
Improved Cryptanalysis on Reduced-Round GOST and
Whirlpool Hash Function (Full Version)⋆

Bingke Ma1,2,3, Bao Li1,2, Ronglin Hao1,2,4, and Xiaoqian Li1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, 100093, China

2Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, 100093, China

{bkma,lb,xqli}@is.ac.cn
3University of Chinese Academy of Sciences, Beijing, China

4Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

haorl@mail.ustc.edu.cn

Abstract. The GOST hash function family has served as the new Russian national hash
standard (GOST R 34.11-2012) since January 1, 2013, and it has two members, i.e., GOST-
256 and GOST-512 which correspond to two different output lengths. Most of the previous
analyses of GOST emphasize on the compression function rather than the hash function. In
this paper, we focus on security properties of GOST under the hash function setting. First
we give two improved preimage attacks on 6-round GOST-512 compared with the previ-
ous preimage attack, i.e., a time-reduced attack with the same memory requirements and
a memoryless attack with almost identical time. Then we improve the best collision attack
on reduced GOST-256 (resp. GOST-512) from 5 rounds to 6.5 (resp. 7.5) rounds. Finally,
we construct a limited-birthday distinguisher on 9.5-round GOST using the limited-birthday
distinguisher on hash functions proposed at ASIACRYPT 2013. An essential technique used
in our distinguisher is the carefully chosen differential trail, which can further exploit freedom
degrees in the inbound phase when launching rebound attacks on the GOST compression
function. This technique helps us to reduce the time complexity of the distinguisher signif-
icantly. We apply this strategy to Whirlpool, an ISO standardized hash function, as well.
As a result, we construct a limited-birthday distinguisher on 9-round Whirlpool out of 10
rounds, and reduce the time complexity of the previous 7-round distinguisher. To the best of
our knowledge, all of our results are the best cryptanalytic results on GOST and Whirlpool
in terms of the number of rounds analyzed under the hash function setting.

Keywords: hash function, GOST, Whirlpool, multicollision, preimage, collision, limited-
birthday distinguisher

1 Introduction

A hash function takes a message of arbitrary length and produces a bit string of fixed
length. For a hash function, three classical security notions are mainly considered: colli-
sion resistance, second preimage resistance, and preimage resistance. Many nowaday hash
functions divide messages into many blocks and process each block with a compression
function iteratively, such as the Merkle-Damg̊ard [5,24] based hash functions. Security
properties of the underlying compression functions are also considered by cryptanalysts,
and sometimes they do have impacts on the security properties of the hash functions.

⋆ This article is the full version of the paper published at ACNS 2014.

2 B. Ma et al.

An example was shown in a recent work [13] by Iwamoto et al., in which a semi-free-
start collision attack on the compression function can be turned into a limited-birthday
distinguisher on the hash function.

The old GOST R 34.11-94 hash function [10] was theoretically broken in 2008 [20,21].
As a consequence, the new GOST R 34.11-2012 hash function [6,11,15] has replaced GOST
R 34.11-94 as the new Russian national hash standard since January 1, 2013. GOST R
34.11-2012 shares a lot of its structure with the broken GOST R 34.11-94, while its internal
compression function is very similar to the one of the ISO standardized hash function
Whirlpool [3,12]. The main differences between GOST and Whirlpool are the number of
rounds and the transposition operations.

Several cryptanalytic results [1,2,29] have been presented for the new GOST hash
function, but most of them only focus on the GOST compression function rather than
the hash function, except for a recent work by Zou et al. [31]. They presented collision
attacks on 5 rounds of all variants of GOST and a preimage attack on 6-round GOST-512
out of 12 rounds. For Whirlpool, there are several cryptanalytic results concerning the
compression function [22,18,19,28]. While at the hash function level, the best collision [19]
and preimage [28] attacks only reach 5.5 and 6 rounds out of 10 rounds, and a 7-round
limited-birthday distinguisher on Whirlpool was given in [13] recently.

Our Contributions. In this paper, we look into the similarities and differences of
GOST and Whirlpool, and improve previous attacks on GOST and Whirlpool under the
hash function setting. First we give two improved preimage attacks on 6-round GOST-
512 compared to [31], i.e., a time-reduced attack with the same memory requirements
and a memoryless attack with almost identical time. Then by discovering the weakness of
the transposition operation of GOST, we present a 6.5-round collision attack on GOST-
256 and a 7.5-round attack on GOST-512, while previous results only reach 5 rounds.
Finally, we construct a limited-birthday distinguisher [13] on 9.5-round GOST. A very
essential part of our distinguisher is the carefully chosen truncated differential trail, which
reduces the time complexity of the distinguisher significantly. We apply similar strategy
to Whirlpool, and achieve a 9-round limited-birthday distinguisher. The time complexity
of the previous 7-round distinguisher [13] is reduced as well. As far as we know, these
are the best results on GOST and Whirlpool in terms of the number of rounds analyzed
under the hash function setting. Our results and some representative previous works are
summarized in Table 1.

The rest of this paper is organized as follows: In Section 2, we give brief description
of the GOST hash function and the tools used in this paper. In Section 3, we present
improved preimage attacks on 6-round GOST-512. In Section 4, we show collision attacks
on both GOST variants. In Section 5, limited-birthday distinguishers on reduced-round
GOST and Whirlpool are given. We conclude and summarize the paper in Section 6.

2 Preliminaries

2.1 The GOST Hash Function

The GOST hash function takes any message up to 2512 bits as input, and outputs a 256- or
512-bit hash value, i.e., GOST-256 and GOST-512. GOST-512 and GOST-256 are almost

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 3

Table 1. Comparison of Previous and Our Results on GOST and Whirlpool

Target Attack Type Rounds Time Memory Ideal Reference

GOST-256

(12 Rounds)
Collision Attack

5 2122 264
2128

[31]

6.5 2125 264 Section 4.1

GOST-512

(12 Rounds)

Preimage Attack

6 2505 264

2512
[31]

6 2496 264 Section 3

6 2504 211 Section 3

Collision Attack
5 2122 264

2256
[31]

7.5 2181 264 Section 4.2

Limited-birthday

Distinguisher
9.5 2441 2136 2449 Section 5.1

Whirlpool

(10 Rounds)

Collision Attack 5.5 2120 264 2256 [19]

Preimage Attack 6 2481 2256 2512 [28]

Limited-birthday

Distinguisher

7 2440 2128 2505 [13]

7.5 2368 2144 2497 Section 5.2

9 2354 2158 2385 Section 5.2

the same, except that they have different initial values, and GOST-256 truncates the final
512-bit chaining value into a 256-bit digest. As depicted in Fig. 1, the GOST hash function
family adopts the Merkle-Damg̊ard structure with a unique output transformation. The
hash computation contains three stages. Before we give specific descriptions of each stage,
we define several notations.

A||B The concatenation of two bit strings A and B.
M The input message, which is divided into 512-bit blocks.
Mi The i-th 512-bit message block of M.
|M | The bit length of M.
Len The bit length of the last message block of M.
Σ The 512-bit checksum of all message blocks.

CF The compression function.
hi The i-th 512-bit chaining variable.

CTi The i-th 512-bit counter which denotes the total
message bits processed before the i-th CF call.

In the initialization stage, M is padded into a multiple of 512 bits, i.e., M ||1||0∗ is
the padded message, which is then divided into N 512-bit blocks M0||M1||...||MN−1. h0
is assigned to the predefined IV of GOST-256 or GOST-512. |M |, Σ and CT0 are as-
signed to 0. In the compression stage, each block Mi is processed iteratively, i.e., hi+1 =
CF (hi,Mi, CTi) for i = 0, 1, ..., N−1. After each compression function computation, |M |,Σ
and CTi+1 are updated accordingly. In the finalization stage, the immediate chaining val-
ue of the last message block hN goes through the output transformation, i.e., hN+1 =
CF (hN , |M |, 0), hN+2 = CF (hN+1, Σ, 0). For GOST-256 (resp. GOST-512),MSB256(hN+2)
(resp. hN+2) is the hash value of M .

The compression function CF (hi,Mi, CTi) can be seen as an AES-like block cipher EK

used in a Miyaguchi-Preneel-like mode, i.e., CF (hi,Mi, CTi) = Ehi⊕CTi
(Mi) ⊕ Mi ⊕ hi.

As for the block cipher EK , a 512-bit internal state is denoted as an 8 × 8 byte matrix.
For the key schedule part, hi ⊕ CTi is assigned as the key K, then K0 is computed from

4 B. Ma et al.

CFh0

M0

Σ

|M|

M1

CFh1 CFh2

M2

CFhN-2

MN-2

512512 512 512

CFhN-1

MN-1
*

Len

CFhN

0

CFhN+1

0

hN+2

Initialization

Σ= |M| = 0
h0 = 0512, for GOST-512
h0 = (00000001)64, for GOST-256

Compression
Len = |M| mod 512
MN-1

* = MN-1||1||0511-Len

Finalization
h = hN+2, for GOST-512
h = MSB256(hN+2), for GOST-256

|M| Σ

CT0 CT1 CT2 CTN-2 CTN-1

Fig. 1. Three Stages of the GOST Hash Function

K as follows:
K0 = L ◦ P ◦ S(K)

The round keys K1,K2, ...,K12 are generated as follows:

Kj+1 = L ◦ P ◦ S ◦XC(Kj) for j = 0, 1, 2, ...11,

where K12 is used as the post-whitening key:

– AddRoundConstant(XC): XOR a 512-bit constant predefined by the designers.
– SubBytes(S): process each byte of the state through the SBox layer.
– Transposition(P): transpose the k-th column of the state matrix to be the k-th row

for k = 0, 1, 2, ..., 7, i.e., transposition of the state matrix.
– MixRows(L): multiply each row of the state matrix by an MDS matrix.

For the data processing part, Mi is the plaintext, and is assigned to the initial state S0.
Then the state is updated 12 times with the round function as follows:

Sj+1 = L ◦ P ◦ S ◦X(Sj), for j = 0, 1, 2, ...11,

where AddRoundKey(X) XOR the state with the round key Kj . Finally, the ciphertext
EK(Mi) is computed with S12 ⊕K12.

Notations. The round indexes of GOST are denoted with r0, r1, r2, ..., r11. The input
state of round rj is denoted as Sj , and SX

j , SS
j , S

P
j , S

L
j denote the corresponding state

after the X, S, P, L operation of round rj respectively, i.e., Sj+1 = SL
j .

2.2 The Multicollision Attack and Its Applications

The t-multicollisions are t-tuples of messages which all hash to the same value. In [14],
Joux gave the multicollision attack on iterated hash functions. He shows that constructing
2t-collisions costs only t times as much as building ordinary 2-collisions.

The multicollision attack has been used in many occasions. A variant of the multicol-
lision attacks, known as the expandable messages [16], was applied in second preimage
attacks. Moreover, the expandable messages were also used to construct long preimages

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 5

[30,28]. Another application of the multicollision attacks was given in [8] to attack Merkle-
Damg̊ard-like hash functions with linear-XOR or additive checksum operations.

2.3 Limited-birthday Distinguisher on Hash Functions

The limited-birthday problem was first proposed by Gilbert and Peyrin in [9], and they
also presented a generic procedure to solve this problem. In [13], Iwamoto et al. proved
that the generic attack given in [9] is actually the best generic attack possible. Moreover,
they proposed a new generic distinguisher for Merkle-Damg̊ard-like hash functions based
on the limited-birthday problem. Now we give brief descriptions of the limited-birthday
problem for hash functions and the new distinguisher derived.

The Limited-birthday Problem. [13] ”Let h be an n-bit output hash function, and

process any input messages of fixed size, m bits where m ≥ n. Let IN be a set of admissible

input differences and OUT be a set of admissible output differences, with the property that

IN and OUT are closed sets with respect to ⊕1. Then for the limited-birthday problem,

the goal of the adversary is to generate a message pair (M,M ′), such that M ⊕M ′ ∈ IN
and h(M)⊕ h(M ′) ∈ OUT” for a randomly chosen instance of h.”

Note that IN and OUT can be freely chosen by the adversary, let 2I and 2O denote
the sizes of IN and OUT respectively, it is proved in [13] that the lower bound of the time
complexity of the limited-birthday problem for a one-way function is

max
{

2
n−O+1

2 , 2n−I−O+1
}

.

The Limited-birthday Distinguisher on Hash Functions. Let h be an n-bit hash
function which iteratively calls CF to process each fixed length message block, where CF
is a compression function which takes an m-bit message and a k-bit (k ≥ n) chaining
variable as inputs, and outputs a k-bit chaining value. A semi-free-start collision for CF is
a pair ((CV,M), (CV,M ′)) withM 6= M ′ and a freely chosen CV , such that CF (CV,M) =
CF (CV,M ′). Assume that the adversary is able to find 2s distinct semi-free-start collisions
of CF in 2c time, with s ≤ k/2 and s ≤ c. IN corresponds to the set of all possible
differences for all the colliding messages, a limited-distinguisher on h can be derived as
follows:

1. Generate 2s semi-free-start collisions {(CVj ,Mj), (CVj ,M
′
j)} on CF with 2c opera-

tions, and store all 2s CVj values in a list TL1.

2. From IV , pick 2k−s random message blocks {Mi}, and compute the corresponding
chaining values {hi}.

3. For each hi, check whether it is in the list TL1. If so, the message couple ((Mi||Mj),
(Mi||M

′

j)) is a collision pair of the hash function.

The above procedure needs 2c+2k−s computations. The adversary outputs the collision
couple, whose input difference mask lies in a space IN of size 2I , and output difference
mask lies in a space OUT of size 1 (due to the collision). The limited-birthday problem tells
us that this should require max{2n/2, 2n−I+1} queries in the ideal case. Since 2c +2k−s ≥

1 The ⊕ operation can be replaced by any other group operation, we use ⊕ for a simple specification.

6 B. Ma et al.

2s + 2k−s ≥ 2k/2 ≥ 2n/2, the above procedures can be seen as a valid distinguisher if and
only if

2c + 2k−s < 2n−I+1.

It is also described in [13] that one can even derive a valid limited-birthday distinguisher
from a semi-free-start near-collision attack, when the near-collision is located in the last
message block and padding can be satisfied.

3 Improved Preimage Attack on 6-Round GOST-512

In this section, we improve the preimage attack on 6-round GOST-512 in [31]. First we
reduce the time complexity from 2505 to 2496 by removing the unnecessary Meet-in-the-
Middle (MitM) step. Then we show a memoryless attack with time complexity 2504. More-
over, by using the technique in [8] to build more complicate multicollisions, we deal with
the checksum straightforwardly with success probability 1 while Zou’s attack deals with it
probabilisticly. Before describing our attacks, we clarify that a single compression function
computation (resp. a 512-bit storage which is the bit size of the state) is used as the basic
unit of time (resp. memory) in this paper.

The MitM preimage attack on GOST-like compression functions has been well studied
[27,30,28,31], thus we use the results without providing more details. As depicted in Fig.
2, our preimage attack is divided into three steps. The specific procedures of each step are
described as follows:

IV

h1

h2

h1'

h3

h4

h3'

h1023

h1024

h1023'

h1022

M1024

h1025 h1026

|M| Σ(M)
hX

Step 1. 2512-multicollisions Step 2. MitM preimage attack

Step 3. solve the checksum with 2512-multicollisions

Fig. 2. 3 Steps of the Preimage Attacks on 6-round GOST-512

Step 1. From IV , use the technique of [8] to build 2512-multicollisions. The exact steps
are as follows:

1. Let h0 = IV .
2. For i = 0 to 511:

(a) Let Ai, Bi be two random blocks.
(b) For j = 0 to 2256 − 1:

i. X[j] = (Ai + j)||(Bi − j).
ii. X ′[j] = (Ai − j + 2i)||(Bi + j).
iii. Let Yi[j] denote immediate hash value of X[j] from h2i, store it in the list Yi.
iv. Let Y ′

i [j] denote immediate hash value of X ′[j] from h2i, store it in the list Y ′
i .

(c) Search for a collision in Yi and Y ′
i . Let M2i||M2i+1 = (Ai + Ci)||(Bi − Ci) and

M ′
2i||M

′
2i+1 = (Ai−C ′

i +2i)||(Bi+C ′
i) denote the collision pair, and h2(i+1) denote

the collision hash value.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 7

In the end, h1024 is the hash value of the 2512-multicollisions.
Step 2. We randomly choose the value of an additional message block M1024, and make
sure M1024 satisfy padding. Without loss of generality, we fix the last bit of M1024 to ’1’,
then the bit length of the message can be denoted as |M | = 1024 × 512 + 511 = 524799.
From h1024, we compute the immediate chaining value h1026 with M1024 and |M |. Suppose
that hX is the target value. We find a preimage Σ(M) using the MitM preimage attack
with a probability 1 − e−1. If no candidate for Σ(M) is found, we just choose another
value of M1024 and repeat Step 2.
Step 3. Step 2 will eventually succeed, thus we get the checksum value Σ(M), and need
to find a combination of the first 1025 message blocks to satisfy Σ(M). This problem has
already been well studied in [8], and the exact steps are as follows:

1. Let CCS = hX −M1024 denote the checksum which is desired.
2. Compute Q =

∑511
i=0(Ai +Bi).

3. Compute D = CCS −Q =
∑511

i=0 ki2
i, the ki sequence is the binary representation of

D.
4. Set M to an empty message.
5. For i = 0 to 511:

(a) If ki = 0, then M = M ||M2i||M2i+1.
(b) Else M = M ||M ′

2i||M
′
2i+1.

6. M = M ||M1024.

At the end of this phase, M contains a sequence of 1025 blocks which corresponds to the
desired checksum. Thus M is a preimage of hX .

Memoryless Collision Search. In Step 1, we need to launch the collision search
512 times, and a common birthday attack would require 2256 memory. Thanks to the
memoryless MitM (collision) attacks2 [26,25] [23, Remark 9.93], the memory requirement
can be reduced to 211 (since the collision pairs and the immediate hash values need to be
stored). The specific steps for each collision search are as follows:

1. Denote h2i as the initial hash value of the i-th collision search.
2. Randomly choose two message blocks Ai, Bi.
3. Let s0 denote the immediate hash value of Ai||Bi from h2i.
4. For j = 0 to 2256

(a) If the least significant bit of sj is 0, compute sj+1, which is the immediate hash
value of (Ai + sj)||(Bi − sj) from h2i.

(b) Else compute sj+1, which is the immediate hash value of (Ai − sj + 2i)||(Bi + sj)
from h2i.

Finally, the attacker detects the cycle of the above procedure, and finds intersection point
of the cycle. We denote sα and sβ as the two points before the intersection point. If the
least significant bit of sα and sβ are distinct, without loss of generality, we suppose the
least significant bit of sα is 0 and the least significant bit of sβ is 1, then (Ai+sα)||(Bi−sα)
and (Ai− sβ +2i)||(Bi+ sβ) are the collision message blocks desired. The time complexity

2 The memoryless attacks are based on cycle detection techniques such as Floyd’s cycle-finding algorithm
[7] or Brent’s algorithm [4].

8 B. Ma et al.

is at most 23 times3 more than the generic birthday attack. Thus we need a total 1024×
23 × 2256 = 2269 compression function computations and 211 memory to generate the
2512-multicollisions.

Memoryless Meet-in-the-Middle Preimage Attack. The memoryless MitM preim-
age attack, explored by Khovratovich et al. in [17], is based on the classical memoryless
MitM technique [25]. Similar to the memoryless MitM preimage attack on Whirlpool in
[28], we can launch a memoryless MitM preimage attack on the GOST compression func-
tion with 2504 computations. Please refer to [28,31] for more details.

Now we consider the overall complexity of our attack. Step 1 can be done with 2269

compression function calls and 211 memory. As for step 2, we need 2496 time and 264

memory to minimize the time complexity or 2504 time to launch the memoryless attack.
There are only a few simple operations in step 3, both time and memory are negligible. So
it takes 2496 time and 264 memory or 2504 time and 211 memory to find a single preimage
of 6-round GOST-512.

Remarks. An improved preimage attack on the compression function of GOST is likely
to work for the preimage attack on the hash function using the generic procedures above.

4 Improved Collision Attacks on Reduced-Round GOST

As far as we know, the 5-round attacks [31] are the best collision attacks on GOST-256
and GOST-512 in terms of rounds attacked. In this section, we present improved collision
attacks on both variants of GOST. The improved collision attacks mainly come from a
direct observation of the transposition operation of GOST. First, we describe a collision
attack on 6.5-round GOST-256. Then by further exploiting freedom degrees in the chaining
values, we present a collision attack on 7.5-round GOST-512.

4.1 Collision Attack on 6.5-Round GOST-256

We first show collision attack on the compression function of GOST-256 by using the
rebound attack [22] and the SuperSBox technique [9,18]. Then we show how to convert it
to a collision attack on the GOST-256 hash function.

Attack on the Compression Function. The truncated differential trail used in our
attack is depicted in Fig. 3. Since the transposition operation P has the involution property,
the active columns of S0 and SP

6 will both locate at the first column. Thus, if they cancel
each other, we would achieve a collision attack on the compression function. Note that
the involution property of P is originally exploited in [29], and will also be used in our
later analyses. The whole attack can be divided into the inbound phase (in red), and the
outbound phase (in blue). In the following part we describe each phase in detail.

3 The success possibility is 1/2, and using Brent’s algorithm [4] to detect the cycle and find the intersection
point costs at most 22 times more than the generic birthday attack.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 9

P
L
X

S
P
L

S5

X

S

P

L

S4 S5 S6S0 S1 S2 S3 S6
P

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P

inbound phase outbound phaseoutbound phase

SuperSBox
S2

S

r0 r1 r2 r3 r4 r5 r5.5

S3
X S4

S

Fig. 3. Collision Attack on 6.5-Round GOST-256 Compression Function

Inbound Phase. We need to find two states which follow the two middle rounds from
SS
2 to S5. It can be summarized as follows.

1. We start from picking a random nonzero difference of SS
2 at the 8-byte active positions

indicated in Fig. 3. Since all the operations between SS
2 and SX

3 are linear, we can
propagate the difference forwards to SX

3 . The states between SX
3 and SS

4 can be seen
as eight parallel SuperSBoxes, and the input to each SuperSBox is the corresponding
row of SX

3 . For each SuperSBox, we enumerate all 264 pairs of inputs according to the
difference of SX

3 , and calculate the corresponding output differences of the SuperSBox.
Store all the output differences and corresponding pairs of values in a table for each
SuperSBox. This step requires 264 time and 264 memory.

2. Pick a random nonzero difference of S5 at the 8-byte active positions, and propagate
the difference backwards to SS

4 . Note that this can be repeated for all 255 = 28 − 1
nonzero differences of each active byte in each row independently.

3. Now we have to connect the states SX
3 and SS

4 such that the differential trail holds,
and this can be done for each row independently. For each SuperSBox, we search the
corresponding difference of SS

4 in the table built in step 1. Since we have 264 values
in each table, and we need to match a 64-bit difference value, the expected number of
solutions is 1.

4. We can repeat step 2 and step 3 with another nonzero difference of S5. After enu-
merating all 264 differences of S5, we expect to get 264 solutions. Combining with the
complexity of step 1, the above procedures require 264 time and 264 memory to gener-
ate 264 solutions. In other words, the expected time needed to get one solution is only
1.

If the number of solutions of the inbound phase is insufficient, we can repeat step 1-4 with
another difference of SS

2 . Since there are 264 differences for SS
2 , we can generate at most

264+64 = 2128 solutions for the inbound phase.

Outbound Phase. We use the solutions of the inbound phase and propagate them
forwards and backwards. The outbound phase has one 8 → 1 transition, and we need to
match a 64-bit difference between S0 and SP

6 , so it requires 256+64 = 2120 computations
to find one collision for the 6.5-round compression function.

10 B. Ma et al.

Impact of the DDT of the GOST SBox. The DDT (Difference Distribution Table)
of the SBox is the core of the rebound attack. The SBox of GOST is not as balanced as
the AES SBox. In fact, its maximal differential probability reaches 2−5 while the one of
the AES SBox is 2−6. Thus, the matching probability of the GOST SBox is lower than the
AES SBox, which might introduce some small biases. However, as discussed in [28], the
DDT has no impacts on the expected number of solutions for a random difference pair of
an SBox. Hence, the time complexity is not increased if we need to find many solutions
from the inbound phase.

Attack on the Hash Function. Similar to the technique of [31], we extend the attack
on the compression function to the hash function. Since we aim to construct two collision
messages with identical length, we only need to deal with the final checksums. As depicted
in Fig. 4, we first build 232-multicollisions, then find two message chains with an identical
checksum. The exact steps are as follows:

M1

M1'

h1

M0

M0'

h0=IV h2 h3 collisionh31 h32

M2

M2'

M31

M31'

checksum solved with 2
32

-multicollisions

M32 ...

Fig. 4. Collision Attack on 6.5-round GOST-256

1. Start from the initial value h0 = IV :
For j = 0 to 31,
– Find two messages Mj and M ′

j using the compression function collision attack
above, such that CF (hj ,Mj) = CF (hj ,M

′
j), and let hj+1 = CF (hj ,Mj). Notice

that (Mj ,M
′
j) differs only in the first column.

2. After step 1, we build 232-multicollisions from h0 to h32. Since each collision pair
only differs in the first column, besides the identical parts of the 232-multicollisions
always have identical sums including carries, the difference of their checksums lies
in a space whose size is at most 264. We can generate 232 checksums with the 232-
multicollisions. According to the birthday paradox, we expect to find one collision
among these checksums. Then we append any identical message blocks which satisfy
padding, and finally construct a collision on the GOST-256 hash function.

In the above procedures, collision attack on the compression function is repeated 32 times,
so the overall time complexity of the collision attack on GOST-256 is 32 × 2120 = 2125

which is lower than the birthday bound 2128. The memory requirement stays 264 due to
the SuperSBox technique.

4.2 Collision Attack on 7.5-Round GOST-512

The collision attack on GOST-256 can be directly applied to GOST-512 with the same
complexity, but in this part we show how to extend one more round for GOST-512. The

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 11

differential trail of the 7.5-round attack on the compression function is depicted in Fig.
5. Again the inbound phase can provide at most 2128 solutions with 2128 time and 264

memory. But there are two 8 → 1 transitions in the outbound phase, and we need to
match a 64-bit difference between S0 and SP

7 in order to get a collision, thus we need
at least 256+56+64 = 2176 solutions from the inbound phase. The freedom degree of the
inbound phase is obviously insufficient, and the attack will only succeed with a very low
probability 2128−176 = 2−48.

S4 S5S0 S1 S2 S3 S6

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

inbound phase outbound phaseoutbound phase

X
S
P
L

S7 S7
P

X
S
P

Fig. 5. Collision Attack on 7.5-round GOST-512 Compression Function

Luckily, we can exploit more freedom degrees by choosing different chaining values
as depicted in Fig. 6. More precisely, we launch a two-block attack on the compression
function. First, from a chaining value h2i, we randomly choose a message block M2i and
compute the corresponding chaining variable h2i+1. Then we launch the rebound attack
with the value of h2i+1 and check if a collision pair (M2i+1,M

′
2i+1) is obtained. If no

collision is achieved, we choose another value for M2i and repeat this procedure. Since
the collision attack succeeds with probability 2−48, we expect to get one collision after
we randomly choose 248 different values for M2i. Hence, the rebound attack needs to
be repeated 248 times, and the time and memory required are 248+128 = 2176 and 264

respectively.

M3

M3'

h2 h3

M2

M1

M1'

h0=IV h1

M0
h4

M63

M63'

h62 h63

M62
h64 collision

checksum solved with 2
32

-multicollisions

M64 ...

Fig. 6. Collision Attack on 7.5-round GOST-512

As depicted in Fig. 6, we build 232-multicollisions by repeating the compression func-
tion attack 32 times. According to the birthday paradox, we expect to get two messages
with identical checksum from the 232-multicollisions, and derive a collision for the GOST-
512 hash function. Thus the time complexity is 32 × 2176 = 2181, while the memory
requirement remains 264. Note that when the same strategy is applied to GOST-256, the
time complexity is beyond the birthday attack bound 2128.

5 Limited-Birthday Distinguishers on GOST-512 and Whirlpool

In this section, we build limited-birthday distinguishers for reduced-round GOST-512 and
Whirlpool. It is indicated in [13] that if a better balance is achieved between the total num-

12 B. Ma et al.

ber of semi-free-start collisions one can generate and the average complexity to generate
one collision, a better limited-birthday distinguisher can be derived. Therefore, we try to
achieve a better balance between attack parameters by choosing the differential trails used
in the inbound phase carefully. This is actually a very essential idea of our distinguishers.
We launch a 9.5-round semi-free-start collision attack on GOST-512 compression function
with a differential trail, which is different from previous trails for collision-like attacks.
As a result, we build a valid limited-birthday distinguisher on 9.5-round GOST-512. The
very same strategy can be applied to Whirlpool as well. With the expandable messages
[16], we are able to convert a semi-free-start near-collision attack on 9-round Whirlpool
compression function into a valid distinguisher for 9-round Whirlpool hash function. We
also reduce the time complexity of the previous distinguisher on 7-round Whirlpool [13].

5.1 Limited-Birthday Distinguisher on 9.5-Round GOST-512

Semi-free-start Collision Attack on the GOST Compression Function. The
differential trail used in the 9.5-round semi-free-start collision attack on the GOST-512
compression function conforms to the following form:

8
r0−→ 1

r1−→ 8
r2−→ 64

r3−→ 8x
r4−→ 8x

r5−→ 64
r6−→ 8

r7−→ 1
r8−→ 8

r8.5−→ 8

where x = 1, 2, ..., 8 and denotes the number of active rows (columns) in the middle rounds.
Fig. 7 depicts the trail when x = 3. Suppose there are 8x active bytes in the middle parts
of the trail, we describe the attack in detail.

S4 S5 S6S0 S1 S2 S3 S7

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

X
S
P
L

inbound phase outbound phaseoutbound phase

X
S
P
L

S8 S9

X
S
P
L

X
S
P

S9
P

inbound phase 1 inbound phase 2merge inbound

Fig. 7. Semi-free-start Collision Attack on 9.5-Round GOST-512 Compression Function

Inbound Phase. We aim to connect both differences and actual values between SS
2 and

S7. The inbound phase is divided into two subinbound phases, and the merge inbound
phase merges the two subinbound phases.

1. Phase 1. We find states connecting SX
3 and S4.

(a) We start with a random difference of S4, and propagate the difference backwards
to SS

3 .
(b) Choose a random difference of SS

2 . Since all the operations between SS
2 and SX

3

are linear, we can propagate the difference forwards to SX
3 , and match it with the

difference of step 1(a) through the SBox layer. Notice the match can be done for
each row independently. We have 255 different values for each active byte SS

2 , and
expect to get one difference match and each match provides 28 solutions. So it takes
29 operations to find 28 solutions of SX

3 and S4 for each row. After enumerating all
264 differences of SS

2 for each row independently, we expect to get 264 solutions in
29 computations.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 13

2. Subinbound Phase 2. We find states connecting SX
6 and S7.

(a) Start with a random difference of SS
5 . Since all the operations between SS

5 and SX
6

are linear, we can propagate the difference forwards to SX
6 .

(b) Choose a random difference of S7 and propagate the difference backwards to SS
6 ,

match it with the difference of step 2(a) through the SBox layer. Again, we expect
to get 264 solutions of SX

6 and S7 after enumerating all 264 differences of S7 in 29

computations.

3. Merge Inbounds. We need to connect the actual values of S4 and SX
6 obtained from

the two subinbound phases. That is, we need to find solutions for the following equation
using the freedom degrees of the key:

L ◦ P ◦ S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕K6 = SX
6 , (1)

where K4,K5 = L◦P ◦S(K4⊕C4),K6 = L◦P ◦S(K5⊕C5) denote the round keys, and
C4, C5 denote the round constants in the key schedule. Equation (1) can be rewritten
as:

S(L ◦ P ◦ S(S4 ⊕K4)⊕K5)⊕ S(K5 ⊕ C5) = P−1 ◦ L−1(SX
6). (2)

Notice equation (2) can be solved column by column independently. We denote the
left half and the right half of equation (2) with VL and VR respectively. The merge
inbounds phase is then as follows:

(a) Enumerate all 264 values of each column of S4 and all 264 values of the corresponding
column of K4, propagate forwards to get the corresponding values of VL. Store all
the pairs in tables and sort them by the value of S4||VL. The size of the tables is
2128. This step requires 2128 time and 2128 memory, and the precomputed tables
can be reused in later attacks. Notice that we omit the precomputation part in the
complexity analysis of our distinguishers, since the precomputation part is not the
dominated part.

(b) For each pair (S4, S
X
6), we compute the value of VR with SX

6 and check whether
S4||VR is in the tables built in step 3(a). Notice that K4 provides 264 freedom
degrees per column in the matching part. For each active column of S4, we need
to match two 64-bit values with probability 264−128 = 2−64. For each non-active
column, we need to match one 64-bit value and expect to find one match. Hence,
if there are x active columns in S4, the matching probability is 2−64x. Notice that
we have generated 264 pairs of S4 in step 1, and 264 pairs of SX

6 in step 2, thus we
expect to get 264+64−64x = 264(2−x) solutions. This step requires 264 table lookups,
and the average complexity to find one solution is 264−64(2−x) = 264(x−1).

(c) After we connect the values of S4 and SX
6 for each column of S4 independently, we

propagate both forwards and backwards to SS
2 and S7, thus derive a solution for

the inbound phase.

4. If the solutions of the inbound phase are not enough, we can repeat the above steps
from step 1(a) with another difference of S4. If the solutions are still insufficient, we
can repeat the above steps from step 2(a) with another difference of SS

5 . Since there
are x active columns in S4 and x active rows in SS

5 , we can repeat the above steps
264(x+x) = 2128x times. Each time we obtain 264(2−x) solutions with 264 time. So the
maximum number of solutions we can generate is 2128x+64(2−x) = 2128+64x. The average
complexity to find one solution remains 264(x−1).

14 B. Ma et al.

Outbound Phase. The outbound phase has two 8 → 1 transitions, and we need to
match a 64-bit difference, so it requires 256×2+64 = 2176 computations to find one collision
for the 9.5-round compression function.

Combining the results of the inbound phase and the outbound phase together, we
deduce that we can generate at most 2128+64x−176 = 264x−48 semi-free-start collisions, and
the average complexity to find one collision is 264(x−1)+176 = 264x+112.

The Limited-Birthday Distinguisher on 9.5-Round GOST-512. In order to apply
the limited-birthday distinguisher on GOST-like hash functions, we have to deal with the
message checksums, i.e., we need to find two message chains with identical length and
checksum. As depicted in Fig. 8, we can solve this problem with two MitM procedures.
The specific steps are as follows:

M3

M3'

h2 h3

M2

M1

M1'

IV h1

M0
h4 collision

checksum solved with

 M1 - M1' = M3' - M3

MitM MitM

Fig. 8. Limited-Birthday Distinguisher on 9.5-Round GOST-512

1. We find 2y semi-free-start collisions, and store the corresponding chaining variables
h1,i and message pairs (M1,i,M

′
1,i) in a table TL1. Notice there are only 8 active bytes

in the colliding pairs, thus the difference of the colliding pairs lies in a space whose
size is at most 264.

2. Start from IV , randomly choose 2512−y different values of M0,j , and compute the
corresponding chaining value h′1,j , check whether it is in TL1. There is a high prob-
ability that we can find a match. We denote the corresponding message pairs as
((M0||M1), (M0||M

′
1)), and the immediate hash value as h2.

3. Find all entries in TL1 which satisfy Mk − M ′

k = M ′
1 − M1, and store all (Mk,M

′

k)
pairs in a table TL2. The equation holds with a probability 2−64, since the difference
space of the colliding pairs is at most 264. There are 2y entries in TL1, so the expected
number of entries in TL2 is 2y−64.

4. Start from h2, randomly choose 2512−(y−64) different values of M2,j , and compute
the corresponding chaining value h′2,j , check whether it is in TL2. There is a high
probability that we can find a match. We denote the corresponding message pairs as
((M2||M3), (M2||M

′
3)), and the immediate hash value as h4.

5. Since M1−M ′
1 = M ′

3−M3, if we append any identical messages which satisfy padding
to the message pairs ((M0||M1||M2||M3), (M0||M

′
1||M2||M

′
3)), we get a collision pair of

the hash function.

Suppose the time needed to find one semi-free-start collision is 2T1 , then the time com-
plexity of the above procedure is

T = 2y+T1 + 2512−y + 2512−(y−64) = 2y+T1 + 2512−y + 2576−y.

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 15

Although there are two different positions in the two message chains, i.e., (M1,M3) and
(M ′

1,M
′
3), but their values are restrained by M1 − M ′

1 = M ′
3 − M3, so we know that

2I = 264, and 2O = 1. For an ideal one-way function, find two such messages would
require 2n−I−O+1 = 2449 computations. If T < 2449, the above procedure can be seen as a
valid distinguisher on 9.5-round GOST-512.

As we mentioned above, the average time complexity to find one semi-free-start collision
is 2T1 = 264x+112, and we can generate at most 2N1 = 264x−48 semi-free-start collisions.
Now we show how to choose the values of y and T1 which minimize the time complexity.

Two different occasions need to be considered. In the first occasion, if we can generate
enough collisions, we can balance T by letting y + T1 = 576− y, i.e., y = (576− T1)/2 =
232 − 32x. In this occasion, we need to ensure N1 ≥ y. Since both T1 and N1 can be
denoted with x, we solve this inequality and get that x > 2. Then T can be rewritten as:

T = 2y+T1+1 = 2232−32x+64x+112+1 = 2345+32x, for x = 3, 4, 5, 6, 7, 8.

On the other hand, when x ≤ 2, we can’t generate enough collisions, so T is dominated
by 2576−y and we need to find all the semi-free-start collisions in order to maximize y. In
this occasion, we find all the collisions, i.e., let y = N1 = 64x−48, then T can be rewritten
as:

T = 2576−y = 2576−64x+48 = 2624−64x, for x = 1, 2.

Finally, we consider both occasions, and find out that the lowest complexity is 2441

when x = 3. Notice 2441 < 2449, thus we build a valid limited-birthday distinguisher on 9.5-
round GOST-512. Since we need to store all the collision pairs, the memory requirement
is 2y = 2136.

5.2 Limited-Birthday Distinguishers on Reduced-Round Whirlpool

Whirlpool is an ISO standardized hash function [3,12] which takes any messages less than
2256 bits as inputs, and outputs a 512-bit hash value. Due to the space limit, we refer to [3]
for the specification of Whirlpool. A 7-round limited-birthday distinguisher on Whirlpool
was given in [13]. Since the compression function of Whirlpool and GOST are similar,
our strategy to exploit more freedom degrees when attacking the compression function
can be applied to Whirlpool as well. As a result, we present improved distinguishers on
reduced-round Whirlpool.

Limited-Birthday Distinguisher on 9-Round Whirlpool. Our first result is a
9-round distinguisher based on a 9-round semi-free-start near-collision attack on the com-
pression function4. The differential trail used is depicted in Fig. 9, and the trail conforms
to the following form:

4
r0−→ 8

r1−→ 64
r2−→ 8x

r3−→ 8x
r4−→ 64

r5−→ 8
r6−→ 1

r7−→ 8
r8−→ 64

Since the near-collision property does not propagate with appending messages, the near-
collision should be located at the last block, and we need to deal with the padding. There
are several issues needed to be illustrated. First, we fix the last 9 bits of S0 to 0xff and
the 256-th bit of S0 to ’1’ such that the padding of Whirlpool is satisfied. This is a 10-bit

4 The attack is not an actual near-collision attack, but since the output difference lies in a relatively small
subspace just as near-collisions do, we use the near-collision notation.

16 B. Ma et al.

S3 S4 S5S0 S1 S2 S6 S7 S8 S9
AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

AK

SB

SC

MR

outbound phase outbound phase

1

0 ff

ff0

1

ht-1

ht

inbound phase

Fig. 9. Semi-free-start Near-Collision Attack on 9-round Whirlpool Compression Function

condition and happens with probability 2−10. Then, there are four active bytes of S0 since
we aim to maximize the probability of the outbound phase. In the meantime, there can
not be any active bytes in the padding part, because we need to find two near-collision
messages with identical length.

The inbound phase is almost the same, the maximum number of solutions we can
generate is 2128+64x. The average complexity to find one solution for the inbound phase is
264(x−1). There are one 8 → 1 transition and one 8 → 4 transition in the outbound phase,
thus the probability of the outbound phase is 2−(32+56) = 2−88. Hence, the maximum
number of near-collisions we can generate is 2N1 = 2128+64x−88 = 264x+40, and the average
complexity to generate one collision is 2T1 = 264x−64+88 = 264x+24.

For Whirlpool, the last 256 bits of the message padding denote the bit length of the
message, thus the possible block length of the near-collision pair may vary from 1 to 2247,
and it can not be predefined due to the MitM procedure of the distinguisher. We solve
this issue with expandable messages [16]. As depicted in Fig. 10, the specific procedure to
build the distinguisher is as follows:

Mt-1

Mt-1'

ht-2 ht-1

Mt-2
IV

expandable messages ht

MitM ht'
near-collision

Fig. 10. Limited-Birthday Distinguisher on 9-Round Whirlpool

1. From IV , build (247, 247+2247−1) expandable messages, and we denote the final chain-
ing value of the expandable messages with ht−2. This requires 2

247+247×2256+1
≈ 2265

computations. Notice memoryless collision search can be used to build the expandable
messages, and the time complexity doesn’t increase significantly.

2. We construct 2y semi-free-start near-collisions. Among them about 2y−10 will satis-
fy the 10-bit conditions of the padding, we store the 2y−10 corresponding chaining
variables ht−1,i and message pairs (Mt−1,i,M

′
t−1,i) in a table TL1.

3. Start from ht−2, randomly choose 2512−(y−10) different values of Mt−2,j , and compute
the corresponding chaining value h′t−1,j , check whether it is in TL1. There is a high
probability that we can find a match. We denote the corresponding message pairs as
((Mt−2||Mt−1), (Mt−2||M

′
t−1)).

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 17

4. We can derive the block length of the message from the last 256 bits of Mt−1 and M ′
t−1.

If the block length of the message lies in the range (247 + 2, 247 + 2247 − 1 + 2)5, we
choose corresponding messages from the expandable messages. Otherwise, if the block
length of the message lies in the range (1, 248), we repeat step 3, this occasion happens
with a very low probability.

The above procedure requires T = 2265+2y+T1+2512−(y−10) operations and 2y−10 memory,
and we are faced with two occasions again. When the number of collisions is sufficient to
achieve balance, T can be rewritten as

T = 2274+32x, for x = 3, 4, 5, 6, 7, 8.

When the number of collisions is not enough, T can be rewritten as

T = 2482−64x, for x = 1, 2.

Finally, the time complexity is minimized to 2354 computations when x = 2.

As depicted in Fig. 9, there are 4 active bytes in S0, thus the difference of S0 lies in a
subspace whose size 2I is at most 232. The difference of S9 lies in a subspace whose size
is at most 264. Due to the Miyaguchi-Preneel mode, the hash value difference lies in a
subspace whose size 2O is at most 264+32 = 296. Hence, for an ideal one-way function, find
two such messages would require 2n−I−O+1 = 2512−32−96+1 = 2385 computations. Thus
we build a valid distinguisher on 9-round Whirlpool with 2354 time and 2158 memory (the
near-collisions need to be stored).

Improved Limited-Birthday Distinguisher on 7.5-round Whirlpool. Our second
result is an improved 7.5-round distinguisher based on the following 7.5-round semi-free-
start collision differential trail:

2
r0−→ 8

r1−→ 64
r2−→ 8x

r3−→ 8x
r4−→ 64

r5−→ 8
r6−→ 2

r6.5−→ 2

We find out that when x = 2, the time complexity is minimized. It takes 2368 time and
2144 memory to find two messages corresponding to the limited-birthday problem, while
for an ideal one-way function it would require 2497 computations.

6 Conclusion

In this paper, we have first investigated fundamental security requirements of reduced-
round GOST, including improved preimage attacks on GOST-512 and improved collision
attacks on both GOST-256 and GOST-512. Then, using the newly proposed limited-
birthday distinguisher on hash functions, we construct a 9.5-round distinguisher on GOST-
512 by choosing the differential trail discreetly. Finally, we apply this strategy toWhirlpool,
and achieve a new 9-round distinguisher. We also reduce the time complexity of the previ-
ous 7-round distinguisher. As far as we know, all of our results are the best cryptanalytic
results on GOST and Whirlpool in terms of the number of rounds analyzed under the
hash function setting.

A notable implication of our collision attack and distinguisher on GOST is the impor-
tance of a proper transposition operation such as the AES ShiftRow. More attention is
paid to construct secure SBoxes or MDS matrices in designing AES-like primitives, but a

5 The +2 is from the fact that Mt−2 and Mt−1 are two additional blocks after the expandable message.

18 B. Ma et al.

misbehaviour of a transposition operation might bring security problems. As in the GOST
case, the transposition operation which transposes the state matrix seems not an opti-
mal selection to achieve transposition, since compared to the ShiftColumn operation of
Whirlpool, the transposition operation of GOST facilitates our collision and distinguisher
attacks with more rounds.

Acknowledgements. We would like to thank the anonymous reviewers of ACNS 2014
for their valuable comments and suggestions.

References

1. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. In: ICISC 2013. LNCS,
Springer (to appear, 2013)

2. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. Cryptology ePrint Archive,
Report 2013/539 (2013) http://eprint.iacr.org/2013/539.pdf

3. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE (2000) http://www.
larc.usp.br/~pbarreto/WhirlpoolPage.html

4. Brent, R.P.: An Improved Monte Carlo Factorization Algorithm. BIT Numerical Mathematics 20(2),
176-184 (1980)

5. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,
vol. 435, pp. 416-427. Springer, New York (1990)

6. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012 Hash Function. (2013)
7. Floyd, R.W.: Nondeterministic Algorithms. J. ACM 14(4), 636-644 (October 1967)
8. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect Damg̊ard-Merkle

Hashes from Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 36-51. Springer,
Heidelberg (2008)

9. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like Permutations. In:
Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365-383. Springer, Heidelberg (2010)

10. Information Protection and Special Communications of the Federal Security Service of the Russian
Federation: GOST R 34.11-94, Information Technology Cryptographic Data Security Hashing Func-
tion. (1994) (in Russian)

11. Information Protection and Special Communications of the Federal Security Service of the Russian
Federation: GOST R 34.11-2012, Information Technology Cryptographic Data Security Hashing Func-
tion. (2012) https://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf

12. International Organization for Standardization: ”ISO/IEC 10118-3:2004: Information technology -
Security techniques - Hash-functions - Part 3: Dedicated hash-functions”. (2004)

13. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash Functions. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 504-523. Springer, Heidelberg (2013)

14. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306-316. Springer, Heidelberg (2004)

15. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard GOST R 34.11-
2012. Cryptology ePrint Archive, Report 2013/556 (2013) http://eprint.iacr.org/2013/556.pdf

16. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n Work. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474-490. Springer, Heidelberg (2005)

17. Khovratovich, D., Nikoli, I., Weinmann, R.P.: Meet-in-the-Middle Attacks on SHA-3 Candidates. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 228-245. Springer, Heidelberg (2009)

18. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results
on the Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 126-143. Springer, Heidelberg (2009)

19. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The Rebound Attack and
Subspace Distinguishers: Application to Whirlpool. J. Cryptology, pp. 1-40. Springer, US (published
online, 2013)

20. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on the GOST Hash Function.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224-234. Springer, Heidelberg (2008)

http://eprint.iacr.org/2013/539.pdf
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
https://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf
http://eprint.iacr.org/2013/556.pdf

Improved Cryptanalysis on Reduced-Round GOST and Whirlpool 19

21. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis of the GOST Hash
Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 162-178. Springer, Heidelberg
(2008)

22. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: The Rebound Attack: Cryptanalysis of Re-
duced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260-276.
Springer, Heidelberg (2009)

23. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC press
(2010)

24. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 428-446. Springer, New York (1990)

25. Morita, H., Ohta, K., Miyaguchi, S.: A Switching Closure Test to Analyze Cryptosystems. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 183-193. Springer, Heidelberg (1992)

26. Quisquater, J.J., Delescaille, J.P.: How Easy is Collision Search. New Results and Applications to
DES. In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 429-434.
Springer, Heidelberg (1990)

27. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to
Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378-396. Springer, Heidelberg (2011)

28. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Requirements on Whirlpool:
Improved Preimage and Collision Attacks. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 562-579. Springer, Heidelberg (2012)

29. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology ePrint Archive,
Report 2013/584 (2013) http://eprint.iacr.org/2013/584.pdf

30. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage Attack on Round-Reduced
Grøstl Hash Function and Others. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 127-145.
Springer, Heidelberg (2012)

31. Zou, J., Wu, W., Wu, S.: Cryptanalysis of the Round-Reduced GOST Hash Function. In: Inscrypt
2013. LNCS, Springer (to appear, 2013)

http://eprint.iacr.org/2013/584.pdf

	Improved Cryptanalysis on Reduced-Round GOST and Whirlpool Hash Function (Full Version)
	Introduction
	Preliminaries
	The GOST Hash Function
	The Multicollision Attack and Its Applications
	Limited-birthday Distinguisher on Hash Functions

	Improved Preimage Attack on 6-Round GOST-512
	Improved Collision Attacks on Reduced-Round GOST
	Collision Attack on 6.5-Round GOST-256
	Collision Attack on 7.5-Round GOST-512

	Limited-Birthday Distinguishers on GOST-512 and Whirlpool
	Limited-Birthday Distinguisher on 9.5-Round GOST-512
	Limited-Birthday Distinguishers on Reduced-Round Whirlpool

	Conclusion

