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Abstract

Background: The presence of coliform bacteria is routinely assessed to establish the microbiological safety of water
supplies and raw or processed foods. Coliforms are a group of lactose-fermenting Enterobacteriaceae, which most
likely acquired the lacZ gene by horizontal transfer and therefore constitute a polyphyletic group. Among this group
of bacteria is Escherichia coli, the pathogen that is most frequently associated with foodborne disease outbreaks
and is often identified by β-glucuronidase enzymatic activity or by the redundant detection of uidA by PCR. Because a
significant fraction of essential E. coli genes are preserved throughout the bacterial kingdom, alternative oligonucleotide
primers for specific E. coli detection are not easily identified.

Results: In this manuscript, two strategies were used to design oligonucleotide primers with differing levels of
specificity for the simultaneous detection of total coliforms and E. coli by multiplex PCR. A consensus sequence of
lacZ and the orphan gene yaiO were chosen as targets for amplification, yielding 234 bp and 115 bp PCR products,
respectively.

Conclusions: The assay designed in this work demonstrated superior detection ability when tested with lab collection
and dairy isolated lactose-fermenting strains. While lacZ amplicons were found in a wide range of coliforms, yaiO
amplification was highly specific for E. coli. Additionally, yaiO detection is non-redundant with enzymatic methods.
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Background

Public health protection requires the prompt evaluation of

microorganisms in drinking water and in raw and

processed foods to prevent outbreaks of microbial

contamination. A broad variety of waterborne and

foodborne pathogens are present at extremely low

concentrations and are thus challenging to detect.

Whereas coliforms [1], particularly Escherichia coli [2, 3],

rarely cause sickness, these bacteria are abundant in

human and warm-blooded animal feces and are thus regu-

larly used as microbial indicators of the co-contaminanting

presence of enteropathogenic bacteria in water and foods

supplies [4].

The coliform group was vaguely defined from its incep-

tion [5], primarily by the ability of bacteria to ferment

lactose, and lacks taxonomical value. Coliform bacteria

are distributed among diverse genera, and different

authors use different inclusion criteria [6, 7]. Nevertheless,

coliforms are generally described as gram-negative,

rod-shaped Enterobacteriaceae that ferment lactose

producing acid and gas. Possession of the gene lacZ, which

codes for the β-galactosidase, is the most prominent feature

of the coliforms, whereas β-D-glucuronidase, encoded by

the gene uidA, is routinely used to specifically identify

E. coli. Unsurprisingly, because uidA and lacZ are

paralogs [8], wild type β-D-glucuronidase also has a

weak β-galactosidase activity, which is increased in some

mutant alleles [9, 10]. Although lactose fermentation can

be used to distinguish Shigella spp. from E. coli, several

Shigella strains are able to ferment lactose after cultivation.

This is explained by the presence of lacZ in specific

Shigella genomes but the absence of LacY permease

activity in culture [11].

Historically, the definition of coliforms has been

primarily based on the techniques used for their detection.

Traditional detection methods rely upon culturing the

samples on selective media and specific incubation
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conditions [7, 12]. This approach allows cell enumeration

but it is cumbersome, time consuming and fails to

score viable but nonculturable (VBNC) bacterial cells.

In Enterobacteriaceae gas formation from lactose is

dependent on formic hydrogenlyase and easily inhibited

[13]; thus, detection of coliforms by gas production

lacks significance. This method also lacks specificity, as

Aeromonas spp. can also ferment lactose [14]. Furthermore,

both β-galactosidase and β-D-glucuronidase are indu-

cible enzymes and their activity is affected by incuba-

tion temperature and the growth medium [1, 15, 16].

Consequently, both false-positive and false-negative bac-

teria interfere with evaluation. Several current commercial

tests involve specific enzymatic assays that utilize chromo-

genic or fluorogenic substrates for the improved detection

of coliforms [7, 17]. These methods are simple and rapid

but their specificity is compromised [18, 19]. Although pri-

marily limited to E. coli [20, 21], β-D-glucuronidase activity

is found in other bacteria such as Flavobacteria, and it is

frequent in Yersinia, Salmonella, and Shigella [3, 22]. Con-

versely, a high proportion of β-D-glucuronidase-negative

E. coli strains has been reported [23, 24].

Exponential amplification of specific DNA sequences by

PCR greatly increases the probability of detecting low

concentrations of target organisms and reduces the

time required to obtain results. While PCR cannot

distinguish live from dead cells, it permits the detec-

tion of nonculturable cells. Moreover, PCR may yield

positive results with strains that, despite bearing a gene

sequence, do not express the corresponding enzyme

and thus lack the corresponding enzymatic activity

[24]. Multiplex PCR (mPCR) allows for the simultaneous

evaluation of several strains and the detection of internal

controls. Two sets of primers pairs, designed by Bej et al.

[25, 26] for the amplification of lacZ and uidA genes, have

been used to test for total coliforms and E. coli in clinical

isolates [27] and in the upper gut contents of Lindow Man

[28]. An mPCR assay was developed to target uidA gene

for the common detection of E. coli and Shigella in milk

[29]. Fricker et al. [30] analyzed water samples and found

that only 70 % of the 324 coliform strains were correctly

identified by these lacZ primers, whereas five non-E. coli

coliforms were identified by uidA primers. These results

indicate that developing alternative primer sets might be

required for improved detection.

In this paper, we report a new strategy for differential

bacterial identification by multiplex PCR. We wanted

to combine, in a single assay, wide-range and high-

specificity detection of both total coliforms and E.

coli, respectively. To overcome the variability of lacZ

sequences, primer sets were targeted to the consensus

sequence of an alignment. An orphan gene, yaiO, was

selected as the target for the specific identification of

E. coli. The resulting amplicons, both in silico and in vitro,

indicate that these probes are more efficient than those

previously described.

Results

yaiO represents an alternative to uidA for E. coli

identification in silico

The gene yaiO [EcoGene:EG13297], selected as an alterna-

tive to uid amplicons, belongs to the E. coli orphan ORFs

[31]. Nonetheless, yaiO transcribes in both the exponential

and stationary growth phases [32], encodes a protein

originally postulated by a bioinformatic prediction [33]

and was later found to be expressed and localized in the

outer membrane of E. coli [34]. These results indicate that

yaiO corresponds to a bona fide gene and hence it might

constitute an optimal target for specific E. coli identification

by PCR detection. With this goal in mind, the oligonucleo-

tide primer pair yaiOF and yaiOR was design to produce a

115 bp amplicon (Table 1).

The Primer-BLAST tool allows to check the specificity

of pre-existing primers by combining local and global

alignment algorithms [35]. Therefore, we used it to

compare the in silico PCR amplification of the uidA

primers designed by Bej et al. [26] (Table 1) with the

yaiO primer set using Enterobacteria as the target

genomes. The resulting hits were grouped by species or

genus (Table 2). Unsurprisingly, because the Shigella and

E. coli lineages are very closely related [11, 36], Shigella

spp. hits were obtained for both primer sets. However, the

Table 1 Oligonucleotide primers used for multiplex PCR amplification

Primer set Source Sequence Product size (bp)

lacZB Bej et al., 1990 F: 5′ ATGAAAGCTGGCTACAGGAAGGCC 3′ 876

R: 5′ CACCATGCCGTGGGTTTCAATATT 3′

lacZ3 This work F: 5′ TTGAAAATGGTCTGCTGCTG 3′ 234

R: 5′ TATTGGCTTCATCCACCACA 3′

uidA Bej et al., 1991 F: 5′ TGGTAATTACCGACGAAAACGGC 3′ 162

R: 5′ ACGCGTGGTTACAGTCTTGCG 3′

yaiO This work F: 5′ TGATTTCCGTGCGTCTGAATG 3′ 115

R: 5′ ATGCTGCCGTAGCGTGTTTC 3′
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specificity of the yaiO amplification was higher 95 % of

the positive hits (83 of 87) for yaiO primers corresponded

to E. coli, whereas only 87.5 % of the hits (91 of 104)

represented E. coli when the query primers were uidA.

Ten non-E. coli strains rendered as hits with uidA primers

alone, one with yaiO, and three were detected by both

primer sets. These results suggest that although both sets

are suitable for E. coli detection, yaiO might represent

indeed a superior target.

lacZ alignment and primer design

By performing a comparative analysis of an assortment

of lacZ sequences and developing new PCR primers, it

may be possible to improve the accuracy of coliform

detection. The DNA sequence of the lacZ gene from the

E. coli strain MG1655 [EcoGene:EG10527] was used to

perform a BLASTn search. From the resulting hits, a

total of 195 sequences (with a minimum identity of

64 %) were selected, and a lacZ consensus sequence was

obtained running ClustalW [37] software. Considering

the ambiguous definition of the coliform group, we did

not restrict the sequences to historical coliforms but

incorporated sequences from other enterobacteria (Fig. 1a).

The statistical significance of the alignments was evaluated

by comparing the pairwise identity (%) and and the bit-

scores of the selected BLAST hits, revealing three clusters

of sequences. Although most E. coli sequences showed

high identity (above 95 %), some possessed high bit-scores

(above 5000), showing a linear correlation between identity

and bit-score (Fig. 1a, top right), whereas others depict

lower values (below 2000). These groups correspond to

“full” and “incomplete” β-galactosidase genes, respectively.

Strikingly, the bulk of the sequences from other lineages

forms a third group with lower identity (below 85 %) and

bit-score values. Although the lack of lactose fermentation

is commonly used to distinguish Shigellae from E. coli

[11, 38], some Shigella strains harbor the gene lacZ

(see Background). In the analysis, BLAST hits were

obtained for several Shigella lineages, but the hits found

for Shigella dysenteriae and Shigella sonnei coincide with

the gene ebgA, which is paralogous with lacZ. These

results indicate that designing PCR primers by using a

lacZ consensus sequence as a target might widen the

spectrum of coliform detection. Because similar sized

amplicons are expected to work better on multiplex

PCR [39], we designed the primer set to produce an

amplicon that was similar in size to but distinguishable

from the yaiO amplicon (Table 1). Therefore, lacZ3

oligonucleotide primers (Table 1) were designed to

amplify a highly conserved zone of lacZ, resulting in a

234 bp PCR product (Fig. 1b).

Specificity of E. coli and coliform detection using yaiO,

uidA and lacZ primer sets for multiplex PCR

The performance of two pairs of oligonucleotide

primers, named here lacZB-uidA, developed by Bej et al.

[25, 26] for coliform detection by multiplex PCR, was

compared with the newly designed lacZ3-yaiO primers

(Table 3). To this end, in vitro multiplex PCR amplification

and in silico PCR simulation were conducted (Materials &

Methods). In silico evaluation is utilized to elucidate the

source of false positive and false negative results obtained

with in vitro experiments [40]. PCR reactions were carried

out with culture collection and dairy isolated bacterial

strains (Table 3) that had undergone total DNA extraction.

Optimal thermocycling conditions with lacZ3-yaiO

primers were determined by varying both the annealing

temperature and extension time until best results

were obtained (materials & methods). Amplified DNA

was evaluated for the expected products using agarose

electrophoresis (Fig. 2a) and compared with in silico

simulations (Fig. 2b). Simultaneous amplifications with

lacZB-uidA were also performed following the method

described by Tantawiwat et al. [27]. Although described as

an optimized protocol, we did not note any improvements

using such thermocycling setup (data not shown).

Overall, the lacZ3 primers showed superior identification

efficiency for E. coli and coliform bacteria. In agreement

with the in silico results (Fig. 2), most E. coli samples

generated the expected PCR product with any lacZ primer

Table 2 Comparison of expected uidA and yaiO PCR products by Primer-BLAST analysis

Organism Total number of hits yaiO vs. uidA

yaiO + uidA + yaiO + uidA - yaiO + uidA+ yaiO – uidA +

Escherichia coli 83 91 31 52 39

Escherichia sp. 1 2 1 2

Citrobacter rodentium 1 1

Shigella boydii 1 2 1 1

Shigella flexneri 6 6

Shigella sonnei 2 2 2

87 104

The number of potential target sequences yielding positive in silico PCR amplification (N = 136) with yaiO or uidA primers (Table 1) are grouped by species or

genus. The genomes that produce single and double amplicons are compared on the right
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set, although the lacZB band was very weak or repeatability

was compromised (50 % or less amplification success)

in several strains, whereas the lacZ3 primers robustly

identified all of the E. coli strains evaluated. Interestingly,

additional nonspecific bands were exclusively detected

when amplification was performed with lacZB-uidA and

the target was not E. coli. Furthermore, although lacZB did

not produce the expected amplicon for several coliform

lineages (Citrobacter youngae, Enterobacter aerogenes,

Enterobacter cloacae, Salmonella typhymurium, Shigella

spp. and Yersinia enterocolitica), amplification with lacZ3

resulted in the expected 234 bp band with all samples

except Shigella boydii and Sh. flexneri.

Discussion

Accurate molecular detection of E. coli is critical for the

food industry because this bacterium is considered a pri-

mary faecal indicator. However, though it is widely assayed,

neither β-D-glucuronidase activity nor uidA amplification

unequivocally identify E. coli (see Background). Therefore,

Fig. 1 Alignment of lacZ sequences and designing of lacZ3 oligonucleotide primers. a Clusters of DNA sequences hits selected after Blast using
lacZ from E. coli K-12 strain MG1655 as the query sequence. 195 hits, with a minimum pairwise identity of 64 % with the query sequence, from
different enterobacteria were aligned. The total number of sequences corresponding to each lineage is shown on the right in brackets. The area
of each dot correlates with the number of hits from each lineage with the same identity and bit-score. b The consensus sequence of a lacZ
fragment (derived from sequences outlined in panel a) was used to design LacZ3-F and LacZ3-R oligonucleotide primers. Consensus and primer
sequences were obtained using ClustalW and Primer 3 software, respectively. The degree of conservation of each position in the logo sequence
is shown by the relative height of each base. The lacZ3R primer binding site overlaps with 3’ end of the lacZB (Bej et al., [25, 26]) primer
(indicated by a pink arrow)
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we wanted to design a PCR primer set non-redundant with

the target of the enzymatic tests, i.e., an alternative to uid

amplicons. To this end, we chose the gene yaiO,

which exhibits no significant similarity to any other

real or hypothetical gene [31]. Although orphan genes

show a narrow distribution among E. coli genomes,

with most of them being found in only a single genome

[41], yaiO shows a wide within-species distribution.

Essential orphan genes would be ideal targets for the

highly specific identification of all E. coli serotypes, but

comparative genomics has revealed a clear conservation

tendency of essential E. coli genes throughout the bacterial

kingdom [31]. Consequently, neither uidA nor yaiO are

essential. Nonetheless, the specificity of E. coli identifica-

tion was higher with yaiO primers (Fig. 2b). In agreement

with our results, an evaluation of putative orthologs of E.

coli genes revealed that yaiO depicts a lower evolutionary

retention index than does uidA [31], suggesting lower

conservation and higher specificity of yaiO. Although

Bej et al. [26] reported higher specificity with uidA

primers than determined in our study, Fricker et al.

[30] found false-positive uidA amplification using

both H. alvei and Serratia odorifera. Several coliform

bacteria (Citrobacter freundii, Ent. aerogenes, Ent. cloacae,

Klebsiella pneumoniae and Sh. flexneri) produced the

amplicon expected for E. coli, (i.e. false positives) exclusively

with uidA primers, whereas others yielded amplicons of

unexpected sizes with uidA (S. thypimurium) or yaiO

(Serratia marcescens and Yersinia pestis). Finally, DNA

from H. alvei, Sh. boydii or Sh. sonnei generated

amplicons with both yaiO and uidA primers. Though

it is considered an orphan gene, yaiO appears in

some Shigella strains. However, uidA is present in the

three Shigella species analyzed (Table 2 and Fig. 2b).

This is not surprising because genetic variation within

the four species of Shigella is encompassed within the

range found in natural populations of E. coli. In fact,

the Shigella genus has been proposed to have evolved

from multiple E. coli strains after the divergence of

the O157 and K12 lineages [42]. Our results support that

the Shigellae should more aptly be classified as pathogenic

sublineages of E. coli that acquired virulence factors

by lateral gene transfer [43].

E. coli serogroup O157:H7 is the pathogen that is most

commonly associated with foodborne disease outbreaks.

However, O104:H4 is an emerging strain that was identified

in the 2011 German epidemic [44] and could become

more prevalent in the future. A +93 uidA single nucleo-

tide polymorphism has been used to characterize [45, 46]

and differentiate the O157 serogroup from O104:H4 [44].

Additionally, two frameshift mutations in the uidA

structural gene account for the absence of glucuronidase

activity in O157:H7 isolates [47]. Interestingly, these strains

could also be differentiated by yaiO amplification. In

agreement with the Primer-BLAST results and the

absence of yaiO (data not shown), the O157:H7 strains

did not render any PCR product with yaiO primers

(Fig. 2b). Conversely, the O104:H4 strains harbor yaiO

and gave positive amplification on the Primer-BLAST

analysis with yaiO primers.

Detecting coliforms for food safety or epidemiological

purposes requires an understanding of the manner in

which genes are acquired and evolved because these

processes may allow for the colonization of new niches

and adaptation to their hosts and may possibly lead to

speciation events. The lactose operon was likely acquired

via horizontal transfer by unrelated bacterial lineages [48],

thus hindering the establishment of alternative targets for

coliform detection. Some lactose-negative strains such as

Sh. boydii and Sh. flexneri lack lacZ but incorporate the

Table 3 Bacterial strains used in this work

Organism Sourcea

Escherichia coli K12 (MG1655) This Lab (Molina et al. [52])

Escherichia coli B (Luria) CECT4201

Escherichia coli B/r CECT105

Escherichia coli C (Sinsheimer) CECT4622

Escherichia coli O157:H7 CECT4782

Escherichia coli O157:H7 CECT5947

Escherichia coli W (Waskman) CECT99

Escherichia coli W (Stoke) CECT727

Escherichia coli RT1 Torta del Casar cheese

Escherichia coli RT381 Torta del Casar cheese

Escherichia coli RT396 Torta del Casar cheese

Escherichia coli RT472 Torta del Casar cheese

Citrobacter freundii CECT7464

Citrobacter youngae CECT5335

Enterobacter aerogenes CECT684

Enterobacter cloacae (RT102) Ibores cheese

Enterobacter intermedious(RT38) Ibores cheese

Hafnia alvei CECT 158

Klebsiella oxytoca (RT30) Ibores cheese

Klebsiella pneumoniae ssp. pneumoniae CECT143

Salmonella typhimurium CECT722

Serratia marcescens spp. marcescens CECT846

Shigella boydii CECT583

Shigella flexneri 2a CECT585

Shigella flexneri 2b CECT4804

Shigella sonnei CECT4887

Yersinia enterocolitica ssp.enterocolitica CECT4315
aCECT = Colección Española de Cultivos Tipo, Burjasot, Valencia, Spain

Torta del Casar is made from raw milk of sheep from the Merino and

Entrefino breeds

Ibores cheese is made from whole, raw milk from goats of the Serrana,

Verata and Retinta breeds and their crossbreeds
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paralogous gene ebgA [11], which explains the difference

between the positive BLAST hits (Fig. 1a) and the negative

or inconsistent amplification (Fig. 2b). Conversely, Sh.

sonnei, which is considered lactose negative due to

inactivation of the permease LacY [49, 50], harbors the

lacZ gene, as confirmed by amplification with lacZ3

(Fig. 2b). Similarly, S. typhimurium and Hafnia alvei, in

which lacZ has become a pseudogene, were identified by

lacZ3. Likewise, some lactose-positive Salmonella strains,

despite being considered non-coliforms, have been found

Fig. 2 Comparison of lacZ3-yaiO and lacZB-uidA primer sets for E. coli and coliform identification. a Agarose gels (1.5 %) electrophoresis showing
representative multiplex PCR amplified products from bacterial DNA. Lanes: 1, Klebsiella pneumoniae; 2, Klebsiella oxytoca; 3,Enterobacter aerogenes;
4, Enterobacter intermedius; 5, Enterobacter cloacae; 6, Shigella sonnei; 7, Serratia marcenses; 8, Yersinia enterocolitica; 9, Salmonella typhymurium;

10, Citrobacter youngae; 11; Citrobacter freundii; 12, Hafnia alvei; M, molecular weight marker (1Kb Plus DNA ladder); 13, Escherichia coli K-12; 14,
E. coli B; 15, E. coli B/r; 16, E. coli C; 17, E. coli W (Waskman); 18, E. coli W (Stoke); 19, E. coli RT1. The oligonucleotide primer pairs used are indicated
on the left or below each picture. For size comparison, the locations of 100 and 200 bp bands are shown when the marker is omitted. b In vitro

and in silico comparison of lacZ3-yaiO and lacZB-uidA multiplex PCR amplicons. In silico analysis (see Methods) is indicated by color shading.
Cyan: positive amplification. Light red: no amplification. White: Not tested. Each PCR reaction was carried out four times. In vitro PCR products
are shown by signs indicating the percentage of positive amplifications obtained. “+”; “+ − “; and “-“ represent 100 %, 50 % and 0 % positive
results, respectively. No other values, (i.e., neither 75 % nor 25 % positive amplifications) were obtained. “≠“ indicates a different sized PCR product.
c The 3’ end of the lacZB-R primer binds to a zone of low conservation. From top to bottom (arbitrary scale), each panel depicts the binding sites
of the lacZ primers, the consensus sequence of lacZ, its coverage considering all the sequences aligned, sequence logo, and % identity
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[51]. All behavioral differences between the lacZ3 and

lacZB primers pairs could be ascribed to the variability of

the lacZ sequence, notably at the 3’ end of the forward

lacZB primer (relevant for the extension of the PCR),

which binds to a site of low conservation in the consensus

sequence of lacZ (Fig. 2c). On the contrary, the binding

sites of both lacZ3 primers are highly conserved (Fig. 1b).

Additionally, the homology between lacZ and uidA

sequences and/or the size of the amplicons [39] might

contribute to diminish the performance of lacZB-uidA.

Conclusion

Horizontal gene transfer entails the high evolvability of

bacterial genomes but hampers the specific detection of

indicators such as coliforms. However, when the food

industry involves complex bacterial activity, such as

cheese production, the accuracy of the bacterial detection is

crucial. Amplification of DNA sequences by PCR allows

the detection of nonculturable or dead cells. The primers

designed in this work, which target a conserved re-

gion of lacZ and the orphan gene yaiO, demonstrated

superior detection ability when tested with laboratory

collection and lactose-fermenting strains isolated from

dairy samples.

Methods

Bacterial strains, growth conditions and DNA extraction

A total of 24 bacterial strains were used in this work

(Table 3). Most reference strains were obtained from the

CECT (Colección Española de Cultivos Tipo, Valencia,

Spain). The E. coli K-12 strain belongs to our lab collec-

tion [52] (Molina et al., [52]). The rest of the strains

were isolated from raw milk cheese corresponding to

Torta del Casar and Queso Ibores Protected Designation

of Origins. Samples were taken from milk, curd and

cheese at different ripening times, and the isolates were

identified (data not shown) using the EnteroPluri-Test

system (Liofilchem, Roseto degli Abruzzi, Teramo,

Italy), the Biolog Microbial ID system (Biolog, Inc.,

Hayward, CA, USA), and one dimensional sodium

dodecyl sulphate-polyacrylamyde gel electrophoresis

(SDS-PAGE) of whole-cell protein [53]. All E. coli strains

were grown at 37 °C in Lysogeny Broth medium medium,

whereas other strains were cultured as described else-

where (http://www.straininfo.net and http://www.cect.org/

bacterias.php). Isolation of DNA from bacterial cells was

performed using STE buffer (100 mM NaCl, 10 mM Tris

buffer, pH 7.0, 1 mM EDTA) as described elsewhere

[54], followed by ethanol precipitation. The concen-

tration and quality of the DNA were determined by a

spectrophotometer NanoDrop. 2000c (Thermo Fisher

Scientific, Waltham, MA, USA). The DNA preparations

were stored at −20 °C until use.

Primer development

All of the oligonucleotides primers used in this study

were synthesized by IDT (Integrated DNA Technologies,

San Diego, CA, USA) and are listed in Table 1. Newly

designed primer sequences were obtained using the Primer3

web interface [55, 56]. The DNA sequences of yaiO and

lacZ genes from E. coli strain MG1655 were used to design

yaiO primer pairs and as queries to perform a BLASTn

analysis [57] respectively. Of the BLAST hits obtained, 195

sequences corresponding to enterobacteria were selected,

and a lacZ consensus sequence was then determined using

ClustalW [37]. The conserved regions of lacZ were used as

template to design lacZ3 primers.

In silico specificity test

The putative amplicons that could be generated by the

yaiO and uidA primers were evaluated using the Primer-

BLAST tool [35], restricting the target templates to Entero-

bacteriaceae. Low primer specificity stringency was set, and

only targets with nine or more mismatches were ignored.

When available, full genome sequences of the bacterial

strains shown in Table 3 were downloaded from the

NCBI servers. Primer3 and MPrimer [58] were used to

evaluate the in silico amplification with the oligonucleo-

tide primers shown in Table 1.

PCR optimization and conditions

All PCRs were adjusted to 50 μl with RNase-free water

and contained 1 μl of 10 mM dNTP mix, 125 nM of each

required oligonucleotide primer, 1.25 U of DNA polymer-

ase (iTaq, Bio-Rad), 30 ng of template DNA and 1X PCR

reaction buffer (20 mM Tris–HCl pH 8.4, 50 mM KCl).

To optimize the multiplex amplification, the concentration

of MgCl2 and the annealing and extension temperatures

were varied (data not shown). The best results were

achieved under the following conditions: 1.5 mM MgCl2,

initial denaturation at 95 °C for 3 min, followed by 35 cycles

of denaturation at 95 °C for 30 s, primer annealing at 58 °C

for 30 s, primer extension at 72 °C for 1 min, and a final

extension at 72 °C for 10 min. In every assay, a buffer con-

trol, to which no DNA template was added, was used as a

negative control. To evaluate its reproducibility, all multi-

plex PCRs were performed four times, twice on an iCycler

iQ system (Bio-Rad, Hercules, CA, USA) and twice with a

Veriti-96 Well Thermal Cycler (Applied Biosystems,

Carlsbad, CA, USA). Additionally, amplifications with

lacZB-uidA were carried out as described elsewhere [27].

Briefly, the thermocycling conditions were as follows: ini-

tial denaturation at 94 °C for 10 min, followed by 44 cycles

of denaturation at 94 °C for 1 min, primer annealing at

various temperatures (2 cycles at 62 °C, 2 cycles at 61 °C,

2 cycles at 60 °C, 2 cycles at 59 °C and 36 cycles at 58 °C)

for 1 min, primer extension at 72 °C for 1 min, and a final

extension at 72 °C for 10 min.
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Detection of amplified DNA

Twenty μl of the PCR amplified product were separated

by electrophoresis on 1.5 % agarose gel in 1X TAE buffer

(40 mM Tris-base, 20 mM acetic acid, and 1 mM EDTA

pH 8.0). The gel was stained with ethidium bromide

(0.5 μg/ml) or 1X SYBR Green (Life Technologies), ana-

lyzed using a GelDoc XR (Bio-Rad, Hercules, CA, USA)

transilluminator and photographed with a digital camera

using Quantity One 4.6.9. The 1Kb Plus DNA ladder

(Life Technologies Co., Carlsbad, CA, USA) was used as

a molecular marker to indicate the size of the amplicons.
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