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Abstract

Since the importance of DNA-binding proteins in multiple biomolecular functions has been

recognized, an increasing number of researchers are attempting to identify DNA-binding

proteins. In recent years, the machine learning methods have become more and more com-

pelling in the case of protein sequence data soaring, because of their favorable speed and

accuracy. In this paper, we extract three features from the protein sequence, namely

NMBAC (Normalized Moreau-Broto Autocorrelation), PSSM-DWT (Position-specific scoring

matrix—Discrete Wavelet Transform), and PSSM-DCT (Position-specific scoring matrix—

Discrete Cosine Transform). We also employ feature selection algorithm on these feature

vectors. Then, these features are fed into the training SVM (support vector machine) model

as classifier to predict DNA-binding proteins. Our method applys three datasets, namely

PDB1075, PDB594 and PDB186, to evaluate the performance of our approach. The

PDB1075 and PDB594 datasets are employed for Jackknife test and the PDB186 dataset is

used for the independent test. Our method achieves the best accuracy in the Jacknife test,

from 79.20% to 86.23% and 80.5% to 86.20% on PDB1075 and PDB594 datasets, respec-

tively. In the independent test, the accuracy of our method comes to 76.3%. The perfor-

mance of independent test also shows that our method has a certain ability to be effectively

used for DNA-binding protein prediction. The data and source code are at https://doi.org/10.

6084/m9.figshare.5104084.

Introduction

DNA-binding proteins play an important role in a variety of biomolecule functions, such as

transcription, the detection of DNA damage and replication. The importance of DNA-binding

proteins is facilitating the development of various methods for identifying them. Experimental

methods that have been applied to identify DNA-binding proteins include filter binding

assays, genetic analysis, chromatin immune precipitation on microarrays and X-ray crystallog-

raphy [1, 2]. Nevertheless, these experimental methods have some disadvantages, such as
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expensive and time-consuming. Especially with the development of next-generation high-

throughput DNA sequencing techniques [3], protein sequence data are growing rapidly. At

present, it is unrealistic to use experimental methods to identify all DNA-binding proteins.

Therefore, a lot of computational methods based on machine learning (ML) algorithm or sta-

tistical model [4–6] are used to reduce the cost of resources. In order to further facilitate the

calculation process, there are some web servers have been developed to generate feature vec-

tors of DNA, RNA or protein sequences, such as a web-server called Pse-in-One [7]. In recent

years, computational methods based on machine learning (ML) algorithms have become more

and more popular because of their promising performance. According to various feature infor-

mation, the ML-based approachs are mainly composed of structure information-based [8–18]

and sequence information-based method [1, 2, 19–35].

The structural features of proteins are closely related to the functions, and therefore predic-

tors based on the structural information can achieve better performance of DNA-binding pro-

tein identification. Nimrod et al. [18] trained a random forest classifier using the average

surface electrostatic potentials, dipole moments and cluster-based amino acid conservation

patterns of the protein. Ahmad et al. [10] developed a neural network classifier based on the

net charge, electric dipole moment and quadrupole moment tensors of the protein. Bhardwaj

et al. [13] made use of SVM classifier and three features, including surface and overall compo-

sition, overall charge and positive potential surface patches. Some structure-based methods

also have the participation of sequence information. For example, Szilágyi and Skolnick [17]

extracted feature vectors from the following three perspectives: the relative proportions of cer-

tain amino acids, the asymmetry of the spatial distribution of certain other amino acids and

the dipole moment of the molecule. However, a large number of proteins can’t be known with

the structural information, so structure-based predictors can only be applied to a small portion

of the whole protein database.

In contrast, sequence information is easier to extract and more convenient to use. We can

extract multiple sequence-based features, such as physicochemical properties [20, 36], dipep-

tide composition [24, 30] and the amino acid composition [21]. Cai and Lin [20] trained SVM

classifiers using protein’s amino acid composition, limited range correlation of hydrophobicity

and solvent accessible surface area of the protein. Yu et al. [21] developed the binary classifica-

tions for rRNA-, RNA-, DNA-binding proteins by feeding these features (being extracted

from protein sequence amino acid compositions and physicochemical properties) into the

SVM classifier. Liu et al. [36] extracted feature vectors from three sequence features, including

overall amino acid composition, pseudo amino acid composition and physicochemical dis-

tance transformation. Some researchers also incorporated evolutionary information generated

by PSI-BLAST [37] into sequence-based methods to improve prediction performance. For

instance, Kumar et al. [38] were the first to use evolutionary information to identify DNA-

binding proteins and developed a SVM classifier called DNAbinder. Some similar methods,

for example the method of Ho et al. [39], were also proposed to identify DNA-binding pro-

teins. Their results showed that evolutionary information can significantly improve the perfor-

mance, so evolutionary information is useful in the identification of DNA binding proteins.

Liu et al. [25] proposed a predictor called iDNAPro-PseAAC, which incorporates evolutionary

information and the pseudo amino acid composition (PseAAC). The method of Waris et al.

[28] used features extracted from dipeptide composition, split amino acid composition and

position specific scoring matrix (PSSM) to train multiple classifiers and found the classifier

that achieved the best predicte performance.

As described above, the feature extraction algorithms determine whether protein sequences

can be expressed completely by feature vectors. In order to obtain a satisfactory performance,

we should select feature extraction algorithms carefully. In this paper, we innovatively combine
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the 1040-dimension feature vector named PSSM-DWT, the 100-dimension feature vector

named PSSM-DCT and the 200-dimension feature vector named NMBAC to predict DNA-

binding proteins. Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT)

can be used to obtain the effective information by compressing the PSSMmatrix. Also, we

extract the 200-dimension feature vector according to six physicochemical properties. Then,

these features are fed into the training SVMmodel for predicting DNA-binding proteins. We

evaluate our method by three datasets, namely PDB1075, PDB594 and PDB186. The first two

datasets are used in Jackknife test and the last dataset, PDB186, is used for independent testing.

The results demonstrate the effectiveness of our method in identifying DNA-binding proteins.

Materials andmethods

In order to illustrate the overall process, the framework of our method is presented in Fig 1. In

the training phase, we extract two features (PSSM-DWT and PSSM-DCT) from the PSSM

matrix, and extract NMBAC feature from six physicochemical properties. The prediction

model is obtained by feeding these features into the SVM classifier. In the prediction phase, we

use the same feature representation algorithm to describe the predictive protein sequence,

then use the training SVMmodel for DNA-binding protein prediction.

Datasets

In the present study, we apply three benchmark datasets to evaluate our approach, namely

PDB1075, PDB594 and PDB186. These DNA-binding proteins are selected from Protein Data

Bank (http://www.rcsb.org/pdb/home/home.do). The protein sequences, which are less than

50 amino acids or contain character “X”, must be removed. We should ensure that no

sequence has more than 25% similarity with any other sequences. Concretely, the PDB1075

dataset, constructed by Liu et al. [40], has 525 DNA-binding proteins and 550 DNA-non-bind-

ing proteins. The PDB594 dataset, edited by Lou et al. [2], is made up of 297 DNA-binding

proteins and 297 DNA-non-binding proteins. These two datasets are applied for Jackknife

test. The PDB186 dataset for independent test is also derived from the paper of Lou et al. [2],

and contains 93 DNA-binding proteins and 93 DNA-non-binding proteins.

Evolutionary features

Position specific scoring matrix. Position Specific Scoring Matrix (PSSM) generated by

PSI-BLAST [37] (BLAST+ [41] options: -num_iterations 3 -db nr -inclusion_ethresh 0.001)

stores the evolutionary information of a protein sequence. Suppose the length of a protein

sequence is L (L amino acids), the size of the PSSM for this protein is L × 20 (L rows and 20

columns). The form of this matrix is as follows:

PSSMoriginal ¼

P1;1 P1;2 � � � P1;20

P2;1 P2;2 � � � P2;20

..

. . .
. ..

. ..
.

PL;1 PL;2 � � � PL;20

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

L�20

ð1Þ

The formula for each element PSSMoriginal(i, j) is as follows:

PSSMoriginalði; jÞ ¼
X

20

k¼1

oði; kÞ � Dðk; jÞ; i ¼ 1; . . . ; L; j ¼ 1; . . . ; 20 ð2Þ
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where ω(i, k) is the frequency of k-th amino acid type at the position i,D(k, j) is the rate of

mutation from the k-th amino acid to the j-th amino acid in a protein sequence from Dayhoff’s

mutation matrix (substitution matrix). The larger values of substitution matrix indicate more

strongly conserved positions; otherwise, the reverse.

Discrete Cosine Transform. We use the Discrete Cosine Transform (DCT) [42], which is

widely used in data compression to compress PSSM and retain a portion of the compressed

PSSM as feature vectors. The DCT is a linear separable transformation and can change the dis-

tribution of information density from evenly to unevenly. After compression, we should retain

the low frequency part of PSSM, because the low frequency section contains more information

Fig 1. The framework of our method.

https://doi.org/10.1371/journal.pone.0185587.g001
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than the high frequency section. In this work, 2 dimensions DCT (2D-DCT) is used to com-

press PSSM. Given an input matrixMat = PSSMoriginal 2 <L×20, the corresponding conversion

formula is as follows:

DCTði; jÞ ¼ aiaj

X

M�1

m¼0

X

N�1

n¼0

Matðm; nÞcos
pð2mþ 1Þi

2M
� cos

pð2nþ 1Þj

2n
ð3aÞ

ai ¼

ffiffiffiffiffiffiffiffiffiffi

1=M
p

; i ¼ 0

ffiffiffiffiffiffiffiffiffiffi

2=M
p

; 1 � i � M � 1

8

<

:

ð3bÞ

aj ¼

ffiffiffiffiffiffiffiffiffi

1=N
p

; j ¼ 0

ffiffiffiffiffiffiffiffiffi

2=N
p

; 1 � j � N � 1

8

<

:

ð3cÞ

where 0� i<M, 0� j< N.

According to the above formula for compression, the part that contains most of the infor-

mation (low frequency section) is distributed in the upper left corner of the compressed

PSSM. In the end, we retain the first 100 coefficients as PSSM-DCT feature.

Discrete Wavelet Transform. The Wavelet Transform (WT) is defined as the projection

of a signal f(t) onto the wavelet function:

Tða; bÞ ¼
ffiffiffiffiffiffiffiffi

1=a
p

Z t

o

f ðtÞc
t � b

a

� �

dt ð4Þ

where a is a scale variable and b is a translation variable. c t�b
a

� �

is the analyzing wavelet func-

tion. T(a, b) is the transform coefficients which are found for both specific locations on the sig-

nal and specific wavelet periods. Discrete Wavelet Transform (DWT) can decompose the

amino acid sequences into coefficients at different dilations and then remove the noise compo-

nent from the profiles. Nanni et al. [43, 44] proposed an efficient algorithm to perform DWT

by assuming that the discrete signal f(t) is x[n], where N is the length of discrete signal.

yj;low½n� ¼
X

N

k¼1

x½k�g½2n� k� ð5aÞ

yj;high½n� ¼
X

N

k¼1

x½k�h½2n� k� ð5bÞ

where g is low pass filter and h is high pass filter. ylow[n] is the approximate coefficient (low-fre-

quency components) of the signal. yhigh[n] is the detailed coefficient (high-frequency compo-

nents). This decomposition is repeated to further increase the frequency resolution and the

approximation coefficients decomposed with high and low pass filters and then down-sam-

pled. With the increase of decomposition level j, more detailed characteristics of the signal can

be observed. Inspired by Nanni’s work [43, 44], we use 4-level DWT and calculate the maxi-

mum, minimum, mean and standard deviation values of different scales (4 levels of both low

and high-frequency coefficients). Because of the high-frequency components are more noisy

and hence only the low-frequency components are more important, we also extract the first

five discrete cosine coefficients from the approximation coefficients. The schematic diagram of

a 4-level DWT is shown in Fig 2.
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TheMat = PSSMoriginal 2 <L×20 has 20 columns. So, the PSSM consists of 20 types of dis-

crete signals (L lengths). At last, we use above 4 levels DWT to analysis these discrete signals of

PSSM (each column) and extract the PSSM-DWT feature from PSSM of protein.

Sequence features

Normalized Moreau-Broto Autocorrelation. We use the Normalized Moreau-Broto

Autocorrelation(NMBAC) to extract sequence features from six physicochemical properties

for improving the predicte performance. The NMBAC is proposed by Feng at al. [45] for the

prediction of membrane protein types. Each physicochemical propertie of 20 amino acid have

corresponding values and a protein sequence can be replaced by a vector of physicochemical

property values. In our work, the six physicochemical properties are hydrophobicity (H), vol-

umes of side chains of amino acids (VSC), polarity (P1), polarizability (P2), solvent-accessible

surface area (SASA) and net charge index of side chains (NCISC) of amino acid, respectively.

The physicochemical propertie values of 20 amino acids are shown in Table 1. Before we use

these values to represent amino acids, they must be normalized to zero mean and unit standard

deviation (SD) as follows:

P0
i;j ¼

Pi;j � Pj

Sj
ði ¼ 1; 2; . . . ; 20; j ¼ 1; 2; . . . ; 6:Þ ð6Þ

where Pi,j is the value of descriptor j for amino acid type i, Pj is the mean over 20 amino acids

of descriptor value j, and Sj is the corresponding SD.

For each physicochemical property, a protein can be represented by a vector composed of

normalized physicochemical property values. NMBAC [45] is obtained by inputting these

Fig 2. Schematic diagram of a 4-level DWT.

https://doi.org/10.1371/journal.pone.0185587.g002
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vectors into the following formula:

NMBAClag;j ¼
1

ðn� lagÞ

X

n�lag

i¼1

ðXi;j � Xiþlag;jÞ ð7aÞ

ði ¼ 1; 2; . . . ; n� lag; j ¼ 1; 2; . . . ; 6:Þ ð7bÞ

where j represents one descriptor of six descriptor, i is the position in protein sequence X, n is

the length of the protein sequence and lag is the sequential distance between one residue and

another, a certain number of residues away (lag = 1, 2, . . ., lg, lg is a parameter determined by

an optimization procedure to be described).

According to Guo’s work [46], we define the optimal value of lag from 1 to 30. For each pro-

tein sequence, we can obtain 30 × 6 = 180 dimensional feature vector. We also add the fre-

quency of 20 amino acids appearing on this sequence to the feature vector. Finally, we can get

the 30 × 6 + 20 = 200 dimensional feature vector for a protein sequence.

Classification and feature selection

After feature extraction procedure, all samples in benchmark datasets are converted into

numerical feature vectors with the same dimension. The feature space of each protein

sequence is composed of PSSM-DWT, PSSM-DCT and NMBAC features. By removing noisy

and redundant features from the original feature space (PSSM-DWT + PSSM-DCT

+ NMBAC), feature selection alleviates the overfitting and improves the performance. In order

to reduce feature abundance and computation complexity, we use the Support Vector Machine

Recursive Feature Elimination and Correlation Bias Reduction (SVM-RFE+CBR) [47] to select

an optimal feature subset. SVM-RFE+CBR is proposed by incorporating the CBR strategy into

Table 1. Original values of six physicochemical properties of 20 amino acid types.

Amino acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187

C 0.29 44.6 5.5 0.128 1.461 -0.03661

D -0.9 40 13 0.105 1.587 -0.02382

E -0.74 62 12.3 0.151 1.862 0.006802

F 1.19 115.5 5.2 0.29 2.228 0.037552

G 0.48 0 9 0 0.881 0.179052

H -0.4 79 10.4 0.23 2.025 -0.01069

I 1.38 93.5 5.2 0.186 1.81 0.021631

K -1.5 100 11.3 0.219 2.258 0.017708

L 1.06 93.5 4.9 0.186 1.931 0.051672

M 0.64 94.1 5.7 0.221 2.034 0.002683

N -0.78 58.7 11.6 0.134 1.655 0.005392

P 0.12 41.9 8 0.131 1.468 0.239531

Q -0.85 80.7 10.5 0.18 1.932 0.049211

R -2.53 105 10.5 0.291 2.56 0.043587

S -0.18 29.3 9.2 0.062 1.298 0.004627

T -0.05 51.3 8.6 0.108 1.525 0.003352

V 1.08 71.5 5.9 0.14 1.645 0.057004

W 0.81 145.5 5.4 0.409 2.663 0.037977

Y 0.26 117.3 6.2 0.298 2.368 0.023599

https://doi.org/10.1371/journal.pone.0185587.t001
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the feature elimination procedure: (1) less prone to overfitting; (2) able to make full use of the

training data; (3) much faster, especially on a lot of candidate features. As a result, it has been

successfully applied in many problems, especially in gene selection [48–50]. We can obtain the

output of SVM-RFE+CBR with a ranked feature list. Feature selection is achieved by choosing

a group of top-ranked features. The ranking criterion of SVM-RFE+CBR is closely related to

the SVMmodel.

Support Vector Machine. Support Vector Machine (SVM) developed by Vapnik [51] is a

classification and regression paradigm. In the process of using SVM, samples labeled positive

or negative are projected into a high dimensional feature space using a kernel, and the hyper

plane in the feature space is optimized to maximize the margin of positive and negative sam-

ples. There are some biological problems for example prediction of protein-protein interac-

tions [46, 52–56], homology detection [57], and analysis of gene expression data [58] that can

used SVM to solve. Given a training dataset of instance-label pairs {xi, γi}, i = 1, 2, . . ., N with

input data xi 2 R
n and output labels γi 2 {+1, −1}, the classification decision function imple-

mented by SVM is represented in the following equation:

gðxÞ ¼ sign½
X

N

i¼1

giai � Kðx; xiÞ þ b� ð8Þ

where the coefficient αi is obtained by solving the following convex Quadratic Programming

(QP) problem:

Maximize

X

N

i¼1

ai �
1

2

X

N

i¼1

X

N

j¼1

aiaj � gigj � Kðxi; xjÞ ð9aÞ

s:t: 0 � ai � C ð9bÞ

X

N

i¼1

aigi ¼ 0; i ¼ 1; 2; . . . ;N ð9cÞ

where xj is called pupport vector only if the corresponding αj> 0, C is a regularization parame-

ter that controls the tradeoff between margin and misclassification error.

Under most circumstances, K(xi, xj) = exp(−γkxi − xjk
2), called the Radial Basis Functions

(RBF) kernel, has better boundary response, and most high-dimensional data are approxi-

mated by Gaussian-like distributions. We implemented a SVMmodel using LIBSVM [59]

with the radial basis functiona (http://www.csie.ntu.edu.tw/*cjlin/libsvm/).

Results and discussion

We preform our method on three datasets for predicting DNA-binding protein. In the Jack-

knife test, we apply our method on the PDB1075 and PDB594 datasets to analyze the effective-

ness of feature extraction and feature selection, the performance of our method is also

compared with other methods. In the independent test, our prediction model is tested on the

independent dataset PDB186 and compared with the results of other methods.

Measurements

We use the Jackknife test to analyze the quality of predictor constructed by our method.

Because of the effectiveness of Jackknife test, it is widely used to test the function of predictor
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(eg., [26, 60]). In the Jackknife test, we use every sample of the benchmark dataset as test data-

set one by one, and the rest of the samples are used to train predictor.

In addition, We employ four mearsures which are also used in other methods to evaluate

the performance of our method, including Accuracy (ACC), Sensitivity (SN), Specificity (SP),

and Mathew’s correlation coefficient (MCC). Their formulas are listed blelow:

ACC ¼
TPþ TN

TPþ FP þ TN þ FN
ð10aÞ

SN ¼
TP

TPþ FN
ð10bÞ

SP ¼
TN

TN þ FP
ð10cÞ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ
p ð10dÞ

where TP is the number of true positive, TN is the number of true negative, FP is the number

of false positive, and FN is the number of false negative.

Parameter optimization

To select the optimal parameters of feature NMBAC and PSSM-DCT, we test the predictive

performance for different parameters (NMBAC with different value of lg and PSSM-DCT with

different first m coefficients) via a five-fold cross validation. To get the optimal lg, we evaluate

values of lg from 5 to 45 (with a step of 5). The results of the prediction on PDB1075 dataset

are shown in Fig 3. The ACC of prediction is increasing, when the value of lg is between 5 and

30. After that, the value of ACC is falling. Different value of m may lead to different perfor-

mance, we test different values of m from 20 to 260 (with a step of 20). The curve of ACC is

shown in Fig 4. The value of ACC is rising, when m increases from 20 to 100. But it slightly

declines, when m is between 100 and 260. Obviously, PSSM-DCT with m less than 100 (lg less

than 30 for NMBAC) would lose some effective features and larger values may introduce

noise. Thus, we select lg as 30 (NMBAC) and m as 100 (PSSM-DCT) in our experiments.

Benchmark dataset—PDB1075

Performance of different feartures. We extract three features from the benchmark data-

set (PDB1075), namely PSSM-DWT, PSSM-DCT and NMBAC. We need to find a combina-

tion of features to achieve the best performance, and analyze the most important feature to get

the good prediction. The performance of different feartures by Jackknife test is shown in

Table 2. The combination of NMBAC, PSSM-DCT and PSSM-DWT achieves the highest

ACC (0.7926), MCC (0.5853), SN (0.8000) and second highest SP (0.7855). In order to obtain

the importance of each feature, we compare the AUROC of seven feature combinations

obtained by Jackknife cross-validation on PDB1075 dataset, shown in Fig 5. We can see that

the highest contribution to the predicton performance is PSSM-DWT, followed by NMBAC,

yet the PSSM-DCT is the lowest one. These information show that each feature is useful in pre-

diction of DNA-binding proteins and the combination of three features can achieve the best

performance, but the PSSM-DCT feature is not as effective as the other two features.

Performance after feature selection. In order to improve the performance on PDB1075

dataset, we remove the noisy and redundant features from the original feature space by
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Fig 4. The accuracy of different m values on PDB1075 (Five-fold cross validation).

https://doi.org/10.1371/journal.pone.0185587.g004

Fig 3. The accuracy of different lg values on PDB1075 (Five-fold cross validation).

https://doi.org/10.1371/journal.pone.0185587.g003
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Table 2. The performance of different features on PDB1075 dataset (Jackknife test evaluation).

Feature ACC(%) MCC SN(%) SP(%)

NMBAC 74.05 0.4836 77.90 70.36

PSSM-DCT 70.60 0.4117 66.86 74.18

PSSM-DWT 75.07 0.5010 73.33 76.73

NMBAC+PSSM-DCT 78.05 0.5606 77.14 78.91

NMBAC+PSSM-DWT 78.70 0.5740 79.24 78.18

PSSM-DWT+PSSM-DCT 73.77 0.4752 73.52 74.00

NMBAC+PSSM-DWT+PSSM-DCT 79.26 0.5853 80.00 78.55

https://doi.org/10.1371/journal.pone.0185587.t002

Fig 5. The AUROC comparison of seven feature combinations through Jackknife cross-validation on PDB1075 dataset.

https://doi.org/10.1371/journal.pone.0185587.g005
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SVM-RFE+CBR [47]. Consider the combination of three features, first, we obtain a ranked

feature list as shown in Fig 6. NMBAC, PSSM-DCT and PSSM-DWT are divided into three

intervals: [1, 200], [201, 300] and [301, 1340]. Then the accuracy of different dimension fea-

tures by Jackknife test can be seen in Fig 7 and we can find that the best accuracy can be

achieved when we select the first 216-dimension features, these features can be obtained from

the ranked feature list: 77 features in the interval [1, 200], 22 features in the interval [201, 300]

and 117 features in the interval [301, 1340]. The feature selection is applied to each feature

combination, and we can obtain the feature dimension with the best performance of each fea-

ture combination. As in the previous section, we also analyze the importance of each feature

according to the AUROC comparison of seven feature combinations after feature selection,

shown in Fig 8. We get the same result that NMBAC and PSSM-DWT are more effective than

PSSM-DCT in the prediction of DNA-binding protein.

For the results of the previous section, We obtain new results after feature selection which

be shown in Table 3. We also find that the combination of three features achieves the best per-

formance and has obviously exceeded the performance without feature selection. It reaches the

highest value on all metrics: ACC(0.8623), MCC(0.7250), SN(0.8743) and SP(0.8509). These

results strongly demonstrate that feature selection can significantly improve the predict

performance.

Comparision with existing methods. The performance of our method on PDB1075 data-

set is compared with other existing methods, including iDNA-Prot|dis [40], iDNA-Prot [61],

DNA-Prot [19], PseDNA-Pro [36], DNAbinder [38], iDNAPro-PseAAC [25], Kmer1+ACC

[23] and Local-DPP [62]. The performance of different methods by Jackknife test is displayed

Fig 6. The feature score through SVM-RFE+CBR on the dataset of PDB1075. The x-axis represents the feature index.

https://doi.org/10.1371/journal.pone.0185587.g006
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in Table 4. We can find that four mearsures evaluated by our method are significantly higher

than the evaluated mearsures of other methods. The ACC, MCC, SN and SP values of our

method are improved by 7.03%, 0.13, 2.63% and 4.73%, respectively, compared with other

methods.

Benchmark dataset—PDB594

We compare the performance of our method with several classifiers applied to Lou’s method

[2] on the benchmark dataset (PDB594), shown in Table 5. Our method achieve the highest

ACC of 86.2%, MCC of 0.724, SN of 87.2% and SP of 85.2%. The ACC, MCC, SN and SP val-

ues are improved by 5.7%, 0.114, 1.7% and 7.1%, respectively. This represents the effectiveness

of our method for identifying DNA-binding proteins.

Independent dataset—PDB186

For the purpose of analyzing the robustness, our method is compared to other methods on the

independent dateset (PDB186) (PDB1075 serves as training dataset and PDB186 is applied as

test dataset), shown in Table 6. Our method achieves 76.34% of ACC, 0.5566 of MCC, 92.5%

of SN and 60.22% of SP. Our approach still performs better than most of existing methods

with a certain creditability.

Computational time

The computational time of feature extraction and jackknife test evaluation on PDB1075 is

shown in Table 7. From the table, we can find that the computational time of jackknife test

Fig 7. The accuracy of different dimension features on PDB1075 dataset (Jackknife test evaluation).

https://doi.org/10.1371/journal.pone.0185587.g007
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Fig 8. The AUROC comparison of seven feature combinations through Jackknife cross-validation on PDB1075 dataset. *

means this feature combination has employed feature selection.

https://doi.org/10.1371/journal.pone.0185587.g008

Table 3. The performance of different features after feature selection on PDB1075 dataset (Jackknife test evaluation).

Feature ACC(%) MCC SN(%) SP(%)

NMBAC* 76.09 0.5218 76.19 76.00

PSSM-DCT* 74.60 0.4928 76.19 73.09

PSSM-DWT* 81.02 0.6213 82.86 79.27

NMBAC+PSSM-DCT* 81.40 0.6276 80.38 82.36

NMBAC+PSSM-DWT* 84.93 0.6987 85.52 84.36

PSSM-DWT+PSSM-DCT* 78.33 0.5664 78.29 78.36

NMBAC+PSSM-DWT+PSSM-DCT* 86.23 0.7250 87.43 85.09

* means this feature combination has employed feature selection.

https://doi.org/10.1371/journal.pone.0185587.t003
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Table 4. The performance of our method and other existingmethods on PDB1075 dataset (Jackknife test evaluation).

Methods ACC(%) MCC SN(%) SP(%)

IDNA-Prot|dis 77.30 0.54 79.40 75.27

PseDNA-Pro 76.55 0.53 79.61 73.63

IDNA-Prot 75.40 0.50 83.81 64.73

DNA-Prot 72.55 0.44 82.67 59.76

DNAbinder(dimension = 400) 73.58 0.47 66.47 80.36

DNAbinder(dimension = 21) 73.95 0.48 68.57 79.09

iDNAPro = PseAAC 76.56 0.53 75.62 77.45

Kmer1+ACC 75.23 0.50 76.76 73.76

Local-DPP(n = 3,λ = 1) 79.10 0.59 84.80 73.60

Local-DPP(n = 2,λ = 2) 79.20 0.59 84.00 74.50

Our method 86.23 0.73 87.43 85.09

https://doi.org/10.1371/journal.pone.0185587.t004

Table 5. The performance of our method and other existingmethods on PDB594 dataset (Jackknife
test evaluation).

Methods ACC(%) MCC SN(%) SP(%)

GNB-based-wrapper 80.5 0.610 82.8 78.1

DT-based-wrapper 69.2 0.384 68.4 70.0

LongR-based-wrapper 75.4 0.511 80.5 70.4

KNN-based-wrapper 74.6 0.492 72.1 77.1

SVM-Poly-based-wrapper 77.1 0.550 85.5 68.7

SVM-RBF-based-wrapper 80.1 0.605 84.8 75.4

Our method 86.2 0.724 87.2 85.2

https://doi.org/10.1371/journal.pone.0185587.t005

Table 6. The performance of our method and other existingmethods on PDB186 dataset.

Methods ACC(%) MCC SN(%) SP(%)

IDNA-Prot|dis 72.0 0.445 79.5 64.5

IDNA-Prot 67.2 0.344 67.7 66.7

DNA-Prot 61.8 0.240 69.9 53.8

DNAbinder 60.8 0.216 57.0 64.5

DNABIND 67.7 0.355 66.7 68.8

DNA-Threader 59.7 0.279 23.7 95.7

DBPPred 76.9 0.538 79.6 74.2

iDNAPro = PseAAC-EL 71.5 0.442 82.8 60.2

Kmer1+ACC 71.0 0.431 82.8 59.1

Local-DPP(n = 3,λ = 1) 79.0 0.625 92.5 65.6

Local-DPP(n = 2,λ = 2) 77.4 0.568 90.3 64.5

Our method 76.3 0.557 92.5 60.2

PDB1075 serves as training dataset and PDB186 is applied as test dataset.

https://doi.org/10.1371/journal.pone.0185587.t006
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evaluation which has used feature selection algorithm is significantly shorter than the jackknife

test evaluation without feature selection. This prove that the feature selection algorithm can

effectively reduces redundant features.

Conclusion

In this paper, we propose a novel feature extraction algorithm to construct a machine learning

method of DNA-binding protein prediction. We employ the feature extraction algorithm to

extract three feature vectors, namely NMBAC, PSSM-DWT and PSSM-DCT. It is meaningful

that we apply the DWT and DCT methods, which are rarely used in bioinformatics to obtain

PSSM-DWT and PSSM-DCT. Through these approaches, the effective information is

extracted from the PSSMmatrix and stored in the feature vectors. In Jackknife test, our

method can achieve excellent prediction performances, and our prediction performance has

obviously exceeded other existing methods after feature selection. On the independent dataset,

our approach still performs better than most of existing methods. Furthermore, we can find

that the PSSM-DWT feature makes the greatest contribution to the prediction performance.

The performance of our method proves the rationality of feature extraction algorithm and the

effectiveness of our method in predicting DNA-binding protein.
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Table 7. The computational time of feature extraction and jackknife test evaluation on PDB1075.

Feature FE(sec) JT(sec) JT-FS(sec)

NMBAC 3.09 2317.6 486.7

DCT 187.98 1357.5 352.0

DWT 299.75 16166.0 757.8

NMBAC+DCT+DWT 490.82 17520.0 1642.0

The values of column “FE” indicate the computational time of feature extraction on PDB1075. The values of

column “JT” indicate the computational time of jackknife test evaluation which has not used feature selection

algorithm on PDB1075. The values of column “JT-FS” indicate the computational time of jackknife test

evaluation which has used feature selection algorithm on PDB1075.

https://doi.org/10.1371/journal.pone.0185587.t007
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