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Abstract. The GOST hash function family has served as the new Rus-
sian national hash standard (GOST R 34.11-2012) since January 1, 2013,
and it has two members, i.e., GOST-256 and GOST-512 which corre-
spond to two different output lengths. Most of the previous analyses of
GOST emphasize on the compression function rather than the hash func-
tion. In this paper, we focus on security properties of GOST under the
hash function setting. First we give two improved preimage attacks on
6-round GOST-512 compared with the previous preimage attack, i.e., a
time-reduced attack with the same memory requirements and a mem-
oryless attack with almost identical time. Then we improve the best
collision attack on reduced GOST-256 (resp. GOST-512) from 5 rounds
to 6.5 (resp. 7.5) rounds. Finally, we construct a limited-birthday distin-
guisher on 9.5-round GOST using the limited-birthday distinguisher on
hash functions proposed at ASIACRYPT 2013. An essential technique
used in our distinguisher is the carefully chosen differential trail, which
can further exploit freedom degrees in the inbound phase when launch-
ing rebound attacks on the GOST compression function. This technique
helps us to reduce the time complexity of the distinguisher significantly.
We apply this strategy to Whirlpool, an ISO standardized hash function,
as well. As a result, we construct a limited-birthday distinguisher on 9-
round Whirlpool out of 10 rounds, and reduce the time complexity of
the previous 7-round distinguisher. To the best of our knowledge, all of
our results are the best cryptanalytic results on GOST and Whirlpool in
terms of the number of rounds analyzed under the hash function setting.
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1 Introduction

A hash function takes a message of arbitrary length and produces a bit string of
fixed length. For a hash function, three classical security notions are mainly con-
sidered: collision resistance, second preimage resistance, and preimage resistance.
Many nowaday hash functions divide messages into many blocks and process
each block with a compression function iteratively, such as the Merkle-Damg̊ard
[5,25] based hash functions. Security properties of the underlying compression
functions are also considered by cryptanalysts, and sometimes they do have im-
pacts on the security properties of the hash functions. An example was shown in
a recent work [13] by Iwamoto et al., in which a semi-free-start collision attack
on the compression function can be turned into a limited-birthday distinguisher
on the hash function.

The old GOST R 34.11-94 hash function [10] was theoretically broken in 2008
[21,22]. As a consequence, the new GOST R 34.11-2012 hash function [6,11,15]
has replaced GOST R 34.11-94 as the new Russian national hash standard since
January 1, 2013. GOST R 34.11-2012 shares a lot of its structure with the broken
GOST R 34.11-94, while its internal compression function is very similar to the
one of the ISO standardized hash function Whirlpool [3,12]. The main differences
between GOST and Whirlpool are the number of rounds and the transposition
operations.

Several cryptanalytic results [1,2,30] have been presented for the new GOST
hash function, but most of them only focus on the GOST compression function
rather than the hash function, except for a recent work by Zou et al. [32]. They
presented collision attacks on 5 rounds of all variants of GOST and a preim-
age attack on 6-round GOST-512 out of 12 rounds. For Whirlpool, there are
several cryptanalytic results concerning the compression function [23,18,19,29].
While at the hash function level, the best collision [19] and preimage [29] attacks
only reach 5.5 and 6 rounds out of 10 rounds, and a 7-round limited-birthday
distinguisher on Whirlpool was given in [13] recently.

Our Contributions. In this paper, we look into the similarities and differences
of GOST and Whirlpool, and improve previous attacks on GOST and Whirlpool
under the hash function setting. First we give two improved preimage attacks
on 6-round GOST-512 compared to [32], i.e., a time-reduced attack with the
same memory requirements and a memoryless attack with almost identical time.
Then by discovering the weakness of the transposition operation of GOST, we
present a 6.5-round collision attack on GOST-256 and a 7.5-round attack on
GOST-512, while previous results only reach 5 rounds. Finally, we construct a
limited-birthday distinguisher [13] on 9.5-round GOST. A very essential part
of our distinguisher is the carefully chosen truncated differential trail, which
reduces the time complexity of the distinguisher significantly. We apply similar
strategy to Whirlpool, and achieve a 9-round limited-birthday distinguisher. The
time complexity of the previous 7-round distinguisher [13] is reduced as well. As
far as we know, these are the best results on GOST and Whirlpool in terms of
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the number of rounds analyzed under the hash function setting. Our results and
some representative previous works are summarized in Table 1.

The rest of this paper is organized as follows: In Section 2, we give brief de-
scription of the GOST hash function and the tools used in this paper. In Section
3, we present improved preimage attacks on 6-round GOST-512. In Section 4, we
show collision attacks on both GOST variants. In Section 5, a limited-birthday
distinguisher on 9.5-round GOST is given. Due to the space limitation, details
of the limited-birthday distinguishers on reduced-round Whirlpool are provided
in the full version of this paper [20]. We conclude and summarize the paper in
Section 6.

Table 1. Comparison of Previous and Ours Results on GOST and Whirlpool

Target Attack Type Rounds Time Memory Ideal Reference

GOST-256

(12 Rounds)
Collision Attack

5 2122 264
2128

[32]

6.5 2125 264 Section 4.1

GOST-512

(12 Rounds)

Preimage Attack

6 2505 264

2512
[32]

6 2496 264 Section 3

6 2504 211 Section 3

Collision Attack
5 2122 264

2256
[32]

7.5 2181 264 Section 4.2

Limited-birthday

Distinguisher
9.5 2441 2136 2449 Section 5.1

Whirlpool

(10 Rounds)

Collision Attack 5.5 2120 264 2256 [19]

Preimage Attack 6 2481 2256 2512 [29]

Limited-birthday

Distinguisher

7 2440 2128 2505 [13]

7.5 2368 2144 2497 Full Version [20]

9 2354 2158 2385 Full Version [20]

2 Preliminaries

2.1 The GOST Hash Function

The GOST hash function takes any message up to 2512 bits as input, and out-
puts a 256- or 512-bit hash value, i.e., GOST-256 and GOST-512. GOST-512 and
GOST-256 are almost the same, except that they have different initial values,
and GOST-256 truncates the final 512-bit chaining value into a 256-bit digest. As
depicted in Fig. 1, the GOST hash function family adopts the Merkle-Damg̊ard
structure with a unique output transformation. The hash computation contains
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three stages. Before we give specific descriptions of each stage, we define several
notations.

A||B The concatenation of two bit strings A and B.
M The input message, which is divided into 512-bit blocks.
Mi The i-th 512-bit message block of M.
|M | The bit length of M.
Len The bit length of the last message block of M.
Σ The 512-bit checksum of all message blocks.

CF The compression function.
hi The i-th 512-bit chaining variable.

CTi The i-th 512-bit counter which denotes the total message
bits processed before the i-th CF call.

In the initialization stage, M is padded into a multiple of 512 bits, i.e.,
M ||1||0∗ is the padded message, which is then divided into N 512-bit blocks
M0||M1||...||MN−1. h0 is assigned to the predefined IV of GOST-256 or GOST-
512. |M |, Σ and CT0 are assigned to 0. In the compression stage, each block
Mi is processed iteratively, i.e., hi+1 = CF (hi,Mi, CTi) for i = 0, 1, ..., N −
1. After each compression function computation, |M |,Σ and CTi+1 are up-
dated accordingly. In the finalization stage, the immediate chaining value of the
last message block hN goes through the output transformation, i.e., hN+1 =
CF (hN , |M |, 0), hN+2 = CF (hN+1, Σ, 0). For GOST-256 (resp. GOST-512),
MSB256(hN+2) (resp. hN+2) is the hash value of M .

CFh0

M0

|M|

M1

CFh1 CFh2

M2

CFhN-2

MN-2

512512 512 512

CFhN-1

MN-1
*

Len

CFhN

0

CFhN+1

0

hN+2

Initialization
= |M| = 0

h0 = 0512,  for GOST-512
h0 = (00000001)64,  for GOST-256

Compression
Len = |M| mod 512
MN-1

* = MN-1||1||0511-Len

Finalization
h = hN+2, for GOST-512
h = MSB256(hN+2), for GOST-256

|M|

CT0 CT1 CT2 CTN-2 CTN-1

Fig. 1. Three Stages of the GOST Hash Function

The compression function CF (hi,Mi, CTi) can be seen as an AES-like block
cipher EK used in a Miyaguchi-Preneel-like mode, i.e., CF (hi,Mi, CTi) =
Ehi⊕CTi(Mi) ⊕ Mi ⊕ hi. As for the block cipher EK , a 512-bit internal state
is denoted as an 8 × 8 byte matrix. For the key schedule part, hi ⊕ CTi is as-
signed as the key K, then K0 is computed from K as follows:

K0 = L ◦ P ◦ S(K)
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The round keys K1,K2, ...,K12 are generated as follows:

Kj+1 = L ◦ P ◦ S ◦XC(Kj) for j = 0, 1, 2, ...11,

where K12 is used as the post-whitening key:

– AddRoundConstant(XC): XOR a 512-bit constant predefined by the de-
signers.

– SubBytes(S): process each byte of the state through the SBox layer.
– Transposition(P): transpose the k-th column to be the k-th row for k =

0, 1, 2, ..., 7, i.e., transposition of the state matrix.
– MixRows(L): multiply each row of the state matrix by an MDS matrix.

For the data processing part, Mi is the plaintext, and is assigned to the initial
state S0. Then the state is updated 12 times with the round function as follows:

Sj+1 = L ◦ P ◦ S ◦X(Sj), for j = 0, 1, 2, ...11,

where AddRoundKey(X) XOR the state with the round key Kj . Finally, the
ciphertext EK(Mi) is computed with S12 ⊕K12.

Notations. The round indexes of GOST are denoted with r0, r1, r2, ..., r11.
The input state of round rj is denoted as Sj , and SX

j , SS
j , S

P
j , SL

j denote the
corresponding state after the X, S, P, L operation of round rj respectively,
i.e., Sj+1 = SL

j .

2.2 The Multicollision Attack and Its Applications

The t-multicollisions are t-tuples of messages which all hash to the same value.
In [14], Joux gave the multicollision attack on iterated hash functions. He shows
that constructing 2t-collisions costs only t times as much as building ordinary
2-collisions.

The multicollision attack has been used in many occasions. A variant of the
multicollision attacks, known as the expandable messages [16], was applied in
second preimage attacks. Moreover, the expandable messages were also used
to construct long preimages [31,29]. Another application of the multicollision
attacks was given in [8] to attack Merkle-Damg̊ard-like hash functions with
linear-XOR or additive checksum operations.

2.3 Limited-Birthday Distinguisher on Hash Functions

The limited-birthday problem was first proposed by Gilbert and Peyrin in [9],
and they also presented a generic procedure to solve this problem. In [13],
Iwamoto et al. proved that the generic attack given in [9] is actually the best
generic attack possible. Moreover, they proposed a new generic distinguisher
for Merkle-Damg̊ard-like hash functions based on the limited-birthday problem.
Now we give brief descriptions of the limited-birthday problem for hash functions
and the new distinguisher derived.
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The Limited-Birthday Problem. [13] ”Let h be an n-bit output hash func-
tion, and process any input messages of fixed size, m bits where m ≥ n. Let IN
be a set of admissible input differences and OUT be a set of admissible output
differences, with the property that IN and OUT are closed sets with respect to
⊕1. Then for the limited-birthday problem, the goal of the adversary is to gener-
ate a message pair (M,M ′), such that M⊕M ′ ∈ IN and h(M)⊕h(M ′) ∈ OUT”
for a randomly chosen instance of h.”

Note that IN and OUT can be freely chosen by the adversary, let 2I and 2O

denote the sizes of IN and OUT respectively, it is proved in [13] that the lower
bound of the time complexity of the limited-birthday problem for a one-way
function is

max
{
2

n−O+1
2 , 2n−I−O+1

}
.

The Limited-Birthday Distinguisher on Hash Functions. Let h be an n-
bit hash function which iteratively calls CF to process each fixed length message
block, where CF is a compression function which takes an m-bit message and a
k-bit (k ≥ n) chaining variable as inputs, and outputs a k-bit chaining value. A
semi-free-start collision for CF is a pair ((CV,M), (CV,M ′)) with M �= M ′ and
a freely chosen CV , such that CF (CV,M) = CF (CV,M ′). Assume that the
adversary is able to find 2s distinct semi-free-start collisions of CF in 2c time,
with s ≤ k/2 and s ≤ c. IN corresponds to the set of all possible differences for
all the colliding messages, a limited-distinguisher on h can be derived as follows:

1. Generate 2s semi-free-start collisions {(CVj ,Mj), (CVj ,M
′
j)} on CF with 2c

operations, and store all 2s CVj values in a list TL1.

2. From IV , pick 2k−s random message blocks {Mi}, and compute the corre-
sponding chaining values {hi}.

3. For each hi, check whether it is in the list TL1. If so, the message couple
((Mi||Mj), (Mi||M ′

j)) is a collision pair of the hash function.

The above procedure needs 2c + 2k−s computations. The adversary outputs
the collision couple, whose input difference mask lies in a space IN of size 2I , and
output difference mask lies in a space OUT of size 1 (due to the collision). The
limited-birthday problem tells us that this should require max{2n/2, 2n−I+1}
queries in the ideal case. Since 2c + 2k−s ≥ 2s + 2k−s ≥ 2k/2 ≥ 2n/2, the above
procedures can be seen as a valid distinguisher if and only if

2c + 2k−s < 2n−I+1.

It is also described in [13] that one can even derive a valid limited-birthday
distinguisher from a semi-free-start near-collision attack, when the near-collision
is located in the last message block and padding can be satisfied.

1 The ⊕ operation can be replaced by any other group operation, we use ⊕ for a simple
specification.
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3 Improved Preimage Attack on 6-Round GOST-512

In this section, we improve the preimage attack on 6-round GOST-512 in [32].
First we reduce the time complexity from 2505 to 2496 by removing the unneces-
sary MitM (Meet-in-the-Middle) step. Then we show a memoryless attack with
time complexity 2504. Moreover, by using the technique in [8] to build more com-
plicate multicollisions, we deal with the checksum straightforwardly with success
probability 1 while Zou’s attack deals with it probabilisticly. Before describing
our attacks, we clarify that a single compression function computation (resp. a
512-bit storage which is the bit size of the state) is used as the basic unit of time
(resp. memory) in this paper.

The MitM preimage attack on GOST-like compression functions has been well
studied [28,31,29,32], thus we use the results without providing more details. As
depicted in Fig. 2, our preimage attack is divided into three steps. The specific
procedures of each step are described as follows:

IV
h1

h2

h1'

h3

h4

h3'

h1023

h1024

h1023'
h1022

M1024
h1025 h1026

|M| (M) 
hX

Step 1. 2512-multicollisions Step 2. MitM preimage attack

Step 3. solve the checksum with 2512-multicollisions

Fig. 2. 3 Steps of the Preimage Attacks on 6-round GOST-512

Step 1. From IV , use the technique of [8] to build 2512-multicollisions. The
exact steps are as follows:

1. Let h0 = IV .
2. For i = 0 to 511:

(a) Let Ai, Bi be two random blocks.
(b) For j = 0 to 2256 − 1:

i. X [j] = (Ai + j)||(Bi − j).
ii. X ′[j] = (Ai − j + 2i)||(Bi + j).
iii. Let Yi[j] denote immediate hash value of X [j] from h2i, store it in

the list Yi.
iv. Let Y ′

i [j] denote immediate hash value of X ′[j] from h2i, store it in
the list Y ′

i .
(c) Search for a collision in Yi and Y ′

i . Let M2i||M2i+1 = (Ai+Ci)||(Bi−Ci)
and M ′

2i||M ′
2i+1 = (Ai−C′

i+2i)||(Bi+C′
i) denote the collision pair, and

h2(i+1) denote the collision hash value.

In the end, h1024 is the hash value of the 2512-multicollisions.
Step 2. We randomly choose the value of an additional message block M1024,
and make sure M1024 satisfy padding. Without loss of generality, we fix the
last bit of M1024 to ’1’, then the bit length of the message can be denoted
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as |M | = 1024 × 512 + 511 = 524799. From h1024, we compute the immediate
chaining value h1026 with M1024 and |M |. Suppose that hX is the target value.
We find a preimage Σ(M) using the MitM preimage attack with a probability
1 − e−1. If no candidate for Σ(M) is found, we just choose another value of
M1024 and repeat Step 2.
Step 3. Step 2 will eventually succeed, thus we get the checksum value Σ(M),
and need to find a combination of the first 1025 message blocks to satisfy Σ(M).
This problem has already been well studied in [8], and the exact steps are as
follows:

1. Let CCS = hX −M1024 denote the checksum which is desired.
2. Compute Q =

∑511
i=0(Ai +Bi).

3. Compute D = CCS − Q =
∑511

i=0 ki2
i, the ki sequence is the binary repre-

sentation of D.
4. Set M to an empty message.
5. For i = 0 to 511:

(a) If ki = 0, then M = M ||M2i||M2i+1.
(b) Else M = M ||M ′

2i||M ′
2i+1.

6. M = M ||M1024.

At the end of this phase,M contains a sequence of 1025 blocks which corresponds
to the desired checksum. Thus M is a preimage of hX .

Memoryless Collision Search. In Step 1, we need to launch the collision
search 512 times, and a common birthday attack would require 2256 memory.
Thanks to the memoryless MitM (collision) attacks2 [27,26] [24, Remark 9.93],
the memory requirement can be reduced to 211 (since the collision pairs and the
immediate hash values need to be stored). The specific steps for each collision
search are as follows:

1. Denote h2i as the initial hash value of the i-th collision search.
2. Randomly choose two message blocks Ai, Bi.
3. Let s0 denote the immediate hash value of Ai||Bi from h2i.
4. For j = 0 to 2256

(a) If the least significant bit of sj is 0, compute sj+1, which is the immediate
hash value of (Ai + sj)||(Bi − sj) from h2i.

(b) Else compute sj+1, which is the immediate hash value of (Ai − sj +
2i)||(Bi + sj) from h2i.

Finally, the attacker detects the cycle of the above procedure, and finds intersec-
tion point of the cycle. We denote sα and sβ as the two points before the inter-
section point. If the least significant bit of sα and sβ are distinct, without loss of
generality, we suppose the least significant bit of sα is 0 and the least significant
bit of sβ is 1, then (Ai+sα)||(Bi−sα) and (Ai−sβ+2i)||(Bi+sβ) are the collision

2 The memoryless attacks are based on cycle detection techniques such as Floyd’s
cycle-finding algorithm [7] or Brent’s algorithm [4].
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message blocks desired. The time complexity is at most 23 times3 more than the
generic birthday attack. Thus we need a total 1024×23×2256 = 2269 compression
function computations and 211 memory to generate the 2512-multicollisions.

Memoryless Meet-in-the-Middle Preimage Attack. The memoryless
MitM preimage attack, explored by Khovratovich et al in [17], is based on
the classical memoryless MitM technique [26]. Similar to the memoryless MitM
preimage attack on Whirlpool in [29], we can launch a memoryless MitM preim-
age attack on the GOST compression function with 2504 computations. Please
refer to [29,32] for more details.

Now we consider the overall complexity of our attack. Step 1 can be done
with 2269 compression function calls and 211 memory. As for step 2, we need
2496 time and 264 memory to minimize the time complexity or 2504 time to
launch the memoryless attack. There are only a few simple operations in step 3,
both time and memory are negligible. So it takes 2496 time and 264 memory or
2504 time and 211 memory to find a single preimage of 6-round GOST-512.

Remarks. An improved preimage attack on the compression function of GOST
is likely to work for the preimage attack on the hash function using the generic
procedures above.

4 Improved Collision Attacks on Reduced-Round GOST

As far as we know, the 5-round attacks [32] are the best collision attacks on
GOST-256 and GOST-512 in terms of rounds attacked. In this section, we
present improved collision attacks on both variants of GOST. The improved
collision attacks mainly come from a direct observation of the transposition op-
eration of GOST. First, we describe a collision attack on 6.5-round GOST-256.
Then by further exploiting freedom degrees in the chaining values, we present a
collision attack on 7.5-round GOST-512.

4.1 Collision Attack on 6.5-Round GOST-256

We first show collision attack on the compression function of GOST-256 by using
the rebound attack [23] and the SuperSBox technique [9,18]. Then we show how
to convert it to a collision attack on the GOST-256 hash function.

Attack on the Compression Function. The truncated differential trail used
in our attack is depicted in Fig. 3. Since the transposition operation P has the
involution property, the active columns of S0 and SP

6 will both locate at the first

3 The success possibility is 1/2, and using Brent’s algorithm [4] to detect the cycle and
find the intersection point costs at most 22 times more than the generic birthday
attack.
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column. Thus, if they cancel each other, we would achieve a collision attack on
the compression function. Note that the involution property of P is originally
exploited in [30], and will also be used in our later analyses. The whole attack
can be divided into the inbound phase (in red), and the outbound phase (in
blue). In the following part we describe each phase in detail.

P
L
X

S
P
L

S5

X

S

P

L

S4 S5 S6S0 S1 S2 S3 S6
P

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P

inbound phase outbound phaseoutbound phase

SuperSBox
S2

S

r0 r1 r2 r3 r4 r5 r5.5

S3
X S4

S

Fig. 3. Collision Attack on 6.5-Round GOST-256 Compression Function

Inbound Phase. We need to find two states which follow the two middle
rounds from SS

2 to S5. It can be summarized as follows.

1. We start from picking a random nonzero difference of SS
2 at the 8-byte active

positions indicated in Fig. 3. Since all the operations between SS
2 and SX

3 are
linear, we can propagate the difference forwards to SX

3 . The states between
SX
3 and SS

4 can be seen as eight parallel SuperSBoxes, and the input to
each SuperSBox is the corresponding row of SX

3 . For each SuperSBox, we
enumerate all 264 pairs of inputs according to the difference of SX

3 , and
calculate the corresponding output differences of the SuperSBox. Store all
the output differences and corresponding pairs of values in a table for each
SuperSBox. This step requires 264 time and 264 memory.

2. Pick a random nonzero difference of S5 at the 8-byte active positions, and
propagate the difference backwards to SS

4 . Note that this can be repeated
for all 255 = 28 − 1 nonzero differences of each active byte in each row
independently.

3. Now we have to connect the states SX
3 and SS

4 such that the differential trail
holds, and this can be done for each row independently. For each SuperSBox,
we search the corresponding difference of SS

4 in the table built in step 1. Since
we have 264 values in each table, and we need to match a 64-bit difference
value, the expected number of solutions is 1.

4. We can repeat step 2 and step 3 with another nonzero difference of S5.
After enumerating all 264 differences of S5, we expect to get 264 solutions.
Combining with the complexity of step 1, the above procedures require 264

time and 264 memory to generate 264 solutions. In other words, the expected
time needed to get one solution is only 1.

If the number of solutions of the inbound phase is insufficient, we can repeat
step 1-4 with another difference of SS

2 . Since there are 264 differences for SS
2 , we

can generate at most 264+64 = 2128 solutions for the inbound phase.
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Outbound Phase. We use the solutions of the inbound phase and propagate
them forwards and backwards. The outbound phase has one 8 → 1 transition,
and we need to match a 64-bit difference between S0 and SP

6 , so it requires
256+64 = 2120 computations to find one collision for the 6.5-round compression
function.

Impact of the DDT of the GOST SBox. The DDT (Difference Distribution
Table) of the SBox is the core of the rebound attack. The SBox of GOST is not as
balanced as the AES SBox. In fact, its maximal differential probability reaches
2−5 while the one of the AES SBox is 2−6. Thus, the matching probability of
the GOST SBox is lower than the AES SBox, which might introduce some small
biases. However, as discussed in [29], the DDT has no impacts on the expected
number of solutions for a random difference pair of an SBox. Hence, the time
complexity is not increased if we need to find many solutions from the inbound
phase.

Attack on the Hash Function. Similar to the technique of [32], we extend
the attack on the compression function to the hash function. Since we aim to
construct two collision messages with identical length, we only need to deal with
the final checksums. As depicted in Fig. 4, we first build 232-multicollisions,
then find two message chains with an identical checksum. The exact steps are
as follows:

M1

M1'

h1

M0

M0'

h0=IV h2 h3 collisionh31 h32

M2

M2'

M31

M31'

checksum solved with 232-multicollisions

M32  ...

Fig. 4. Collision Attack on 6.5-round GOST-256

1. Start from the initial value h0 = IV :
For j = 0 to 31,
– Find two messages Mj and M ′

j using the compression function collision
attack above, such that CF (hj ,Mj) = CF (hj ,M

′
j), and let hj+1 =

CF (hj ,Mj). Notice that (Mj ,M
′
j) differs only in the first column.

2. After step 1, we build 232-multicollisions from h0 to h32. Since each collision
pair only differs in the first column, besides the identical parts of the 232-
multicollisions always have identical sums including carries, the difference of
their checksums lies in a space whose size is at most 264. We can generate 232

checksums with the 232-multicollisions. According to the birthday paradox,
we expect to find one collision among these checksums. Then we append
any identical message blocks which satisfy padding, and finally construct a
collision on the GOST-256 hash function.



300 B. Ma et al.

In the above procedures, collision attack on the compression function is repeated
32 times, so the overall time complexity of the collision attack on GOST-256 is
32 × 2120 = 2125 which is lower than the birthday bound 2128. The memory
requirement stays 264 due to the SuperSBox technique.

4.2 Collision Attack on 7.5-Round GOST-512

The collision attack on GOST-256 can be directly applied to GOST-512 with
the same complexity, but in this part we show how to extend one more round
for GOST-512. The differential trail of the 7.5-round attack on the compression
function is depicted in Fig. 5. Again the inbound phase can provide at most
2128 solutions with 2128 time and 264 memory. But there are two 8 → 1 transi-
tions in the outbound phase, and we need to match a 64-bit difference between
S0 and SP

7 in order to get a collision, thus we need at least 256+56+64 = 2176

solutions from the inbound phase. The freedom degree of the inbound phase
is obviously insufficient, and the attack will only succeed with a very low
probability 2128−176 = 2−48.
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Fig. 5. Collision Attack on 7.5-round GOST-512 Compression Function

Luckily, we can exploit more freedom degrees by choosing different chaining
values as depicted in Fig. 6. More precisely, we launch a two-block attack on the
compression function. First, from a chaining value h2i, we randomly choose a
message blockM2i and compute the corresponding chaining variable h2i+1. Then
we launch the rebound attack with the value of h2i+1 and check if a collision
pair (M2i+1,M

′
2i+1) is obtained. If no collision is achieved, we choose another

value for M2i and repeat this procedure. Since the collision attack succeeds
with probability 2−48, we expect to get one collision after we randomly choose
248 different values for M2i. Hence, the rebound attack needs to be repeated 248

times, and the time and memory required are 248+128 = 2176 and 264 respectively.

M3

M3'

h2 h3
M2

M1

M1'

h0=IV h1
M0 h4

M63

M63'

h62 h63
M62 h64 collision

checksum solved with 232-multicollisions

M64  ...

Fig. 6. Collision Attack on 7.5-round GOST-512
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As depicted in Fig. 6, we build 232-multicollisions by repeating the compres-
sion function attack 32 times. According to the birthday paradox, we expect
to get two messages with identical checksum from the 232-multicollisions, and
derive a collision for the GOST-512 hash function. Thus the time complexity is
32 × 2176 = 2181, while the memory requirement remains 264. Note that when
the same strategy is applied to GOST-256, the time complexity is beyond the
birthday attack bound 2128.

5 Limited-Birthday Distinguishers on GOST-512 and
Whirlpool

In this section, we build limited-birthday distinguishers for reduced-round GOST-
512 and Whirlpool. It is indicated in [13] that if a better balance is achieved
between the total number of semi-free-start collisions one can generate and the
average complexity to generate one collision, a better limited-birthday distin-
guisher can be derived. Therefore, we try to achieve a better balance between
attack parameters by choosing the differential trails used in the inbound phase
carefully. This is actually a very essential idea of our distinguishers. We launch
a 9.5-round semi-free-start collision attack on GOST-512 compression function
with a differential trail, which is different from previous trails for collision-like
attacks. As a result, we build a valid limited-birthday distinguisher on 9.5-round
GOST-512.

The very same strategy can be applied to Whirlpool as well. With the ex-
pandable messages [16], we are able to convert a semi-free-start near-collision
attack on 9-round Whirlpool compression function into a valid distinguisher for
9-round Whirlpool hash function. We also reduce the time complexity of the
previous distinguisher on 7-round Whirlpool [13]. Due to the space limitations,
specific descriptions of the limited-birthday distinguishers on Whirlpool are
provided in the full version of this paper [20].

5.1 Limited-Birthday Distinguisher on 9.5-Round GOST-512

Semi-Free-Start Collision Attack on the GOST Compression Func-
tion. The differential trail used in the 9.5-round semi-free-start collision attack
on the GOST-512 compression function conforms to the following form:

8
r0−→ 1

r1−→ 8
r2−→ 64

r3−→ 8x
r4−→ 8x

r5−→ 64
r6−→ 8

r7−→ 1
r8−→ 8

r8.5−→ 8

where x = 1, 2, ..., 8 and denotes the number of active rows (columns) in the
middle rounds. Fig. 7 depicts the trail when x = 3. Suppose there are 8x active
bytes in the middle parts of the trail, we describe the attack in detail.

Inbound Phase. We aim to connect both differences and actual values between
SS
2 and S7. The inbound phase is divided into two subinbound phases, and the

merge inbound phase merges the two subinbound phases.
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Fig. 7. Semi-free-start Collision Attack on 9.5-Round GOST-512 Compression Function

1. Phase 1. We find states connecting SX
3 and S4.

(a) We start with a random difference of S4, and propagate the difference
backwards to SS

3 .
(b) Choose a random difference of SS

2 . Since all the operations between SS
2

and SX
3 are linear, we can propagate the difference forwards to SX

3 , and
match it with the difference of step 1(a) through the SBox layer. Notice
the match can be done for each row independently. We have 255 different
values for each active byte SS

2 , and expect to get one difference match
and each match provides 28 solutions. So it takes 29 operations to find 28

solutions of SX
3 and S4 for each row. After enumerating all 264 differences

of SS
2 for each row independently, we expect to get 264 solutions in 29

computations.
2. Subinbound Phase 2. We find states connecting SX

6 and S7.
(a) Start with a random difference of SS

5 . Since all the operations between
SS
5 and SX

6 are linear, we can propagate the difference forwards to SX
6 .

(b) Choose a random difference of S7 and propagate the difference backwards
to SS

6 , match it with the difference of step 2(a) through the SBox layer.
Again, we expect to get 264 solutions of SX

6 and S7 after enumerating
all 264 differences of S7 in 29 computations.

3. Merge Inbounds. We need to connect the actual values of S4 and SX
6

obtained from the two subinbound phases. That is, we need to find solutions
for the following equation using the freedom degrees of the key:

L ◦ P ◦ S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕K6 = SX
6 , (1)

where K4,K5 = L◦P ◦S(K4⊕C4),K6 = L◦P ◦S(K5⊕C5) denote the round
keys, and C4, C5 denote the round constants in the key schedule. Equation
(1) can be rewritten as:

S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕ S(K5 ⊕ C5) = P−1 ◦ L−1(SX
6 ). (2)

Notice equation (2) can be solved column by column independently. We
denote the left half and the right half of equation (2) with VL and VR re-
spectively. The merge inbounds phase is then as follows:

(a) Enumerate all 264 values of each column of S4 and all 264 values of the
corresponding column of K4, propagate forwards to get the correspond-
ing values of VL. Store all the pairs in tables and sort them by the value
of S4||VL. The size of the tables is 2128. This step requires 2128 time
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and 2128 memory, and the precomputed tables can be reused in later
attacks. Notice that we omit the precomputation part in the complexity
analysis of our distinguishers, since the precomputation part is not the
dominated part.

(b) For each pair (S4, S
X
6 ), we compute the value of VR with SX

6 and check
whether S4||VR is in the tables built in step 3(a). Notice that K4 pro-
vides 264 freedom degrees per column in the matching part. For each
active column of S4, we need to match two 64-bit values with proba-
bility 264−128 = 2−64. For each non-active column, we need to match
one 64-bit value and expect to find one match. Hence, if there are x
active columns in S4, the matching probability is 2−64x. Notice that we
have generated 264 pairs of S4 in step 1, and 264 pairs of SX

6 in step 2,
thus we expect to get 264+64−64x = 264(2−x) solutions. This step requires
264 table lookups, and the average complexity to find one solution is
264−64(2−x) = 264(x−1).

(c) After we connect the values of S4 and SX
6 for each column of S4 indepen-

dently, we propagate both forwards and backwards to SS
2 and S7, thus

derive a solution for the inbound phase.

4. If the solutions of the inbound phase are not enough, we can repeat the
above steps from step 1(a) with another difference of S4. If the solutions are
still insufficient, we can repeat the above steps from step 2(a) with another
difference of SS

5 . Since there are x active columns in S4 and x active rows
in SS

5 , we can repeat the above steps 264(x+x) = 2128x times. Each time we
obtain 264(2−x) solutions with 264 time. So the maximum number of solutions
we can generate is 2128x+64(2−x) = 2128+64x. The average complexity to find
one solution remains 264(x−1).

Outbound Phase. The outbound phase has two 8 → 1 transitions, and we
need to match a 64-bit difference, so it requires 256×2+64 = 2176 computations
to find one collision for the 9.5-round compression function.

Combining the results of the inbound phase and the outbound phase together,
we deduce that we can generate at most 2128+64x−176 = 264x−48 semi-free-start
collisions, and the average complexity to find one collision is 264(x−1)+176 =
264x+112.

The Limited-Birthday Distinguisher on 9.5-Round GOST-512. In or-
der to apply the limited-birthday distinguisher on GOST-like hash functions,
we have to deal with the message checksums, i.e., we need to find two message
chains with identical length and checksum. As depicted in Fig. 8, we can solve
this problem with two MitM procedures. The specific steps are as follows:

1. We find 2y semi-free-start collisions, and store the corresponding chaining
variables h1,i and message pairs (M1,i,M

′
1,i) in a table TL1. Notice there are

only 8 active bytes in the colliding pairs, thus the difference of the colliding
pairs lies in a space whose size is at most 264.
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Fig. 8. Limited-Birthday Distinguisher on 9.5-Round GOST-512

2. Start from IV , randomly choose 2512−y different values ofM0,j , and compute
the corresponding chaining value h′

1,j , check whether it is in TL1. There is
a high probability that we can find a match. We denote the corresponding
message pairs as ((M0||M1), (M0||M ′

1)), and the immediate hash value as h2.
3. Find all entries in TL1 which satisfy Mk − M ′

k = M ′
1 − M1, and store all

(Mk,M
′
k) pairs in a table TL2. The equation holds with a probability 2−64,

since the difference space of the colliding pairs is at most 264. There are 2y

entries in TL1, so the expected number of entries in TL2 is 2y−64.
4. Start from h2, randomly choose 2512−(y−64) different values of M2,j, and

compute the corresponding chaining value h′
2,j , check whether it is in TL2.

There is a high probability that we can find a match. We denote the corre-
sponding message pairs as ((M2||M3), (M2||M ′

3)), and the immediate hash
value as h4.

5. Since M1−M ′
1 = M ′

3−M3, if we append any identical messages which satisfy
padding to the message pairs ((M0||M1||M2||M3), (M0||M ′

1||M2||M ′
3)), we

get a collision pair of the hash function.

Suppose the time needed to find one semi-free-start collision is 2T1 , then the
time complexity of the above procedure is

T = 2y+T1 + 2512−y + 2512−(y−64) = 2y+T1 + 2512−y + 2576−y.

Although there are two different positions in the twomessage chains, i.e., (M1,M3)
and (M ′

1,M
′
3), but their values are restrained byM1−M ′

1 = M ′
3−M3, so we know

that 2I = 264, and 2O = 1. For an ideal one-way function, find two such messages
would require 2n−I−O+1 = 2449 computations. If T < 2449, the above procedure
can be seen as a valid distinguisher on 9.5-round GOST-512.

As we mentioned above, the average time complexity to find one semi-free-
start collision is 2T1 = 264x+112, and we can generate at most 2N1 = 264x−48

semi-free-start collisions. Now we show how to choose the values of y and T1

which minimize the time complexity.
Two different occasions need to be considered. In the first occasion, if we can

generate enough collisions, we can balance T by letting y + T1 = 576 − y, i.e.,
y = (576−T1)/2 = 232− 32x. In this occasion, we need to ensure N1 ≥ y. Since
both T1 and N1 can be denoted with x, we solve this inequality and get that
x > 2. Then T can be rewritten as:

T = 2y+T1+1 = 2232−32x+64x+112+1 = 2345+32x, for x = 3, 4, 5, 6, 7, 8.
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On the other hand, when x ≤ 2, we can’t generate enough collisions, so T
is dominated by 2576−y and we need to find all the semi-free-start collisions
in order to maximize y. In this occasion, we find all the collisions, i.e., let
y = N1 = 64x− 48, then T can be rewritten as:

T = 2576−y = 2576−64x+48 = 2624−64x, for x = 1, 2.

Finally, we consider both occasions, and find out that the lowest complexity
is 2441 when x = 3. Notice 2441 < 2449, thus we build a valid limited-birthday
distinguisher on 9.5-round GOST-512. Since we need to store all the collision
pairs, the memory requirement is 2y = 2136.

6 Conclusion

In this paper, we have first investigated fundamental security requirements of
reduced-round GOST, including improved preimage attacks on GOST-512 and
improved collision attacks on both GOST-256 and GOST-512. Then, using the
newly proposed limited-birthday distinguisher on hash functions, we construct
a 9.5-round distinguisher on GOST-512 by choosing the differential trail dis-
creetly. Finally, we apply this strategy to Whirlpool, and achieve a new 9-round
distinguisher. We also reduce the time complexity of the previous 7-round dis-
tinguisher. As far as we know, all of our results are the best cryptanalytic results
on GOST and Whirlpool in terms of the number of rounds analyzed under the
hash function setting.

A notable implication of our collision attack and distinguisher on GOST is
the importance of a proper transposition operation such as the AES ShiftRow.
More attention is paid to construct secure SBoxes or MDS matrices in designing
AES-like primitives, but a misbehaviour of a transposition operation might bring
security problems. As in the GOST case, the transposition operation which trans-
poses the state matrix seems not an optimal selection to achieve transposition,
since compared to the ShiftColumn operation of Whirlpool, the transposition
operation of GOST facilitates our collision and distinguisher attacks with more
rounds.
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