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SE-701 82 Örebro, Sweden

Abstract

This paper presents an approach for tracking multiple persons on a mobile
robot with a combination of colour and thermal vision sensors, using several
new techniques. First, an adaptive colour model is incorporated into the
measurement model of the tracker. Second, a new approach for detecting
occlusions is introduced, using a machine learning classifier for pairwise com-
parison of persons (classifying which one is in front of the other). Third, ex-
plicit occlusion handling is incorporated into the tracker. The paper presents
a comprehensive, quantitative evaluation of the whole system and its different
components using several real world data sets.
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1. Introduction

This paper addresses the problem of people detection and tracking by mo-
bile robots in indoor environments. A system that can detect and recognise
people is an essential part of any mobile robot that is designed to operate
in populated environments. Information about the presence and location of
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persons in the robot’s surroundings is necessary to enable interaction with
the human operator, and also for ensuring the safety of people near the robot.

The presented people tracking system uses a combination of thermal and
colour information to robustly track persons. The thermal camera simplifies
the detection problem, which is especially difficult on a mobile platform. The
system is based on a fast and efficient sample-based tracking method that en-
ables tracking of people in real-time. The measurement model using gradient
information from the thermal image is fast to calculate and allows detection
and tracking of persons under different views. An explicit model of the hu-
man silhouette effectively distinguishes persons from other objects in the
scene. Moreover the process of detection and localisation is performed simul-
taneously so that measurements are incorporated directly into the tracking
framework without thresholding of observations. With this approach persons
can be detected independently from current light conditions and in situations
where other popular detection methods based on skin colour would fail.

A very challenging situation for a tracking system occurs when multiple
persons are present on the scene. The tracking system has to estimate the
number and position of all persons in the vicinity of the robot. Tracking of
multiple persons in the presented system is realised by an efficient algorithm
that mitigates the problems of combinatorial explosion common to other
known algorithms. A sequential detector initialises an independent tracking
filter for each new person appearing in the image, using thermal information.
A single filter is automatically deleted when it stops tracking a person.

While thermal vision is good for detecting people, it can be very difficult
to maintain the correct association between different observations and per-
sons, especially where they occlude one another, due to the unpredictable
appearance and social behaviour of humans. To address these problems
the presented tracking system uses additional information from the colour
camera, introducing several techniques for improving data association and
occlusion handling.

First, an adaptive colour model is incorporated into the measurement
model of the tracker to improve data association. For this purpose an efficient
integral image based method is used to maintain the real-time performance
of the tracker.

Second, to deal with occlusions the system uses an explicit method that
first detects situations where people occlude each other. This is realised by a
new approach based on a machine learning classifier for pairwise comparison
of persons that uses both thermal and colour features provided by the tracker.
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Our approach uses the AdaBoost algorithm [1] to build the classifier from
the available thermal and colour features.

Third, the information from the occlusion detector is incorporated into
the tracker for occlusion handling and to resolve situations where persons
reappear in a scene.

Further to our previously published results [2], this paper presents a com-
prehensive, quantitative evaluation of the whole system and its different com-
ponents using several real world data sets recorded in an office environment
(see also [3] for further details). We analyse the relative influence of dif-
ferent visual features for occlusion handling, and further demonstrate the
robustness and efficiency of the approach.

1.1. Related Work

Many approaches for people tracking on mobile platforms are based on
skin colour and face recognition (e.g., [4, 5]). However these methods require
persons to be close to and facing the robot so that their hands or faces
are visible. Stereo vision provides extra range information that makes the
segmentation of persons easier, allowing for detection and tracking of both
standing and moving people regardless their orientation [6, 7]. In both
these systems, the coarse depth information provided by the stereo-camera
has proven sufficient to resolve the majority of short-term occlusions.

Our system makes use of thermal vision that takes advantage of the fact
that humans have a distinctive thermal profile compared to nonliving objects.
Moreover thermal information is not influenced by changing lighting condi-
tions and allows detection of people even in darkness. Infrared sensors have
been applied to detect pedestrians in driving assistance systems (e.g. [8],[9])
but their use in robotic applications is limited, probably due to the high price
of the sensors. So far, thermal cameras were deployed mostly on mobile plat-
forms designed for search and rescue missions [10, 11]. The recent work of
[12] describes the use of a thermal sensor for detection and classification of
non-heat generating objects used for mobile robot navigation.

Other people tracking systems are based on range-finder sensors such as
laser scanner and sonar that are very popular sensors in mobile robotics for
navigation and localisation tasks. The system in [13] uses a laser scanner sen-
sor to track multiple persons. It is based on a particle filter and JPDAF data
association, uses a global representation of the environment, requires thresh-
olded sensor data and deals with occlusions of non-interacting persons only.

3



In contrast, our system uses sensor coordinates, incorporates unthresholded
data and can reason about occlusions of interacting persons.

Classical tracking algorithms usually handle the detection and tracking
tasks separately in order to simplify the whole problem [14, 15]. However,
such an architecture can cause loss of information between these steps, in ad-
dition to the computational cost of detection by exhaustive search of all possi-
ble object states [16]. The alternative approach considers these two problems
simultaneously (track-before-detect, also called unified tracking [17]). The
presented system is designed in this latter spirit, using a track-before-detect
technique.

To deal with problems of occlusions several authors proposed solutions
that use special sensors or their special arrangement. One example system
uses a camera placed above the observed scene [18]. Persons observed from
such a view-point cannot occlude each other. Another example is a multi-
camera system [19] where ambiguities caused by occlusion are resolved by
combining information from different cameras placed in different places. All
these solutions can be used only in a few, controlled scenarios and their use
in mobile applications would be especially troublesome if not impossible.

In the majority of people tracking systems the problem of occlusion is
solved within the tracking framework. Possible approaches handle occlu-
sions either implicitly without reasoning, or model them explicitly. Implicit
solutions use kinematic information as well as dedicated measurement models
[20, 21, 22, 23]. However the behaviour of people tends to be highly unpre-
dictable in general, and they may or may not interact. Therefore implicit
approaches can deal only with specific cases, i.e., short-term occlusions. The
proposed system uses an explicit approach to deal with occlusions. This rea-
soning requires domain specific knowledge, i.e., detection of situations when
persons appear to merge and split, and making decisions about their be-
haviour during occlusion (see for example [24, 25, 26, 27]). We use colour
as additional information that helps to detect occluded persons and resolve
occlusions when occluded persons appear again on the scene.

In the next section we introduce the experimental platform. Section 3
presents the basic tracker using gradient information from the thermal cam-
era. The next sections describe the techniques developed to maintain the
correct associations between observations and persons, by exploiting the com-
bination of thermal and colour vision: incorporation of colour information
into the measurement model (Section 4), an occlusion detector based on the
machine learning algorithm AdaBoost (Section 5) and the occlusion han-
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colour camera

thermal camera

Figure 1: ActivMedia PeopleBot robot equipped with a thermal camera and a standard
camera (left). Example of an image from the colour camera (right-top) and thermal camera
(right-bottom).

dling procedure (Section 6). Experimental results are presented in Section
7, followed by conclusions and suggestions for future work.

2. Experimental Set-up

We used an ActivMedia PeopleBot robot (Fig. 1) equipped with different
sensors, including a colour pan-tilt-zoom camera (VC-C4R, Canon) and, a
thermal camera (Thermal Tracer TS7302, NEC), and an Intel Pentium III
processor (850 MHz). The colour and thermal camera are mounted close
to each other, which simplifies the calibration procedure between the two
cameras (see Section 4.1).

The robot was operated in an indoor environment (a corridor and labo-
ratory room). Persons taking part in the experiments were asked to walk in
front of the robot while it performed a corridor following behaviour or while
the robot was stationary. At the same time, image data were collected with
a frequency of 15Hz. The resolution of both thermal and colour images was
320 × 240 pixels. In our set-up the visible range on the grey-scale thermal
image was equivalent to the temperature range from 24 to 36 ◦C.
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3. Basic Tracker Using Thermal Vision

3.1. Particle-based Tracking of a Single Person

To reliably estimate the location and movement of persons it is neces-
sary to apply a tracking procedure. Our system uses a particle filter to
provide an efficient solution to this problem despite the high dimensionality
of the state space. The particle filter performs both detection and tracking
simultaneously without exhaustive search of the state space. Moreover the
measurements are incorporated directly into the tracking framework without
any preprocessing such as thresholding that could cause loss of information.

The posterior probability p(xt|z1:t) of the system being in state xt given a
history of measurements z1:t is approximated by a set of N weighted samples
such that

p(xt|z1:t) ≈
N
∑

i=1

wiδ(xt − x
i
t). (1)

Each x
i
t describes a possible state together with a weight wi

t which is propor-
tional to the likelihood that the system is in this state. We use a standard
Sampling Importance Resampling (SIR) filter [28] starting with a uniform
initial distribution. The dynamic model used in the particle filter is random
walk with drift. The measurement model used to calculate new weights for
particles is presented later in Section 3.3. The resampling step was imple-
mented using the systematic resampling algorithm [29].

3.2. Tracking Multiple Persons

The above method is extended to the multi-person case by detecting new
persons incrementally as they appear while maintaining existing tracks of
persons. This system uses a set of independent particle filters to track dif-
ferent persons. To assign new filters to new persons we use a sequential
detector consisting of a set of N randomly initialised particles. These parti-
cles are used to “catch” a new person entering the scene. To avoid multiple
detections in the same or similar regions, the weight of detection particles is
penalised by a factor ψd < 1 in cases where particles cross already detected
areas. The weight update equation for the ith detection particle is modified to
wi

t ∝ p(zt|xt = x
i
t)ψ, where ψ = ψd if particle i overlaps with other detected

regions and ψ = 1 otherwise. Thus already existing filters naturally limit the
search space for the detector. Detection occurs when the average fitness of
the particles exceeds a certain threshold for a few consecutive frames (3 in
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Figure 2: The elliptic measurement model for thermal images. Model parameters are
shown on the left. Division of ellipses into 7 regions is shown on the right.

our experiments). Then the particles from the detector are used to initialise
a new tracker before being re-initialised for detection of the next new person.

A solution based on independent tracking filters is computationally inex-
pensive and appropriate for on-line applications, but suffers in cases when
tracked persons are too close to each other. To reduce these problems we
explicitly model interactions between persons by penalising the weights of
particles that intersect with other detected regions. The weight update equa-
tion for established tracking filters is changed to wi

t ∝ p(zt|xt = x
i
t)ψ, where

ψ = e(−ρgij) and gij expresses the amount of overlap between particle i and
already detected region tracked by filter j, which is multiplied by a factor ρ in
the exponent of the penalty term. The penalty factor ρ allows for specifying
the “strength” of interactions between persons and the amount of handled
partial occlusions. This solution is similar to the interaction model proposed
by [30], where the authors propose a Random Markov Field using a joint
state space representation. The treatment of interactions in both approaches
has the drawback that in the case of occlusions weaker filters disappear. Mo-
tion information could help here only in specific situations where persons are
just passing by each other at sufficient speeds. However this is not the case
in situations where people stop to talk, shake hands, walk in groups, etc.

3.3. Elliptic Contour Model

The measurement model used by our thermal tracker is a contour model
consisting of two ellipses: one describes the position of the body part and the
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other measures the position of the head part (Fig. 2). Thus we obtain a 9-
dimensional state vector: xt = (x, y, w, h, d, vx, vy, vw, vh) where (x, y) is the
mid-point of the body ellipse with width w and height h. The height of the
head is calculated by dividing h by a constant factor. The displacement of
the middle of the head part from the middle of the body ellipse is described
by d. We also model velocities of the body part as (vx, vy, vw, vh). The
velocity of the d component has very noisy characteristics and is therefore
not considered in the state vector. To calculate the importance weight wi

t of
a sample i with state x

i
t we divide the ellipses into m = 7 different regions

(see Fig. 2) and for each region j the image gradient ∆i
j between pixels in the

inner and outer parts of the ellipse is calculated. The gradient is maximal
if the ellipses fit the contour of a person in the image data. A fitness value
f i for each sample i is then calculated as the sum of all gradients multiplied
with individual weights αj for each region: f i =

∑m

j=1 αj∆
i
j. The weights αj

sum to one and are chosen such that the shoulder parts have lower weight to
minimise the measurement error that occurs due to different arm positions.
The fitness value is finally scaled to values in [0, 1] in order to represent a
likelihood:

pg(zt|x
i
t) =

exp(κ · (f i − θ))

exp(κ · (f i − θ)) + exp(κ · (θ − f i))
, (2)

where θ denotes a fitness threshold and the value of κ defines the slope of
the likelihood function. This kind of likelihood function was also used in [31]
for visual tracking of objects.

When the mean gradient value from Eq. 2 is greater than 0.5 then a person
is considered to be detected. We also check the uncertainty of the estimate
[32] to avoid detections in wrong regions when the posterior is multi-modal
(e.g. for multiple persons).

This approach is similar to the work by Isard and Blake [33] for tracking
people in a greyscale image. However, they use a spline model of the head
and shoulder contour which cannot be applied in situations where the person
is far away or visible in a side view, because there will be no recognisable
head-shoulder contour. The elliptic contour model used here is able to cope
with these situations.
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a) b)

Figure 3: Rectangular features: a) thermal image b) colour image with regions corre-
sponding to different body parts from which colour information is extracted.

4. ADAPTIVE COLOUR MODEL

4.1. Colour representation

Since the baseline between the cameras is small compared to the distance
to persons, it is possible to align the thermal and colour images by affine
transformation. We then use an efficient colour representation proposed in
[34] based on the first three moments (mean, variance and skewness) of the
colour distribution. This representation was shown to be more effective than
histogram methods (e.g., [35]) in the domain of image indexing. To include
information about the spatial layout of the colour we divided the region
corresponding to a person’s body into rectangular sub-areas from which we
calculate the colour statistics (see Fig. 3b). The position and size of these
regions are determined from the information provided by the elliptic contour
model.

4.2. Colour likelihood

The appearance model based on colour moments is created every time
a new detection occurs, i.e. a new track is initialised in the thermal image.
By using the affine transformation we are able to determine the region corre-
sponding to a person on the colour image (see Fig. 3). From three rectangular
regions corresponding to the person’s head, torso and legs we collect colour
statistics ct of the first three moments (m1,m2,m3) for three colour chan-
nels (R,G,B). Finally we obtain a feature vector ct of size 3 × 3 × 3 = 27.
To make the model more robust to changing light conditions we adapt it
while a person is tracked. In our implementation we store colour statistics
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from the last nk frames and calculate their mean value. The parameter nk

influences the robustness and adaptivity of the colour model. In our experi-
ments nk = 10 corresponding to 0.7 s. We use Euclidean distance to measure
the similarity between the model c⋆t and region of interest ct. Finally, the
likelihood model for colour information is

pc(zt|xt) = exp
(

−λd2t
)

, (3)

where λ is a parameter that determines the shape of the colour likelihood.
Since λ scales the distance, higher values of λ mean that the colour-based
likelihood model is more peaked, thus having more importance when com-
bined with the gradient information from the ellipse model.

4.3. Rapid rectangular features

The colour moments can be rapidly calculated using an integral image
representation [36]. The estimators for the first three moments of the colour
distribution can be obtained by means of k-statistics calculated using sums
of the rth powers of the colour data:

Sr =
x+w
∑

i=x

y+h
∑

j=y

Ir(i, j), (4)

where I(i, j) is a pixel value of the colour image selected from the rectangular
region specified by coordinates {x, y, x + w, y + h}. Each Sr can be quickly
calculated using the integral image representation. The first three k-statistics
are obtained as

k1 = S1/n, (5)

k2 =
nS2 − S2

1

n(n− 1)
, (6)

k3 =
2S3

1 − 3nS1S2 + n2S3

n(n− 1)(n− 2)
, (7)

where n = w × h. Finally the normalised values of estimators for mean m1,
variance m2 and skewness m3 can be obtained as m1 = k1, m2 = k2/k1 and

m3 = k3/k
3
2
2 . The normalisation is performed to balance the influence of each

moment on the final score.
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4.4. Combining thermal and colour information

If we assume that the likelihoods for the gradient model pg(zt|xt) (Eq. 2)
and colour model pc(zt|xt) (Eq. 3) are independent then the data fusion can
be realised by taking a product of these two likelihoods

p(zt|xt) = pg(zt|xt)pc(zt|xt). (8)

The parameters κ, θ (gradient model) and λ (colour model) specify the shape
of the gradient and colour likelihood functions, thus specifying the impor-
tance of the respective features. The influence of possible correlations be-
tween colour and thermal distributions should be investigated more thor-
oughly in future work.

When a person is not detected, a colour model cannot be built and only
gradient information can be used to update the weight of the particles of
a single tracking filter as wi

t = pg(zt|x
i
t)ψ. However as soon as a person is

detected the colour model can be created and the weight update equation
changes to:

wi
t = pg(zt|x

i
t)pc(zt|x

i
t)ψ, i = 1, . . . , N. (9)

Note that the sequential detector relies only on gradient information from
the thermal image.

5. OCCLUSION DETECTION WITH ADABOOST

To detect occlusions we propose an approach that sorts the order of all
persons in the image according to pairwise comparisons. The proposed oc-
clusion classifier specifies which one of two overlapping persons is in front of
the other. The order of the persons from front-to-back is then determined
by a sort procedure requiring MO · log(MO) comparisons where MO specifies
the number of overlapping persons.

There are several features that could indicate the correct order of two
overlapping persons in the image, from which we have chosen a set of three
thermal and three colour features:

• The strength (i.e., mean gradient value) of a tracking filter, since a
person for which the corresponding tracker indicates a higher confi-
dence is more likely to be in the front. This feature is, however, very
noisy and is affected by many factors such as movement of the camera,
temperature of the environment, etc.
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Figure 4: Relationship of the different thermal features to the apparent distance of a
person taken from the ground truth data.

• The top and bottom of the elliptic model can also indicate the depth
of a person since closer persons appear taller and closer to the upper
and bottom border of the image. However the bottom part can be cut
when persons stand too close to the camera. The top of a person’s head
is a more reliable feature, though it is affected by the different height
of persons.

• Another set of features is the colour similarity of the region corre-
sponding to a person. We have chosen three such regions including the
overlapping, non-overlapping and whole areas of a person. Occluded
persons should have lower similarity values.

Since a single feature cannot easily determine the right order of the per-
sons we use a boosting algorithm [1] to weight and combine a number of
“weak classifiers” built from these features, resulting in a strong classifier
with much improved occlusion detection accuracy.

To give an impression of the discriminative power of the thermal features
used, we present a graphical representation of their relationship to the ap-
parent distance of a person taken from the ground truth data (see Fig. 4).
This distance, calculated as the difference between the bottom part of the
person’s bounding box taken from ground truth and the bottom of the image,
uniquely determines the order of the persons. Note that range information
from a laser scanner could also be used to simplify this problem. However
in this work we consider an exclusively vision-based system. (It would not
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be meaningful to provide a similar visualisation for the colour features, since
these features are based on comparisons of two tracked persons rather than
a single tracked person as in the thermal case.)

We use the AdaBoost (Adaptive Boosting) classification algorithm [1] for
selecting the best combination of features to detect occlusions. AdaBoost
combines results from so-called “weak” classifiers ht(x) into one “strong”
classifier H(x) = sign(

∑T

t=1 αtht(x)), where T is the number of weak clas-
sifiers and αt is an importance weight given to each “weak” classifier ht(x)
according to the performance during the iterative learning process (see [36]
for details). During learning focus is put on the training examples which were
most difficult to classify (this process is called “boosting”). As a result we
obtain a final classifier that performs better than any of the weak classifiers
alone.

Following [36] we use simple weak classifiers based on a single-valued
feature fj(x)

hj(x) =

{

1 : pjfj(x) < pjθj
0 : otherwise,

(10)

where θj is a threshold and pj = {−1, 1} is a parity indicator determining
the direction of the inequality sign. During the training procedure optimal
values of θj and pj are determined by minimising the number of misclassified
training examples.

In addition, we use weak classifiers based on a weighted combination of
features fj(x) =

∑G

i=1 αifi(x), where αi specifies the weight for an input
feature fi(x) (G = 2 in our experiments). We discretise possible weight
values αi from the range {−1, 1} into Nf fractions. As a result we obtain
a sufficient number of different weak classifiers for selection by the boosting
algorithm.

6. OCCLUSION HANDLING

The learned occlusion classifier can be used to improve tracking perfor-
mance during occlusion. It is used in two different ways: first, to alter the
penalising policy between the trackers (as described in Section 3), and sec-
ond, to re-identify occluded persons when they reappear.

Our interaction model for tracking multiple persons allows tracking of
people that overlap to a certain degree. This is achieved by modifying the
interaction factor ρ to prevent target fetching (i.e., to prevent two filters in
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close proximity from collapsing around the same tracked object). The pro-
posed pairwise occlusion classifier is used to determine which of the tracking
filters is occluded. We consider two possible situations: partial occlusion and
total occlusion. During partial occlusion, some part of a person is still visi-
ble. However, the gradient along the contour is disturbed, which can cause
a quick disappearance of the tracker. To avoid this we change the penalty
equation to ψ = e(−ρogij), where the penalty term ρo < ρ is used to model
interactions between the partially occluded tracking filters. Interaction with
other filters (non-overlapping with this pair) remains unchanged.

An update procedure for the tracker with improved occlusion handling
is presented in Algorithm 1. The steps of the algorithm are explained as
follows: first thermal and colour likelihoods are measured for all particles in
each tracking filter. Then the occlusion handling procedure is applied that
first determines all overlaps between filters, then orders the overlapping filters
using the proposed AdaBoost algorithm. After ordering it is possible to de-
termine occluded and occluding filters, but also partial and total occlusions.
The penalty terms of all partially occluded filters are modified (ρ = ρ0). In
the last step of the algorithm the weights of all particles are calculated tak-
ing into account the respective penalty terms and the final estimates for each
tracking filters are calculated.

Algorithm 1 Update procedure for tracking filters that are not totally oc-
cluded.

for each person:
- measure gradient likelihood pg and colour likelihood pc for each particle

occlusion handling:
- detect overlaps between persons

- analyse occlusions between overlapping persons:

- classify occlusions using AdaBoost
- sort occluding/occluded persons
- assign partial/total occlusions

- adjust the penalty term ρ for each person

for each person:
- calculate weights wi

t for corresponding particle filter including any penalty
- update particle filter

When the head contour of a person becomes occluded the corresponding
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tracker is considered to be totally occluded. This means that we can only
guess the true position of this person. We assume that the state of the oc-
cluded person is the same as the state of the occluding person. No penalty is
considered for the occluded tracker. We keep particles of the totally occluded
tracker for a short time (we use a value of 8 frames here) in situations when
quick occlusions occur and the velocity of particles may allow resolution of
this occlusion. However after this time has elapsed the particles of the tracker
are removed and the only information kept is the colour model. When a new
person is detected this information is used to match the colour model to all
occluded trackers. If the colour model is most similar to the closest occluded
tracker then the detected person is considered to be an occluded one. Other-
wise the person is considered to be a new person. To avoid situations where
the occluded tracker stays forever behind the occluding one, we also specify
a maximum duration of occlusion (in our case 10 s). This minimises errors in
the case where an occluded person disappears from the scene in some other
way (e.g., through a door or a corridor behind an occluding person) or in
cases of missed assignments to newly detected persons.

7. Experiments

7.1. Evaluation

Our system was tested on the data collected by the robot during several
runs. We collected 11 tracks using a corridor following behaviour and 42
tracks with a stationary robot resulting in 53 different tracks including 12
different persons (5607 images containing at least one person and 6769 images
in total). The total count of marked-up persons was 10256 with 1289 cases
of occlusions, which is around 13% of all cases. To obtain the ground truth
data we used a flood-fill segmentation algorithm corrected afterwards by hand
using the ViPER-GT tool [37]. We considered only a bounding box around a
person. The top and bottom edges were determined from the contours of the
head and feet while the sides were specified by the maximum width of the
torso (without arms). The cases when persons appeared too close (< 3m)
to or too far (> 10m) from the robot were not taken into account. The
size of the bounding box was specified as 2 · width and 3.5 · height of the
elliptic contour model, an approximation to the proportions of the human
body. Bounding boxes from the ground truth data are referred to as targets
and those from the tracker as candidates.
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detection localisation

recall NR

NT

|AT∩AR|
|AT |

precision NR

NC

|AT∩AR|
|AC |

accuracy 2·NR

NT+NC

2·|AT∩AR|
|AT |+|AC |

Table 1: Detection and localisation metrics.

We use two kinds of metrics that indicate the quality of the tracking pro-
cedure: detection metrics (counting persons) and localisation metrics (area
matching). Each type of metric is further divided into three statistics: re-
call, precision and accuracy. Recall indicates true positives (“hits”), precision
indicates false alarms, and accuracy is a combination of both recall and pre-
cision (see Table 1). These metrics allow thorough testing of the properties
and performance of the tracker as in [37] and [38].

A candidate is considered to be correctly detected if the overlap ratio
between the candidate and target bounding boxes is greater than 50%. The
detection metrics take into account the number of correctly detected candi-
dates NR in one frame and compare it with the number of targets NT and
number of all candidates NC . The final result is a weighted average of all
frames. This weighting corresponds to the number of persons at each frame.
Otherwise frames with a single person would have the same influence on the
final results as frames with more persons. The localisation metrics express
relations between areas corresponding to correctly detected candidates AR,
all candidates AC and targets AT . The final result is a weighted average of
all frames. All of the metrics are normalised to give percentages.

Thanks to the evaluation metrics, we could optimise all system parame-
ters based on the test data. As the performance criterion we chose an area
accuracy metric that reflects the overall performance of the tracker. The
influence of each parameter on the performance of the tracker was checked
independently. Experiments for each parameter value were repeated 10 times
with different random variations in the particle filter run with N = 1000 for
each trial. The optimal values obtained for the most important system pa-
rameters were as follows: κ = 0.125, θ = 22, λ = 50, ρ = 2 and ρ0 = 0.5.

16



recall precision accuracy
0

20

40

60

80

100
detection metrics

ra
te

 [
%

]

recall precision accuracy
0

20

40

60

80
localisation metrics

ra
te

 [
%

]

gradient

+ colour

+ occ. detector

gradient

+ colour

+ occ. detector

Figure 5: Detection and localisation metrics for tracking multiple persons without and
with colour information and with occlusion handling procedure.

7.2. Training of the AdaBoost Classifier

To train the AdaBoost classifier the described thermal and colour features
were extracted from the collected data. The only cases considered were
situations when two or more people were overlapping. Moreover since the
behaviour of the tracker without proper occlusion handling is unpredictable
after a total occlusion occurs, only those examples that preceded the moment
of the total occlusion were selected. During the occlusions, the colour models
of the respective persons were not updated. In this way we obtained 121
positive and 121 negative examples giving a total of 242 examples.

We created additional weak classifiers based on weighted sums of pairs
of features with 20 fractions giving, in the case of all six thermal and colour
features used, 1200 new weak classifiers. We used 60% of randomly selected
input examples as a training set and the remaining part as a test set. Each
training procedure was repeated 10 times.

7.3. Results

7.3.1. Tracking Results

Fig. 5 shows the tracking performance using only thermal gradient infor-
mation, with additional colour information, and with both colour information

17



Figure 6: Selected thermal images from the sequence showing the output from the tracker
before, during and after the occlusion of three simultaneously tracked persons. The bound-
ing boxes corresponding to occluded persons are marked by a dotted line. An exam-
ple video sequence os available at http://robots.lincoln.ac.uk/users/gcielniak/

papers/multiperson results.html.

and explicit occlusion handling. Each experiment was repeated 10 times with
different random variations in the particle filter for each trial using N = 1000
particles per filter. Both the detection and localisation metrics indicate a sig-
nificant improvement when using additional colour information (p < 0.01).
This leads to more precise estimates and decreases the number of cases where
the tracker loses track of a person. However the overall accuracy (84.2% in
detection and 68.7% in localisation) is affected by low recall values. Adding
the occlusion detector gives an increase of 6.8% in area recall metrics and
3.1% in area accuracy metrics. It is important to notice that the presented
results are calculated from all frames in the data set. The proportion of
frames featuring occlusion situations to the total number of frames (in our
case being 13%) affects the absolute result values. The differences in the
performance should be more pronounced with the higher values of this ratio.
Examples of the output from the tracker can be seen in Fig. 6.

7.3.2. Occlusion Classification

The strong classifier learned from the combination of thermal and colour
features was able to predict occlusions correctly in around 89% of all cases
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Feature type Results [%]

thermal 76.4± 4.5
colour 69.0± 1.9
both 89.4± 2.5

Table 2: Classification results for different feature types.

Combination of features Results [%] T total

single features 74.9± 4.9 6
weighted pairs 89.4± 2.5 1206

weighted triplets 89.4± 1.8 129206

Table 3: Classification results for different combination of features to create weak classifiers
(resulting in T total weak classifiers).

(see Table 2). This gives a significant advantage over the results obtained
when thermal and colour features were used separately (p < 0.01). Thermal
features provided significantly better results than colour features alone.

Table 3 shows results for different methods of combining features into
weak classifiers. The comparatively bad results when using single features
are caused by the low number of weak classifiers. The proposed method of
using a weighted combination of pairs of features increased the performance of
the final classifier by around 15%. We also made tests with weighted triplets
of features for comparison. Despite the much higher number of possible
weak classifiers the difference in performance compared to weighted pairs
was not found to be significant (based on a paired t-test with confidence
level p = 0.01).

From the results presented in Table 4 we can get an impression about
how much information is provided by a single feature. The most reliable
features are the top of a person’s head, colour similarity of the whole region
and of the non-overlapping area. Weak classifiers based on combinations
of these features had the highest importance (see Table 5). Other features
also contributed to the final classifier (e.g., the position of the bottom of
the elliptic model) even though their individual performance was relatively
poor. The influence of the 4 best weak classifiers is considerable and gives a
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Single feature Results [%]

strength 50.1± 4.9
top 73.0± 3.9

bottom 56.5± 4.3
colour 67.6± 3.0

colour o 45.6± 2.7
colour no 67.4± 2.9

Table 4: Classification results for single features (colour o and colour no stand for the
colour similarity of the overlapping and non-overlapping areas respectively).

performance of around 85% compared to 89% when using the 10 best weak
classifiers.

7.3.3. Processing Time

Table 6 presents the average processing time needed for calculation of
1000 samples when using different colour representations. It takes about
two times longer to calculate one step of the tracking procedure when using
all three moments compared to the tracker based on thermal information
only (around 30Hz on a 2.00 GHz processor when using 1000 samples). A
good trade-off between time requirements and performance of the tracker
for our set-up is a representation using just the first moment of the colour
distribution (46% more time compared to the gradient based tracker). The
overall performance of the tracker based on this representation is about 2%
lower than the variant using the three colour moments. When tracking mul-
tiple persons, additional processing time is required for calculation of penalty
terms for the detector and individual tracking filters. In our case tracking
one person required around 8% extra time for the detector and in the case
of four persons around 36% extra time is needed for calculation of penalty
terms between the trackers.

8. Conclusions and Future Work

We presented a people tracking system that uses a combination of ther-
mal and colour information to robustly track persons. While thermal vision
is good for detecting people, it can be very difficult to keep track of which ob-
servation corresponds to which person, due to the unpredictable appearance
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Place Weight of a feature Results

strength top bottom colour colour o colour no [%]

1 -0.05 - - - - 1.00 79.0± 4.7
2 - -0.05 - 1.00 - - 80.1± 4.9
3 - -1.00 0.45 - - - 83.4± 3.7
4 - -0.75 1.00 - - - 85.1± 2.9
5 - - 0.05 - - 1.00 84.9± 3.0
6 - -0.80 1.00 - - - 87.0± 3.4
7 - - 0.10 - - 1.00 86.7± 2.5
8 -0.55 1.00 - - - - 88.6± 2.4
9 -1.00 0.05 - - - - 89.8± 2.3
10 - - -0.05 1.00 - - 89.7± 2.6

Table 5: 10 best weak classifiers with their respective weights (colour o and colour no
stand for the colour similarity of the overlapping and non-overlapping areas respectively).
The classification results indicate the performance improvement after adding each weak
classifier.

Platform Model

gradient colour I colour III
[ms] [ms] [ms]

robot int. image - 5.1 16.1
0.85 GHz 1000 samples 33.4 50.2 68.8

modern PC int. image - 2.1 4.9
2.00 GHz 1000 samples 13.5 17.7 25.9

Table 6: Average processing time needed to calculate 1000 samples using different mea-
surement models. “Colour I” and “colour III” correspond to a colour representation using
the first moment and the first three moments respectively.
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and social behaviour of humans. To address these problems the presented
tracking system uses additional information from the colour camera. An
adaptive colour model is incorporated into the measurement model of the
tracker to improve data association. For this purpose an efficient integral
image based method is used to maintain the real-time performance of the
tracker.

To deal with occlusions, the system uses an explicit method that first
detects situations where people occlude each other. This is realised by a new
approach based on a machine learning classifier for pairwise comparison of
persons using both thermal and colour features provided by the tracker. This
information is then incorporated into the tracker for occlusion handling and
to resolve situations when persons reappear in a scene.

While the thermal camera has its own strengths (the system can work in
badly lit or completely dark environments), we believe the ultimate system
for people tracking should combine different modalities and their strengths to
achieve better performance. The proposed approach can be easily extended
to include other features (e.g. depth from a stereo-camera) that could further
improve the tracking performance.

We believe that the question of how to handle occlusions is impossible to
answer in a general way, i.e. independently of a particular application. How-
ever our solution demonstrates that it is plausible to deal with occlusions
to some extent and through experiments we showed that this increases the
overall performance of the tracker. Such a solution has obvious pitfalls that
should be considered in future work, such as proper handling of classification
errors, wrong assignments after occlusions, uniformly dressed people, etc. A
further approach to improve detection of occlusions would be to incorporate
tracking of individual body parts [23], though this would increase the com-
plexity and computational cost of the solution. The mobile robot itself could
be used to check if the occluded person is really behind another person by
taking appropriate actions. Recognition of human behaviour could also help
to solve this kind of problem.
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