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The sine wave test of an ADC means to excite the ADC with a pure sine wave, look for the sine wave 

which best fits the output in least squares sense, and analyze the difference. This is described in the IEEE 

standards 1241-2000 and 1057-1994. 

Least squares is the ‘best’ fitting method most of us can imagine, and it yields very good results indeed. 

Its known properties are achieved when the error (the deviation of the samples from the true sine wave) is 

random, white (the error samples are all independent), with zero mean Gaussian distribution. Then the LS 

fit coincides with the maximum likelihood estimate of the parameters. 

However, in sine wave testing of ADC’s these assumptions are far from being true. The quantization 

error is partly deterministic, and the sample values are strongly interdependent. For sine waves covering 

less than, say, 20 quantum levels, this makes the sine wave fit worse than expected, and since small 

changes in the sine wave affect the residuals significantly, especially close to the peaks, ADC error 

analysis may become misleading. Processing of the residuals (e.g. the calculation of the effective number 

of bits, ENOB) can exhibit serious errors. 

This paper describes this phenomenon, analyses its consequences, and suggests modified processing of 

samples and residuals to reduce the errors to negligible level. 
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I. INTRODUCTION 

Sine wave testing of ADC’s is perhaps the most popular method for the evaluation of ADC 

converters. The standard IEEE 1241-2000 strongly builds on this: the three-parameter and four-

parameter methods perform sine wave fitting, and continue by the analysis of the residual errors. 

Theoretically, when we apply a sine wave, we can know its parameters (amplitude, frequency, 

phase, and in addition, DC offset), therefore we can determine the properties of the ADC from 

these and the output of the device. However, it is impractical to make use of the parameters 

which are usually not known with sufficient accuracy. Therefore, we would rather determine 

these from the ADC output data. Since these data are not only quantized by the ideal ADC 

characteristic, but also prone to (usually small) ADC errors, we fit them with a sine wave, by 

adjusting its parameters. The fit is performed by setting the parameters to minimize a global 

measure of the level of deviations of the output data from the corresponding sine wave samples. 

In the standard, the sum of the squares of the errors is minimized, that is, a least squares (LS) fit 

is performed. 
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If the frequency is known, the model is linear in the parameters, so linear least squares is 

performed (three-parameter method), while if the frequency is unknown, nonlinear least squares 

is executed (four-parameter method). 
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Least squares is one of the most powerful methods since Gauss invented it. The fit has very 

nice properties, especially when the error sequence (the difference between the samples and the 

model) is random, zero-mean Gaussian and white. In this case the LS fit coincides with the 

maximum likelihood estimate of the parameters, unbiased and minimum variance for the linear 

LS case, and with asymptotic unbiasedness, and asymptotically minimum variance for the 

general case. 

The LS fit exists and is reasonable even in cases when the above assumptions concerning the 

error sequence are not met, but the properties of the estimates of the parameters may not be as 

well behaved as above. In the testing of ADC’s, this is definitely the case: the ideal quantization 

error and the ADC nonlinearity error often dominate over observation noise, therefore they will 

also dominate the properties of the results. LS fitting does still work, as it usually works, 

especially because the error values are more or less scattered, but since the error is 

deterministically related to the input and to the transfer characteristic of the ADC, the result is 

prone to possible strange errors. Maybe the most apparent one is that the calculated effective 

number of bits (ENOB) depends on the amplitude of the sine wave and the dc value, and the 

calculated ENOB can change by about 0.1 for small amplitudes (below 15-20 quantum levels) 

[7]. This is not a very large error, and only appears when random noise is small compared to 

quantization errors. This is why it was not treated in the standard until now, but since we know 

about it, and it can be handled by proper means, it makes sense to deal with it, by slight 

modification of the algorithm. 

The purpose of this paper is to analyze the causes of the error, explore the possibilities of 

correction, and furthermore suggest an improvement of the standard. 
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II. BACKGROUND 

In the IEEE standards [1-2] the above problem is not mentioned. These simply assume that the 

LS fit works well. Practitioners have already observed the phenomenon of the uncertainty in the 

determination of the ENOB, or of the equivalent resolution [7], but up to now no systematic 

treatment was suggested. 

A possibility would be to treat the errors as random errors, and use an improved model of their 

distribution to develop a maximum likelihood estimate of the sine wave parameters and of the 

ENOB. Since numerical software is available for minimizing different cost functions [4], this 

seems to be attractive.  However, since the exact properties of the nonlinear errors and the noise 

levels are unknown beforehand, this is not a viable approach. 

An attempt to solve the problem was presented in [6], utilizing the special shape of the ideal 

quantization error of the converted sine wave, but it assumes ideal (error-free) ADC 

characteristics and no noise, so it cannot be applied in practical tests.  

An improvement to the method in the standard was presented in [7], but the improved 

approach, which corrects for the noise-free case, proved inferior to the IEEE standard method in 

the presence of substantial noise, so it may not be automatically applied. 

We need a robust algorithm which works also on true ADC data, both when the noise 

dominates, and when the quantization error dominates. We will develop such an algorithm below. 

III. SOURCES OF THE ERRORS 

As described above, the calculation of the ENOB consists of two steps: 

• fitting of the sine wave to the samples, 

• calculation of the RMS value of the residuals. 
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The error in the determination of the ENOB depends on both steps, therefore we will analyze 

both. 

A. Imprecise sine wave fit 

In order to understand what happens, let us plot the quantization error of a sine wave in an 

ideal quantizer as shown in Figure 1. We use a simple, coarse quantization case which illustrates 

the problems. 
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Fig. 1  Quantization of a sine wave (amplitude: 2.5∆) in an ideal quantizer, with the dc offset is zero, 

and ∆ = 1. 

We can observe that the quantization error is more or less sawtooth-like (that is, uniformly 

distributed) at most places, except at the peaks. There it is almost constant, as the sine wave is 

also almost constant, and the level of the almost-constant error depends on the relation of the sine 

wave amplitude to the closest quantization level. 
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According to the noise model of quantization, in the ideal case the probability density function 

(PDF) of the error should be uniform. However, as it can be seen from the PDF shown in Figure 

2, it is clearly not uniform: it has strong peaks, depending on the amplitude and the dc offset.  
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Fig. 2  Probability density function of a sinusoidal signal (amplitude: 3∆), and that of the quantization 

error: n = Q(x) - x. The dc offset is dc = 0.2. 

The LS fit tries to minimize the sum of the squares of the error samples. If there are dominant 

terms which can be reduced by modifying the DC level or the sine wave amplitude, the LS fit 

tends to decrease these terms, introducing a bias into the parameter estimates. The samples close 

to the peaks of the sine wave form such terms. For example, in Fig. 1 the corresponding 

quantized values are smaller than the input samples. That is, a slight decrease in the sine wave 

amplitude would bring the model closer to several quantized samples. Therefore, when this is the 

case, the estimated sine wave amplitude will be smaller than the true value (Fig. 3). 
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Fig. 3  Fitted sine wave (dotted line) and residuals in an ideal quantizer. ∆ = 1. 

A similar, but amplitude-increasing case is when these samples are modified upwards by 

quantization. What is worse, the side bins maybe only partially filled with samples, as in Figure 2 

(the amplitudes of the sine wave do not reach the sides of the largest and smallest bins, 

respectively), which makes their effect unpredictable. 

How the sine wave peak relates to the quantization levels cannot be controlled. Thus these 

phenomena can occur at any time. Moreover, since these phenomena also depend on the dc level, 

their influence is even more uncontrollable. 

In the following discussion, until we specifically mention otherwise, all simulations are done 

with an ideal, noiseless quantizer. This approach allows the investigation of the special case 

which, because of the deterministic pattern in the quantization errors, is most prone to the errors 

in question. The amplitude of the sine wave is changed in [13,14], the dc offset in [0,1].  

When developing the modification, we will tacitly pay attention not to destroy the noisy case. 

Later, we will double-check that we have caused no extra problem in the noisy/nonlinear cases. 
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Figure 4 illustrates the estimation of the amplitude as a function of the amplitude itself and of 

the dc level. We see that the error in the amplitude estimation can take any value between 

[-0.1,0.046]. 
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Fig. 4  Estimated value of the amplitude, as a function of the true value of the amplitude and of the dc. 

The deviation is between [-0.1,0.046]. 
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Correction of this error would be possible if we could make use of the pattern of the error: 

however, since ADC nonlinearities and noise destroy the nice pattern, this is impossible. It is, 

however, possible to identify the samples which cause the problem and eliminate them. The 

difficulty is that in practical cases, the true input signal is not known. Therefore we cannot rely on 

its input amplitude. However, as we are going to see, the output samples of the ADC provide 

enough information concerning this. 

B. Suggested Algorithm 

We want to eliminate the samples falling in the partly filled bins (see Fig. 2), but we have no 

direct information about the distribution in the bins. We only have the histogram values (the 

numbers of samples in each bin). Fortunately, we know that in the histogram of a sine wave the 

histogram values increase towards each side. Therefore, the maximum values of the histogram at 

the two sides  

• either represent the bins which contain the sine wave peaks and are only partly filled;  

• or, if the quantization level is close to the sine wave peak, mark the bins just below the 

partly filled bins.  

Therefore, by looking for the maxima in the histogram (or, more directly, looking for the most 

often occurring ADC output values close to the two extremes) we can determine the intervals of 

the ADC output samples, which may contain samples corresponding to the ‘pathological’ bins, 

and exclude them from further calculations. 

Let us thus preprocess the ADC output values themselves before any kind of fit, by 

eliminating the most often occurring positive value and the values above it, and, similarly, by 

eliminating the most often occurring negative value and the values below it as shown in Figure 5. 

By this method, we will certainly eliminate the pathological part of the sine wave plus, perhaps 
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one more bin. This procedure will not significantly deteriorate the estimated parameters of the 

sine wave as shown in Figure 6. Since Eq. (1) just fits the available samples and does not utilize 

the continuous nature of the record, we can simply drop the undesirable samples and the 

corresponding  tn  values from the formula. This principle can be also explained as follows: the 

samples, we rely upon (see Fig. 5), contain sufficient information concerning the peak of the sine 

wave, so that eliminating the ‘pathological’ samples does not significantly degrade the fit. 
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Fig. 5  Elimination of the samples corresponding to ‘pathological’ bins 



 11

13
13.2

13.4
13.6

13.8
14

0

0.5

1
12.5

13

13.5

14

14.5

Amplitude

Estimated Amplitude

dc
 

13
13.2

13.4
13.6

13.8
14

0

0.5

1
−0.1

−0.05

0

0.05

0.1

Amplitude

Error of Estimated Amplitude

dc
 

Fig. 6  Estimated value of the amplitude after elimination of the ‘pathological’ bins, as a function of the 

true values of the sine wave amplitude and of the dc. The deviation is between [-0.045,-0.033], 

significantly decreased by the modification 

By this manipulation, the amplitude error significantly decreases. It is interesting to observe 

that by elimination of the ‘pathological’ bins, the fit yields amplitudes which are much more 

accurate than without this manipulation, but are systematically underestimated. The reason is 
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simple: since the sine wave is concave at the positive wave half, and convex at the negative wave 

half, we have more values rounded towards zero than ones rounded in the ‘outside’ direction. The 

cost function therefore overemphasizes the former ones, and minimization decreases them a little 

by setting the amplitude somewhat smaller than the ideal value. This can also be compensated 

for, but in the case of the ENOB we will see that we need not further improve the amplitude 

estimate. 

We should realize, however, that the above described manipulation is only necessary when the 

sine wave covers a few quantization intervals only. When the sine wave is larger, the distorting 

effect becomes negligible. 

C. Imprecise ENOB calculation 

The definition of the effective number of bits can be given in several forms. Perhaps the most 

useful is 

 

⎟
⎠

⎞
⎜
⎝

⎛
∆

−=
12/

log2

RMS
BENOB

 , (2) 

where B is the nominal number of bits, RMS is the measured rms value of the residuals, and ∆ is 

the nominal quantum size (LSB size) of the ADC. For an ideal noiseless quantizer, ENOB should 

be equal to  B. 

RMS is nothing else than the minimized cost function in Eq. (1), divided by the number of 

samples M. Usually ENOB<B, since the noise increases the RMS, decreasing ENOB by this. 

However, when the measured RMS is smaller than 12/∆ , the measured ENOB is larger. This is 

the case for an ideal, noiseless quantizer when the deterministic pattern of the error samples 

enable a ‘too good’ fit by selecting smaller amplitude (see Figure 7). 
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Fig. 7  ENOB value calculated according to the standards as a function of the true values of the sine 

wave amplitude and of the dc. Limits of the ENOB values: [4.92,5. 07] 

We know from earlier results [7] that, especially for small amplitudes, the calculated ENOB 

can be erroneous. For example, for a 5-bit quantizer this value significantly depends on the 

amplitude and on the dc value. 

The cause is again the effect of the ‘pathological’ bins. The asymmetrically filled-in bin(s) may 

cause serious deviations. The remedy is the same as above: eliminate the undesired bins. 

As we observe in Fig. 8, when eliminating the ‘pathological’ bins, the ENOB is precisely 

measured. With no quantization error or noise, it is somewhat larger than the theoretical value – 

this is because of the somewhat small estimated sine wave amplitude. However, the observable 

deviation is already negligible. 
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Fig. 8  ENOB value as a function of the true value of the amplitude and of the dc, after elimination of 

the ‘pathological’ bins. Limits: [5.001,5.003] 

Knowing the cause of the problem, and having the remedy, we can pose the question: By 

which mechanism is the calculated value of the  ENOB most influenced: by the improper setting 

of the amplitude, or by the improper estimation of the rms. Therefore, a last calculation has been 
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executed: a (perhaps distorted) sine wave-amplitude estimation was made on all samples, and the 

‘pathological’ bins were eliminated for the ENOB calculation only (see Figure 9). 

We can state that the dominant cause of the error is inclusion of the ‘pathological’ bins into the 

ENOB calculation, but their effect on amplitude calculation is also noticeable. To have a really 

good ENOB value even for small numbers of bits, we suggest modifying the algorithm by 

disregarding the samples which fall in the two maximum height bins and those which are larger 

in absolute value than these, as it is suggested in subsection III/B. 
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Fig. 9  ENOB value as a function of the true value of the amplitude and of the dc, after elimination of 

the ‘pathological’ bins for the ENOB calculation only. Limits: [4.97,5.002]. 

IV. THE EFFECT OF NOISE 

Until now, we have investigated the noiseless ideal quantizer, although we did not make use of 

the ideal nature of it. But, to be sure that this method can be equally well used for real ADC’s, we 

need to see what happens when noisy ADC’s are used. 
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First of all, let us mention that additive noise at the input acts like dither [9]. This means that 

moments of the quantized samples (the ADC output samples) are less biased with noise than 

without it: we expect that even for non-manipulated processing the calculated amplitude and 

ENOB values are closer to the true values. Therefore, manipulation may not be necessary, at least 

when the noise is large enough. However, if this manipulation does not deteriorate the result, we 

may suggest the modification for all cases. 

The argument for this is that dither in general decreases bias, thus additive noise works in the 

right direction, while disregarding a small fraction of the samples only slightly increases the 

variance. Indeed, as it is illustrated by Fig. 10, no additional error occurs by applying the 

algorithm to noisy ADC data. 
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Fig. 10  Modified algorithm with additive Gaussian noise, σ = 0.1∆, M = 105. The theoretical ENOB is 

4.92, the limits are [4.914,4.924]. 
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In Fig. 11, the noise is larger than in Fig. 10, therefore the error caused by the noise dominates. 

The modification of the algorithm only slightly changes the calculated ENOB (Fig. 12). In both 

cases the noise dominates the error. 
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Fig. 11  Original algorithm, sine wave with additive Gaussian noise, σn = 0.5∆ (σn = 1.7σq), M = 105. 

The theoretical ENOB is 4.0, the limits are [3.99,4.011]. 
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Fig. 12  Modified algorithm, sine wave with additive Gaussian noise, σn = 0.5∆ (σn = 1.7σq), M = 105. 

The theoretical ENOB is 4.0, the limits are [3.999,4.04]. 

V. GLOBAL DESCRIPTION OF A TRUE ADC 

We have seen that both for noiseless and for noisy ADC’s the modified algorithm works well. 

A true ADC usually differs from these primarily in one important aspect: nonlinearity effects. Is 

this a disturbing factor? 

Considering the above thoughts we can speculate that elimination of the ‘pathological’ bins 

causes no harm for real ADC’s. On the contrary, it eliminates the arbitrary weight of the side 

bins, and gives a good average measure of the ADC errors by the ENOB.  

VI. FURTHER ERROR SOURCES 

Having done the above modification, we can observe a secondary error source. For uniformly 

sampled sinusoidal data, larger samples are overemphasized in each bin by using  more samples 

around them than elsewhere. Therefore, the calculated ENOB is still somewhat distorted. 

Consequently, after elimination of the ‘pathological’ bins, we can weight the residuals during rms 



 19

calculation in each bin by the reciprocal of the PDF in the bin. However, this modification brings 

little additional benefit [10], so here we do not go into any more details.  

VII. SUMMARY 

We have identified two error sources in ENOB calculation, based on a sine wave fit: 

a) bias in the determined sine wave amplitude, caused by ‘pathological’ bins; and, 

b) effect of the errors miscalculated around the sine wave amplitudes. 

We have suggested a method which deals with these problems, and, consequently, suggested a 

modification of the algorithms in the standards: 

• eliminate the contents of the maximum-value histogram bins at the edges, along with all 

the values surpassing these, 

• make a sine wave fit on the pre-treated data, 

• use the error samples in the pre-treated data for the calculation of the ENOB. 
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