptions, about 2 known plaintexts / ciphertexts and de facto no memory.
Better methods are given below. One uses impossible differentials in the usual

chosen plaintext model of attack, the other uses the chosen plaintext/ciphertext
model to efficiently find the complete key.

Improving the impossible differential attack. The differential attack of
Section 3 can be improved significantly by using the information from the slicing
attack; this is faster than the brute force method at the cost of more chosen
plaintexts. It makes use of the fact that only 16 key-bits (K ′

1 in KL5) have to be
guessed in addition to enumerating the about 240 keys in the equivalence class.

The attack proceeds as follows after having knowledge about the correct
equivalence class, again using Property 1 of FO and the 3-round impossible
differential (0, α) �→ (0, β) (see Section 3).

1. Data Collection. Build a structure of 2m plaintexts Pi = (x, y, ai, bi) with
constant x, y and random but different (ai, bi) and obtain the corresponding
ciphertexts Ci = (ci, di, ei, fi). The number m is determined later in the
analysis to be m = 27.2.

2. Enumerate the Keys. The keys in the equivalence class can be enumerated by
stepping through all 232 assignments of K ′

5 and K6; then set K5 = FI−1
K6
(K ′

5)
and enumerate all possible assignments of K ′

3, K
′
4, and K7 by considering

separately each 2-bit block using a precomputed table. For each assignment
compute K4 = FI−1

K5
(K ′

4) and K3 = FI−1
K4
(K ′

3).
For each 16-bit value for K ′

1 set KL5 = (K3,K
′
1), KL6 = (K ′

5,K7) and do
the following step:
a) Find wrong keys. For all ciphertexts Ci compute (ẽi, f̃i) = FL−1

KL5
(ei, fi),

(c̃i, d̃i) = FL−1
KL6

(ci, di), and build two lists

ui = ẽi ⊕ f̃i

wi = (FIK′
1
(K4 ⊕ c̃i)⊕ d̃i,FIK′

5
(K6 ⊕ d̃i)⊕ ẽi).

If for any i, j there is a match ui = uj and wi = wj , go to the next guess of
the keys, otherwise keep the guessed keys. The rest of the key bits, i.e. K2
and K8, can be found by brute force and inverting the key schedule (to find
K1).

Analysis. The outer loop for the enumeration of the keys in the equivalence
class has 232 iterations with a single application of FI−1 taking place. For
each assignment of K ′

5 and K6 about 28 values are expected to be found for
(K ′

3,K
′
4,K7). While for some functions and fixed key-bits no suitable keys ex-

ist, this is not a problem because these events can be found efficiently with the
precomputed table.

The costs here are 232 computations of FI−1 and some table operations which
is much less than the enumeration of all about 240 keys. For each of these keys
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two FI−1 computations take place; in total this is about 232 + 2 · 240 ≈ 241

computations of FI−1, independent of the size 2m of the structure.
It is easy to see that a pair (i, j) with ui = uj yields a symmetric difference

(β, β). Each pair (i, j) with ui = uj and additionally wi = wj fulfills the two
conditions

FIK′
1
(K4 ⊕ c̃i)⊕ FIK′

1
(K4 ⊕ c̃j) = d̃i ⊕ d̃j (first round of FO)

FIK′
5
(K6 ⊕ d̃i)⊕ FIK′

5
(K6 ⊕ d̃j) = ẽi ⊕ ẽj (second round of FO),

thus fulfilling Property 1 of FO. Therefore this guess of the key must be wrong
and is discarded; a correct key never fulfills these conditions. This ensures the
correctness of the algorithm.

Per guessed key about 2 · 2m applications of FL−1 and the same number of
applications of FI are done, for all key guesses (about 240 from the equivalence
class times 216 from K ′

1) in total about 2
57+m applications of FL−1 and 257+m

applications of FI.
For each pair (i, j) there is a chance of about 2−16 to fulfill ui = uj and a

chance of about 2−32 to fulfill wi = wj , thus a chance of 2−48 to discard a key
of 56 bits. Modeling the keys discarded by each pair as random and assuming
an equal probability, we expect about 2562−48 = 28 keys being discarded by any
pair. The task of discarding all wrong keys is the coupon collector’s problem [3,
10]. Therefore, with about 256 ln(256) ≈ 261.3 keys discarded by about 261.3/28 =
253.3 pairs only the right key is expected to remain. This implies a choice of
m = 27.2 and a structure of 227.2 chosen plaintexts.

The work needed sums up to 241 applications of FI−1, 2 · 283.2 applications
of FL−1, and 284.2 applications of FI. This is roughly equivalent to about 281.6

encryptions.
The memory consumption can be bounded by the number of ciphertexts, a

working copy for decryptions by FL−1, and the tables for the ui and wi. This
sums to roughly 229.2 blocks which is less than needed for the slicing attack.

Attack in the chosen plaintext / ciphertext model. In this model the
slicing attack can also be used to find an equivalence class for the sub-keys
KL1 = (K1,K

′
7), KL3 = (K2,K

′
8), and KL5 = (K3,K

′
1) with chosen ciphertext

queries; call this the backward slice and denote its equivalence class by Kb in
contrast to the forward slice with class Kf of the chosen plaintext attack.

This preprocessing steps together take 2 · 245 work, 222.25 chosen plaintexts
queries, 222.25 chosen ciphertext queries and 231.2 blocks of memory. Note that
adaptiveness of the queries is not necessary here.

Now we use the fact that K3 in KL5 can be computed from K ′
3, K

′
4, and

K5 from the forward slice; a similar property holds for K7. This can be used
with the meet-in-the-middle technique parametrised by 0 ≤ N ≤ 16 to allow a
time/memory tradeoff:

1. Global Loop. Step through all values for the highest N bits of K6.
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a) Enumerate forward slice. Step through all values of the lower 16−N bits
of K6 and the 16 bits of K ′

5; compute K5 = FI−1
K6
(K ′

5). Enumerate all
values for K ′

3, K
′
4, K7 that are in Kf for the fixed sub-key values using

a precomputed table. Compute K4 = FI−1
K5
(K ′

4), and K3 = FI−1
K4
(K ′

3).
Store the 128 bits K3, K ′

3, K4, K ′
4, K5, K ′

5, K6, K7 in a hash table T
indexed by (K3,K7) allowing later to retrieve all entries with the same
index.

b) Enumerate backward slice. For all values of K ′
1 and K2 compute K1 =

FI−1
K2
(K ′

1) and enumerate the values for K
′
8, K

′
7, and K3 in Kb, again us-

ing a precomputed table. For each of these also computeK8 = FI−1
K1
(K ′

8),
K7 = FI−1

K8
(K ′

7).
i. Check the keys. Retrieve all entries with the same (K3,K7) from the
hash table T . Complete the key scheduling and do one or if necessary
two trial encryptions to check whether it is the correct key.

Analysis. First look at the steps (a) and (b) that are executed inside the global
loop. Step (a) is expected to enumerate about 240/2N = 240−N sub-key values
while performing about 216−N · 216 + 2 · 240−N computations of FI−1 (like in
the analysis above there might be values for K ′

5 such that no valid sub-keys are
found, but the total work to find these is much less than the enumeration of all
the 240−N sub-keys). The expected size of T is 240−N values à 128 bits which is
241−N blocks.

Step (b) is enumerating the about 240 keys in Kb with about 232 + 2 · 240
computations of FI−1. In T we expect to find 240 ·240−N ·2−32 = 248−N matches,
therefore the completion of the key schedule and the trial encryption is expected
to be done about 248−N times.

In total, taking the global loop into account, the time needed is about
241−N+N + 241+N = 241 + 241+N computations of FI−1 roughly equivalent to
about 239 + 239+N encryptions. The full cipher is expected to be run about
2N · 248−N = 248 times.

With N = 10 we can efficiently reuse the memory used in the slicing attack,
needing about 1.5 ·249 work and 231 memory, With N = 8 the time is dominated
by the 248 trial encryptions with a memory requirement of 233 blocks.

4.5 MISTY Variants and the Slicing Attack

As the slicing attack allows to attack the 4-round version of MISTY1 very effi-
ciently, one might ask whether this attack applies also to the MISTY1 variant
KASUMI [4] which is used in 3rd generation cellular phones. In comparison to
MISTY1 the FO and FI functions are modified and, more important here, the
FL functions – with bit-rotations added in the round function – are moved to
be part of KASUMI’s round function. As KASUMI is a plain 8-round Feistel
network with no key-dependent operations being performed outside the round
function, the slicing attack does not apply.

In MISTY1 the slicing attack is possible because of the position of the FL
functions; avoiding this requires to move the FL functions. The attack is also
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efficient because it is easy to determine all keys resp. vectors of parallel functions
in the slice that map an input XOR to an output XOR. To prevent the slicing
attack it would thus be necessary to add a new design criterion besides those
given in [9]. A possible fix might be adding bit-rotations to FL’s round functions
(like in KASUMI’s FL) to avoid the parallelism, but whether this prevents the
attack is left to future research. On the other hand the slicing attack seems to
work only for the 4-round version of MISTY1, thus using more than 4 rounds
should prevent this attack.

5 Conclusion

While for the impossible differential attack on the 4-round version of MISTY1
presented in this paper the chosen plaintext requirements and the memory con-
sumption are certainly in range of today’s attackers, the high work factor in-
volved does not threaten the cipher.

On the other hand the slicing attack is made possible by the position and
structure of the FL functions. It shows that augmenting the Feistel network with
key-dependent functions can introduce subtle weaknesses that are not present
in the Feistel network itself; one special feature is that the slicing attack com-
pletely bypasses the components that provide the provable security of the cipher.
Furthermore, this is surprisingly efficient, it is clearly in range of today’s possi-
bilities.

While the MISTY1 proposal allows any multiple of four as the number of
rounds, the results in this paper show that the 4-round version should be avoided,
thus leaving the recommended number of 8 rounds as a minimum.

The author would like to thank David Wagner for helpful discussions and
for suggesting the use of the chosen plaintext / ciphertext model. Thanks are
also due to the anonymous referees of the 2nd NESSIE workshop and FSE 2002
whose comments helped to improve the paper.
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