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Abstract

We report improvements to our previous (Zhang et al 2011 Int. J. Thermophys. 32 1297)

determination of the Boltzmann constant kB using a single 80 mm long cylindrical cavity. In

this work, the shape of the gas-filled resonant cavity is closer to that of a perfect cylinder and

the thermometry has been improved. We used two different grades of argon, each with

measured relative isotopic abundances, and we used two different methods of supporting the

resonator. The measurements with each gas and with each configuration were repeated several

times for a total of 14 runs. We improved the analysis of the acoustic data by accounting for

certain second-order perturbations to the frequencies from the thermo-viscous boundary layer.

The weighted average of the data yielded kB = 1.380 6476 × 10−23 J K−1 with a relative

standard uncertainty ur(kB) = 3.7 × 10−6. This result differs, fractionally, by

(−0.9 ± 3.7) × 10−6 from the value recommended by CODATA in 2010. In this work, the

largest component of the relative uncertainty resulted from inconsistent values of kB

determined with the various acoustic modes; it is 2.9 × 10−6. In our previous work, this

component was 7.6 × 10−6.

(Some figures may appear in colour only in the online journal)

1. Introduction

In 2005, the Comité international des poids et mesures (CIPM)

recommended redefining the base units of the SI, including the

kelvin, in terms of a set of fundamental constants [1]. The

CIPM recommended that the kelvin be redefined in terms of

the Boltzmann constant kB. To provide continuity with the

existing definition of the kelvin, the thermometry community

is re-measuring kB using several different methods. CODATA

will weight all the measurements of kB by their uncertainties to

establish its most likely value. When the kelvin is redefined,

the value of kB will become the CODATA value with zero

uncertainty and the temperature of the triple point of water

TTPW will remain 273.16 K; however, TTPW will have the

fractional uncertainty of the CODATA-weighted average of

the measurements of kB.

The Boltzmann constant kB relates the thermodynamic

temperature to thermal energy. Since the 1970s, the acoustic

resonance method has been used to determine kB [2–8],

thermodynamic temperatures [9–15] and the thermophysical

properties of gases. Determinations of kB using acoustic

resonators rely on two relationships. The first relationship,

(1/2)mv2
RMS = (3/2)kBT , connects the root-mean-square

(RMS) velocity of an atom of mass m to its kinetic energy

(hence to the thermodynamic temperature). The second

relationship, v2
RMS = (3/γ0)c

2
0, connects the RMS velocity to

the zero-frequency speed of sound c0 of the same gas and to the

heat-capacity ratio C0
p/C0

v ≡ γ0 of the gas. For a monatomic

gas γ0 is exactly 5/3. Accordingly, the acoustic resonator

method infers c0 by combining measurements of the acoustic

resonance frequencies of an argon-filled or helium-filled cavity

at various pressures at TTPW with appropriate dimensions of the
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cavity. The measured frequencies are corrected for the thermal

and viscous boundary layers where the gas contacts the walls

of the cavity, imperfect accommodation of gas atoms with the

walls, the imperfect shape of the cavity, motions of the cavity’s

walls and the effects of electro-acoustic transducers. The

corrected frequencies for each mode are combined with that

mode’s eigenvalue and the cavity’s dimensions to determine

c(p,TTPW). Then, c2(p,TTPW) is fitted to the acoustic virial

equation to determine c0 for the gas. Finally, the Boltzmann

constant is obtained through the relation

kB = c2
0M/(T γ0NA), (1)

where M is the average molar mass of the gas, as determined

from chemical and isotopic analysis, and NA is the Avogadro

constant. The relative uncertainty of NA is 3 × 10−8, which

is two orders of magnitude smaller than the uncertainty of

kB [16, 19]. Therefore, we consider NA to be known.

For the highest possible accuracy, acoustic resonance

measurements in dilute gases use non-degenerate modes, such

as the radially symmetric modes of a spherical or quasi-

spherical cavity and the longitudinal and radial modes of a

cylindrical cavity. The radially symmetric modes of a spherical

cavity have higher quality factors than the longitudinal modes

of a cylindrical cavity of equal volume; therefore, spherical

cavities are preferred [3]. We acknowledge that the two most

important measurements of kB using quasi-spherical cavities

claim the low fractional standard uncertainties of 1.2 × 10−6

and 0.71 × 10−6 [4, 17].

In this work, we re-determine kB using the non-degenerate

longitudinal modes of a fixed-length cylindrical cavity. In

doing this, we follow the recommendation of the Consultative

Committee of Thermometry (CCT) that the redefinition of

the kelvin should be based on three different methods of

measuring kB. We mention four differences between our

method and previous work that used spherical or quasi-

spherical cavities. (1) The longitudinal acoustic modes of

fixed-length cylindrical cavities dissipate acoustic energy at

the wall of the cavity through viscosity. This dissipation

mechanism is not present for the radial acoustic modes in

quasi-spherical cavities. Therefore, we test the understanding

of acoustic resonances in a new regime. (2) The oscillations

of the walls (the shell) of cylindrical and spherical cavities

respond to the gas’s oscillations in different patterns. For

example, the non-degenerate longitudinal gas modes of the

cylindrical cavities have either even or odd symmetry about

the plane bisecting the cylinder’s axis. In contrast, the l = 1

modes of a spherical cavity, which have odd symmetry about a

bisecting plane, are degenerate; therefore, they are not used to

determine kB. (3) We used two-colour optical interferometry to

measure the lengths of our cylindrical cavities. In contrast, the

quasi-spherical-cavity method has used either pycnometry or

microwave resonances to measure the volume of the cavity. (4)

We used piezoelectric transducers located outside the cavity’s

wall to generate and detect acoustic signals. In contrast, small

capacitive microphones embedded in the cavity’s wall have

been widely used with spherical cavities. The PZT detector

has much larger capacitance than a capacitive microphone.

The larger capacitance allowed us to connect the PZT to a

Figure 1. Comparison of the determination of kB using acoustic
thermometry with the CODATA 2010 recommended value [19].

remote amplifier with a coaxial cable. (In contrast, a small,

capacitive microphone requires either a nearby preamplifier or

a tri-axial cable with a driven shield connecting the capacitor

to a remote preamplifier.)

In our previous, preliminary re-determination of kB, we

used a single, 130 mm long cylindrical cavity [8] and fitted the

apparent speed of sound c2(p) for each of the six modes to

zero pressure to get six values of c2
0. The inconsistency among

the six values of c2
0 was the largest contribution to uncertainty

of our preliminary value of kB. Since then, we have studied

five cylindrical, fixed-length cavities [18] and found that an

80 mm long cavity was the best of the five. In this paper, we

present a new determination of kB based on the average of the

fourteen measurement runs using four modes of an improved

80 mm long cavity. Our principal result is kB = (1.380 6476±
0.000 0051) × 10−23 J K−1. This new value of kB has a

relative standard uncertainty ur(kB) = 3.7 × 10−6; it differs,

fractionally, by −0.9×10−6 from the value recommended

by CODATA in 2010 [19]. (Unless otherwise stated, all

uncertainties in this paper are standard uncertainties with

coverage factor k = 1 corresponding to 68% confidence level.)

Figure 1 displays a comparison of the current values of kB

with those determined by the spherical and the quasi-spherical

cavities [3–8]. Our new determination of kB is consistent

with our previous determination of kB using the 130 mm long

cylindrical cavity; however, the uncertainty of the present

result is smaller by a factor of 2.1.

2. Fundamentals of the measurement

The unperturbed resonant frequencies f 0
l of the longitudinal

acoustic modes (l 0 0) of a gas-filled, geometrically perfect,

rigid, perfectly thermally insulating, cylindrical cavity are

determined by the speed of sound in the gas c and the length

L of the cavity by the formula

f 0
l = lc/(2L), (2)

where l = 1, 2, . . . is the longitudinal mode index (the

eigenvalue). (Because this work uses only purely longitudinal

modes, we identify these modes using only the longitudinal

index l in subscripts. Other modes are designated by the

418 Metrologia, 50 (2013) 417–432
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complete triplet of indices.) We combine equations (1)

and (2) to relate kB to the acoustic resonance frequencies of an

idealized, gas-filled cavity:

kB =
(

2f 0
l L

l

)2
M

T γ0NA

. (3)

Our cavity had a nominal radius a ≈ 40 mm and a nominal

length of 80 mm. We used the modes l = 2, 3, 4 and 5 which

have resonance frequencies spanning the range from 3.8 kHz

to 9.6 kHz. We did not include data for the l = 1 mode in the

analysis because excessive noise in the transducer signal and

line-shape distortion, due in part to the mode’s low Q, resulted

in poor quality fits that did not improve with more averaging.

Practical cavities have an imperfect geometry. The duct

that admits gas into the cavity is an opening in the wall

of the cylindrical shell. The cylindrical shell and the end-

plates are not rigid; therefore, they deform when they are

bolted together and they deform elastically in response to

the acoustic pressure oscillations in the gas. The oscillating

gas forms a thermal and a viscous boundary layer on the

walls of the shell. The end-plates have thin, machined

diaphragms that separate the PZT transducers from the gas;

these diaphragms present a lower impedance to the gas

than the surrounding surfaces of the shell. The transducers

generate heat when operating. All these complications perturb

acoustic resonance frequencies from their ideal values f 0
l . By

design, we minimized these perturbations; however, we must

still correct the measured frequencies for these perturbations

before using equation (3). In our previous papers [8, 20–22]

we modelled these perturbations; here, we list them in

sections 4.5.3 and 4.5.4.

3. Experimental setup and cylindrical cavity

Figure 2 is an overview of the apparatus. The experimental

setup retained the main features that we described in detail

in [8]. Here, we describe only a few key features and the

changes that we made.

As in our previous work [8], the cylindrical cavity was

formed by clamping two fused-silica end-plates to the ends

of a thick-walled, steel ‘tube’ (see figure 3). The nominal

length and the nominal diameter of the cylindrical cavity were

80 mm and the outer diameter of the cylindrical tube was

160 mm. The tube was made of bearing steel that had a Young’s

modulus of 210 GPa, a Poisson’s ratio of 0.29 and a density of

7800 kg m−3.

Because one of the 20 mm thick end-plates used in our

previous work had cracked, we used new end-plates that were

15 mm thick and had a diameter of 108 mm. To reduce

the stress on the new end-plates, they were clamped to the

cylindrical shell with fewer M8 bolts (16 instead of 20) and

with smaller torques (3.5 N m instead of 4.5 N m). The end-

plates were fabricated from optical-quality, fused silica with

a Young’s modulus of 73 GPa, a Poisson’s ratio of 0.17 and a

density of 2210 kg m−3. The inner surface of each end-plate

was coated with a partially reflecting metallic film [8, 18].

As in our previous work, a blind hole was ground out of

the outside-facing surface of each end-plate, leaving a silica

diaphragm 0.25 mm to 0.30 mm thick, which was flush with

the inside surface, thereby preserving the cylindrical shape of

the cavity. The PZT transducers used in this work were the

same type and size used in [8]. Epoxy was used to cement a

PZT transducer to the outside surface of each diaphragm.

We used a single, small tube (fill duct) to measure and

change the pressure of argon gas in the resonator, as in our

previous work. The acoustic measurements were performed

with a static charge of argon gas. This design minimized the

perturbations to the shape of the cavity and the accompanying

shifts in the resonance frequencies for which corrections must

be made.

The fill duct of the present resonator was made of three

sections of cylindrical, electro-polished, stainless-steel tubing.

The section that opened into the cavity had a length of 802 mm

and an inside diameter (ID) of 1.03 mm. (In our previous work,

this section had an ID of 2.13 mm.) The second section had

a 2.13 mm ID and was 100 mm long. It connected to a larger

duct (4.57 mm ID and 2000 mm long) which terminated in a

tee. One arm of the tee led to a valve that connected the duct

to the gas manifold. The other arm of the tee led to a similar

three-section duct that terminated at another cavity resonator

with an ID of 80 mm and a length of 160 mm. (We do not

discuss the second cavity in this work.) We calculated the

acoustic admittance of the duct using a waveguide model [22].

The model showed that the admittance of the valve and the

duct leading to the second cavity had a negligible effect on the

calculated perturbations.

The new fill duct was shrunk-fit inside a mating hole in

the steel tube near one end-plate (see figure 3). In our previous

work (figure 1 of [8]), the fill duct entered the cavity midway

between the end-plates. After the fill duct was installed, it

extended into the cavity. This extension and the inner surface

of the cavity were simultaneously ground until the open end

of the duct was flush with the inner surface of the tube. The

assembly by shrink-fitting followed by grinding avoided the

annular slit between the duct and the wall of the cavity that

was present in our previous work. Therefore, the new duct

generates smaller, more accurately modelled perturbations to

the resonance frequencies than the previous one.

We made only minor changes to the manifold that supplied

gas to the cavity. The manifold had been assembled using all-

metal connectors and valves with bellows stem seals. All of

the junctions and the valves were checked for leaks at 1 MPa.

We discovered that the getter that was located immediately

upstream from the fill duct did not remove all the nitrogen

from the argon. Therefore, we replaced the Entegris4 model

CE2500KFI4R getter with an SAES4 Model GC50 getter.

The manifold was wrapped with heating tapes so that

it could be baked out to remove adsorbed gases. Prior to

baking, the SAES getter was preheated for 2 h to reach its

operating temperature of 400 ◦C and it was maintained at

400 ◦C throughout the bake-out. The bake-out lasted more

4 In order to describe materials and procedures adequately, it is occasionally

necessary to identify commercial products by manufacturer’s name or label.

In no instance does such identification imply endorsement by the National

Metrology Institute or the National Institute of Standards and Technology or

Tsinghua University, nor does it imply that the particular product or equipment

is necessarily the best available for the purpose.

Metrologia, 50 (2013) 417–432 419



H Lin et al

M
F
C
1

G
e
tte
r

Figure 2. Sketch of the gas handling system. DPT denotes the differential pressure gauge and MFC1 denotes the mass flow controller.

Figure 3. Schematic (not to scale) sketch of the cylindrical shell and
the duct (all dimensions are in millimetres).

than 24 h. During the bake-out, the manifold was maintained at

100 ◦C while it was alternately evacuated and purged with pure

argon. (The resonator was maintained at room temperature

inside its thermostat.) The bake-out was repeated before

starting each test run.

The temperature of the resonator was measured using

two capsule-type standard platinum resistance thermometers

(Hart 5686), each with a diameter of 5.5 mm and a sensing

length of 30 mm. The thermometers were enclosed in metal

sleeves that we describe in section 4.3. Figure 4 shows the

locations of the thermometer wells in the assembled cylindrical

resonator. We used an ASL F900 bridge and a 100 � standard

resistor (Tinsley 5685A) to measure the resistance ratios of

the thermometers. The thermostat maintained the resonator’s

temperature constant to within ±0.1 mK for 24 h.

The PZT sound generator was driven by a sinusoidal

voltage generated by an Agilent 33220A waveform generator

that was locked to a 10 MHz standard signal derived from a

Spring

Thermometers

Flange

Support plate

Cylinder

Quartz end-plate

Figure 4. Cylindrical cavity assembly.

GPS clock. A frequency counter (Agilent 53131A) monitored

the signal frequency from the waveform generator. The counter

verified that the frequency stability was better than 0.05×10−6

during the measurement of a single mode. The signal from the

PZT detector was measured with a two-phase lock-in amplifier

(Stanford Research SR830) locked to the driving voltage.

An absolute pressure gauge (Ruska 7250 xi, 0 kPa to

600 kPa) controlled the argon gas pressure inside the pressure

vessel at 200 Pa to 300 Pa below the pressure inside the

cylindrical cavity. The mating surfaces of the end-plates

and the cylinder were sufficiently flat that leakage of pure

argon gas from the cavity into the pressure vessel was

negligible. The overpressure in the cavity ensured that

the argon inside the cavity would not be contaminated by

outgassing from the transducers, epoxy, wire insulation, etc

in the pressure vessel. A differential pressure gauge (MKS

420 Metrologia, 50 (2013) 417–432
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Table 1. Properties of the three measurement cases.

Number of
Number Number Number of averaged

Case Gas of modes of runs measurements measurements Support End-plates

I BIP+ 4 4 755 51 Free Set 1
II BIP+ 4 6 1018 45 Clamped Set 2
III BIP 3 4 998 36 Clamped Set 2

Baratron 616A, 100 Torr) (1 Torr ≡ 133.32 Pa) measured

the pressure difference between the cavity and the pressure

vessel. The metal diaphragm of the differential pressure gauge

isolated the cavity from the rest of the gas manifold. The

absolute pressure gauge and the differential pressure gauge

were calibrated by the National Institute of Metrology (NIM),

China. The pressure uncertainty was estimated to be less

than 20 Pa. The pressure uncertainty contributes no more than

0.05 × 10−6 to the uncertainty in kB.

4. Measurements

4.1. Acoustic measurements: three cases

The procedures for the acoustic measurements were similar

to those used during our preliminary determination of kB [8].

However, to search for problems related to the mounting of the

resonator, the mounting of the end-plates and the analysis of

argon, we divided the measurement runs into three cases that

are summarized in table 1.

During case I, the lower end of the resonator rested on a

support plate. As shown in figure 4, the support plate hung

from thin rods supported by springs. This compliant support

allowed the resonator to respond as a nearly free body to the

gas oscillations within it. (In our previous work, the resonator

was tightly clamped to a rotational stage, which itself was

clamped to the pressure vessel.) After completing the case I

runs, the top and bottom end-plates were interchanged, and

the resonator was replaced on the support plate and nuts were

tightened on the threaded rods above the top of the resonator.

Thus, the rods clamped the ends of the resonator together. This

‘clamped’ configuration was used for both cases II and III. As

indicated in table 1, ‘BIP Plus’ argon supplied by Air Products

was used during both cases I and II. As shown in figure 5, the

values of kB deduced from cases I and II were mode-dependent;

however, they were mutually consistent. The five mode-by-

mode differences yield (kB)case II−(kB)case I = (0.54±0.41)×
10−6kB where the uncertainty is the standard deviation of the

differences between the circles and the squares in figure 5.

(At the end of this section, we discuss the distinction between

(4 0 0)a and (4 0 0)b.). We conclude that changing the method

of support and interchanging end-plates did not change the

value of kB, within the small uncertainty of the comparison.

Between cases II and III, we changed the test gas from ‘BIP

Plus’ argon to ‘BIP’ argon. The three values of kB from cases

II and III yield the average difference (kB)case III − (kB)case II =
(−2.85 ± 0.50) × 10−6kB. This difference is 2.1 times

the fractional standard uncertainty for determining the mole

fraction average atomic mass ur(M) of each test gas (table 8)

Figure 5. Top: values of the Boltzmann constant kB determined
using each of modes (2 0 0), (3 0 0), (4 0 0) and (5 0 0). Bottom:
values of the acoustic slopes A1 determined with the same modes.
The grey band denotes reference values and their uncertainties. For
reference values, we took kB from CODATA 2010 [19] and A1

from [3]. The type-A uncertainties from fitting the frequency data
are comparable to the sizes of the plotted points. The distinction
between (4 0 0)a and (4 0 0)b is discussed in section 4.1.

and 1.5 times 21/2ur(M), which is the fractional standard

uncertainty of the difference between two values of M . We

conclude that the acoustic measurements are in reasonable

agreement with the values of M and ur(M) that were estimated

from independent gas analyses.

The ‘BIP’ argon for case III came from the same container

that we used during our previous measurements with a 130 mm

long cavity [8]. A sample drawn from this container had been

analysed by the Center for Gas Metrology, Korea Institute of

Standards and Science (KRISS), for chemical impurities and

for relative abundances of the isotopes 36Ar, 38Ar and 40Ar [8].

Case I was composed of four runs; that is, a quasi-isotherm

near TTPW was measured four times in succession. During each

run, the resonance frequencies and half-widths were measured

at six pressures. For half the runs, the pressures decreased

from 550 kPa to 50 kPa in steps of 100 kPa. For the other half,

the pressures decreased from 500 kPa to 100 kPa in steps of

100 kPa and additional measurements were made at 70 kPa. At

Metrologia, 50 (2013) 417–432 421
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each pressure, the frequency and half-width of the longitudinal

modes (2 0 0), (3 0 0), (4 0 0) and (5 0 0) were determined 8

to 12 times. The effects on resonance frequencies and half-

widths due to known perturbations (sections 4.5.3 and 4.5.4)

were calculated and used to correct the measurements. An

inspection of the corrected frequency data showed that some

unknown event occurred between 21 January 2012 and 24

January 2012 that separated the case I data for the (4 0 0)

mode into two repeatable groups. For our analysis, we divided

the (4 0 0) data into two groups before averaging: group a

comprised the data acquired through 21 January 2012; group b

comprised the data acquired after 24 January 2012. Averaging

the corrected data at the same pressure for each mode reduced

the number of data points for all the modes from 755 to 51.

Case II was composed of six runs. As in case I, the data

for the (4 0 0) mode were separated into two groups: group

b comprised the data acquired before 11 March 2012; group

a comprised the data acquired after 11 March 2012. (This

labelling suggests that the second unknown event restored the

resonator to its initial condition. Our results are consistent with

this assumption; however, our result for kB is independent of

the assumption.) Averaging the corrected case II data reduced

the number of data points from 1018 to 45.

Case III was composed of four runs. For all these runs,

the excess half-widths for the (4 0 0) mode were scattered with

values 3 to 5 times larger than the half-widths for the other

modes and some half-widths were negative. The excess half-

widths did not have an obvious run dependence. Also, the

scatter of the frequency measurements for the (4 0 0) mode

was much larger than for the other modes. For these reasons,

we did not use the (4 0 0) data for case III. Averaging the data

for the (2 0 0), (3 0 0) and (5 0 0) modes reduced the number of

data points to 36.

After completing the measurements for cases I, II and III,

we disassembled the resonator. We discovered a crack in one

of the quartz diaphragms that separated the cavity from a PZT

transducer. We do not know whether this crack is connected

with the anomalous behaviour of the (4 0 0) mode.

4.2. Measuring the length of the cavity

As in our previous work [8], the cylindrical cavity was defined

by bolting two end-plates of optical-quality fused silica glass

to a steel ‘tube’ to form the resonator. As in our previous

paper [8], we measured the length of the cylindrical cavity

using two-colour interferometry. Again, we used two lasers

with nominal wavelengths 633 nm and 543 nm. Both lasers

had beam diameters of approximately 1 mm and a fractional

wavelength stability better than 2 × 10−8.

The inner surface of each end-plate was coated with

a semi-transparent, metallic film that increased its optical

reflectivity while allowing the laser beams to penetrate the end-

plates into the cavity. Because the end-plates were not exactly

parallel, the laser beams formed two sets of equal-inclination

interference patterns between the partially reflecting films.

From measurements of the fractional fringes, we determined

the optical length between the windows modulo 0.96 µm. In

our previous study [8], we determined the required multiple

Figure 6. Grid of locations of length measurements.

of 0.96 µm by measuring the cavity’s length with a coordinate

measuring machine at ambient temperature and monitoring

the thermal contraction of the cavity as it cooled to TTPW. For

this work, this time-consuming procedure was not necessary.

Instead, we estimated the length of the cavity at TTPW from the

resonance frequencies of the longitudinal acoustic modes when

the cavity was filled with pure argon. This estimate must have a

fractional uncertainty less than 0.96 µm/(80 mm) = 12×10−6

to determine the correct multiple of 0.96 µm. In this work,

the values of the length of the cavity deduced from various

acoustic modes spanned the fractional interval ±1.74 × 10−6

which is accurate enough to select the correct multiple of

0.96 µm. Then, the two-colour interferometry refined the

length estimate to achieve a length uncertainty of the order

of 20 nm.

We conducted a two-colour interferometric measurement

after completing the acoustic measurements at each pressure.

It took several seconds to record the interference patterns.

During and immediately following this short interval, the

thermometers embedded in the metal wall of the cavity

indicated a temperature increase of approximately 0.1 mK,

which contributed a negligible uncertainty to the length

measurement.

Because the two-colour length measurements were made

at TTPW, they accounted for any temperature-dependent

deformation of the end-plates. In the current study, the shape of

the end-plates was determined from the variation of the 633 nm

interference patterns on a grid of ‘spots’ on the end-plates. As

shown in figure 6, the grid was defined by the intersections of

16 radial lines with 15 equally spaced circles. We assumed

that the shape of each end-plate was a quadratic function of

the radius L(r). Then, we computed the average length of

the cavity 〈L〉 using equation (4), where the parameters ai , bi

and ci for the length Li(r) were fitted to the measurements on

the grid.

〈L〉 =
1

8a2

16
∑

i=1

∫ a

0

rLi(r) dr, (4)

Li(r) = air
2 + bir + ci . (5)

422 Metrologia, 50 (2013) 417–432
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Table 2. Dimensions of the resonator.

Quantity Symbol Value/cm

Cavity radius a 3.995 880
Cavity length

Case I L 7.996 166(4)
Cases II and III L 7.996 086(4)

Shell thickness h 4.0
End-plate radius ap 5.4
End-plate thickness tp 1.5
Diaphragm radius ad 0.5
Diaphragm thickness td 0.025

The standard deviation of the values of Li(r) from the fitted

curves was 43 nm; this is a contribution to the uncertainty of

the average optical length of the cylinder. The curved end-

plates perturb the frequencies of the (l 0 0) modes; however,

the first-order frequency shifts vanish for volume-preserving

shape perturbations [23]. Thus, 〈L〉 using equation (4) is the

appropriate average length for computing the frequencies of

the (l 0 0) modes.

As in our previous study, the resonator was installed in

a pressure vessel filled with argon. The pressure inside the

cavity was always 200 Pa to 300 Pa higher than the pressure

outside the resonator, while the argon pressure within the cavity

ranged 50 kPa to 550 kPa during the acoustic measurements.

Thus, the resonator was subjected to significant hydrostatic

pressures. The hydrostatic pressure at 50 kPa decreased the

cavity’s length by a fraction 1 × 10−7; at 550 kPa the decrease

was, fractionally, 9 × 10−7. At zero pressure, the length of

the cavity was 79.961 68 mm for case I with an uncertainty

of 20 nm from two-colour interferometry. For cases II

and III, the length was 79.960 88 mm with an uncertainty

of 23 nm from interferometry. The larger length uncertainty

contributed a fraction 0.58×10−6 to the uncertainty budget

for the determination of kB. For calculating the two-laser

interference patterns, we relied on the accurate values of the

refractivity of pure argon at 633 nm and 543 nm published

in [24–28].

The inside surface of each end-plate had a partially

reflective metallic coating protected by a dielectric overlayer.

The manufacturer of the end-plates estimated that the thickness

of each coating plus overlayer was between 5 nm and 20 nm.

We do not know exactly how far the laser beams penetrated

into the metallic coatings [29]; we estimated that the optical

length of the cavity was 40 nm longer than the acoustic length.

When calculating the speed of sound, we reduced the optical

length by a fraction of 0.50×10−6 and added 1/2 of this value

to the uncertainty of the acoustic length. From equation (3), kB

is proportional to the square of the cavity’s length; therefore,

the optical–acoustic length difference contributes 0.50 × 10−6

to the relative uncertainty ur(kB).

As in [8], we used dimensional metrology to determine

the radius a of the cavity and we confirmed it by measuring

the ratios of the frequency of the (0 1 0) radial acoustic mode to

those of the (l 0 0) longitudinal modes. The uncertainty ur(a)

makes a negligible contribution to ur(kB).

Table 2 lists the dimensions of the cavity for the three

cases. The largest contributor to the uncertainty of the

Copper shield
Sealed electrical connector

Flexible sealed tubing

Figure 7. Sketch of the thermometer assembly.

average length of the cavity was 43 nm, which resulted from

fitting the shape of the curved end-plates. This uncertainty

contributed 1.08 × 10−6 to ur(kB). In the future, we will

reduce this contribution by using a denser grid of optical length

measurements.

4.3. Temperature measurement

We measured the temperature of the cavity with two 25 �

standard capsule-type platinum resistance thermometers (Hart

5686-001-B), HS182 and HS192. Each thermometer had an

outer diameter of 5.5 mm and a length of 35 mm. Following

[5, 6], we enclosed each thermometer within a copper sleeve,

as shown in figure 7. These sleeves allowed us to move

the thermometers between a triple-point-of-water (TPW) cell

and the wells in the resonator’s wall without disturbing the

thermometers or changing their thermal resistance. The

sleeves also protected the thermometers from the hydrostatic

pressure during the acoustic measurements. Each sleeve had

one sealed end and a length of 100 mm, an outer diameter

of 10 mm, an inner diameter of 5.6 mm, and a sensing

head 40 mm long. Each thermometer was covered with

thermally conducting grease and inserted into the open end

of a sleeve. Then, a cap was screwed onto the sleeve to hold

the thermometer against the inner wall and the blind end of the

sleeve. The four leads from each thermometer passed through

a thin stainless-steel tube (inner diameter 2.13 mm and length

500 mm) to welds at a sealed feed-through. After connecting

the leads, assembling the sleeve, the tube and the feed-through,

the assembly was evacuated and purged with pure argon gas

five times. Finally, the assembly was filled with pure argon

gas to 110 kPa and sealed with a valve.

The TPW cell used for the calibration of the two

thermometers was compared with NIM’s national reference

cell. The difference was no larger than 0.03 mK and it

contributed 0.11 × 10−6 to ur(kB). The TTPW of the reference

cell was corrected for the effect of isotopes. A bilateral

comparison conducted in 2011 demonstrated that the TTPW

of the reference cell differed from the average value of two of

INRIM’s transport cells by 0.01 mK. A bilateral comparison

conducted in 2010 demonstrated that the TTPW of the reference

cell differed from PTB’s reference cell by 0.03 mK. After

considering the CCT-K7 and the EURAMET.T-K7 Key

Comparison of Water Triple Point Cells, we conservatively

estimate a type-B uncertainty of 0.05 mK for NIM’s TPW

reference cell. This uncertainty contributed a type-B relative

uncertainty of 0.18 × 10−6 to ur(kB).

The two thermometers were calibrated in the TPW cell

before being installed in the wells in the resonator. Table 3

lists the initial calibration data for HS182 and HS192. We
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Table 3. Calibration of thermometers. All resistances are in ohms.

No 1 mA
√

2 mA 1 mA 0 mA

HS 182
Initial calibration

1 25.069 796 25.069 827 25.069 795 25.069 764
2 25.069 792 25.069 824 25.069 792 25.069 760
3 25.069 790 25.069 822 25.069 790 25.069 758
4 25.069 792 25.069 823 25.069 791 25.069 760
5 25.069 792 25.069 824 25.069 792 25.069 760
6 25.069 792 25.069 824 25.069 791 25.069 760
7 25.069 792 25.069 824 25.069 792 25.069 760

Final calibration
1 25.069 794 25.069 826 25.069 794 25.069 762
2 25.069 790 25.069 821 25.069 789 25.069 758
3 25.069 790 25.069 822 25.069 790 25.069 758
4 25.069 792 25.069 824 25.069 791 25.069 760
5 25.069 790 25.069 823 25.069 790 25.069 758

HS 192
Initial calibration

1 25.428 991 92 25.429 031 96 25.428 991 67 25.428 9516
2 25.429 000 04 25.429 040 34 25.428 999 17 25.428 9589
3 25.428 999 97 25.429 040 39 25.428 999 91 25.428 9595
4 25.428 994 41 25.429 033 99 25.428 993 41 25.428 9538
5 25.428 993 56 25.429 033 54 25.428 993 08 25.428 9531
6 25.428 9941 25.429 033 28 25.428 993 77 25.428 9546

checked for effects from the connection of the cable leading

from the feed-through for each thermometer to the resistance

bridge by plugging in and unplugging each connector during

each calibration. After each calibration, the thermometer was

removed from the TPW cell and stored at room temperature.

The initial calibration for HS182 at 0 mA had a repeatability

of 0.019 mK. HS182 was re-calibrated after finishing all

the acoustic measurements. We call this re-calibration the

‘post-calibration’. Table 3 lists the post-calibration data

for HS182. The post-calibration had a repeatability of

0.018 mK. The pre- and post-calibration were separated by

10 months. The difference between the two averages of the

pre- and post-calibrations was 0.011 mK; it is a measure of

the long-term stability of the thermometers and it contributed

0.04 × 10−6 to ur(kB).

The initial calibration of HS192 had a repeatability

of 0.03 mK (the standard deviation of repeated calibration

measurements) and a maximum temperature difference

(among those repeated measurements) of 0.08 mK. The long-

term stability of HS192 was comparable to the long-term

stability of HS182, which we discuss below.

The TPW cell was made at the NIM. For this cell, the

calculated hydrostatic pressure effect was 0.182 mK; both

thermometer calibrations were corrected for this. During the

calibrations, the axial temperature gradient was measured by

pulling each thermometer along the well of the TPW cell.

The measured axial gradients were −1.12 mK m−1 or less.

(A gradient of −0.73 mK m−1 is expected [30].) The larger-

than-expected gradient biased the temperature calibration by

up to 0.097 mK, which contributes a fractional uncertainty of

0.36 × 10−6 to ur(kB).

As shown in figure 4, the thermometers were inserted into

wells drilled part-way through the wall of the resonator. HS192

was inserted into the well at the top of the resonator. The

insertion depth was more than the sensing length (40 mm) of

the thermometers. HS182 and HS192 were read alternately

during the scanning of every acoustic resonance. Each

thermometer was read at 1 mA and
√

2 mA and the result

was extrapolated to 0 mA. A complete acoustic measurement

lasted for around 5 h. The two thermometers were alternately

read parallel to the acoustic measurement. Therefore, the

temperature drift of the cylinder shell was monitored. This

drift slightly varied with individual test run. We observed

that the drifts were bounded within the minimum of ∼0.2 mK

and the maximum of ∼1.2 mK. Usually, the differences

between the average readings of two thermometers were

within ±0.1 mK. (At only one point they differed by 0.2 mK

and at two points by slightly more than 0.1 mK.) These

small temperature differences are consistent with a negligible

temperature gradient along the resonator and with stable

performance of both thermometers. We concluded that the

long-term stability of HS192 was as good as the long-term

stability of HS182. The standard deviation of the temperature

differences was 0.047 mK and it contributed a fractional

uncertainty of 0.17 × 10−6 to ur(kB).

4.4. Chemical and isotopic composition

For the measurements reported in this paper, we used two

grades of pure argon supplied by Air Products Inc.: ‘BIP

Plus’ argon and ‘BIP’ argon. The ‘BIP Plus’ argon from one

container was used for the measurements of cases I and II.

For case III, we used the ‘BIP’ argon from the same container

that we used in our previous measurements [8]. The ‘BIP’

argon in its original container links the present measurements

to the isotopic and the impurity references of the Center for

Gas Metrology of the KRISS, one of the world’s leading gas

analysis laboratories.

According to the manufacturer, ‘BIP Plus’ and ‘BIP’

are manufactured using identical processes. The only

difference between the two grades is their specification for the

concentration of volatile organic compounds (VOCs). Each

production ‘lot’ is analysed and if, by chance, the concentration

of VOCs is low, the gas is sold as ‘BIP Plus’ grade. If

the VOC analysis is normal, the gas is sold as ‘BIP’ grade.

This distinction implies that the two grades have, at most,

only small differences in their relative isotopic abundances

for argon and only small differences in their concentrations

of the noble gas impurities: He, Ne, Xe and Kr. During

the present measurements, we sent samples of ‘BIP Plus’

and ‘BIP’ drawn from their original containers to the state

Key Laboratory of Petroleum Resource Research, Chinese

Academy of Sciences (KLPRR CAS), for new analyses of

the relative isotopic abundances. We drew these samples

from the manifold downstream of the getter. Two samples

of ‘BIP Plus’ from the same container were labelled samples

A and B, and the sample of ‘BIP’ was labelled sample C. The

sampling and naming were blind to the analysing laboratory.

Sample C was taken from the original container used for

our previous determination of kB [8], which had also been

analysed by the Center for Gas Metrology, KRISS. Samples

A, B and C were analysed with the gas chromatography–mass

spectrometry (GC–MS) system (MAT271) in KLPRR CAS.
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Table 4. Argon isotopic analysis.

Molar massa

of argon/
40Ar/36Ar 38Ar/36Ar g mol−1

Sample C, BIP 299.52±0.16 0.1894±0.0005 39.947 839
Sample B, BIP Plus 298.70±0.43 0.1884±0.0007 39.947 806
Sample A, BIP Plus 298.68±0.33 0.1895±0.0006 39.947 798
Sample C, BIP, 299.60±0.27 0.1890±0.0003 39.947 846
re-measured

Sample A, BIP Plus, 299.05±0.28 0.1886±0.0008 39.947 822
re-measured

Sample B, BIP Plus, 298.87±0.36 0.1882±0.0009 39.947 815
re-measured

a Molar masses of 36Ar, 38Ar and 40Ar are from CODATA 2010 [19].

Both KRISS and KLPRR CAS analysed sample C.

Therefore, sample C links the isotopic abundance reference

standards of both laboratories, assuming that the relative

abundances of the argon isotopes did not change during

storage. At KLPRR CAS, the samples were analysed in the

order ‘C–B–A–C–A–B’ to minimize bias. Each measurement

was repeated more than five times. In table 4, we list the results

of the KLPRR CAS analyses based on the KRISS’s reference

standards.

The two analyses of sample C resulted in a relative

difference of 0.16 × 10−6 in the molecular mass of argon,

M . This difference was included in the uncertainty budget

for the molar mass of the sample of the ‘BIP Plus’ gas; it

is a measure of the imperfection of the linkage to KRISS’s

reference standards. Table 4 shows that the repeatability of

M for samples A and B was 0.30 × 10−6 and 0.12 × 10−6,

respectively. The relative difference of M between A and

B was (0.02 ± 0.65) × 10−6, where the uncertainty here is

the root of the sum of the squares of the repeatability. These

differences were also included in the uncertainty budget for M

of ‘BIP Plus’.

The isotopic abundance ratios 40Ar/36Ar for samples A and

B are slightly smaller than that for sample C. The 38Ar/36Ar

ratios for samples A, B and C are identical, within the

uncertainty of the measurements. The value of M of sample

C is larger than the average M of samples A and B by a

fraction of 0.81 × 10−6. For re-determining kB, we averaged

the values of M of samples A and B in table 4. The relative

standard uncertainty of the average of samples A and B is

ur(M) = 0.77 × 10−6. This uncertainty is entered into table 8

and it includes the uncertainty of the analysis by KRISS for

‘BIP’ and the repeatability of the analysis by KLPRR CAS for

samples A, B and C.

Our results for kB are independent of previously published

values of M . However, the isotopic composition of

commercially prepared argon has been widely discussed by

others, who deduced values of kB from measurements of the

speed of sound in argon. See figure 8 and [3–6, 8, 31–34]. In

this context, we note that our results for M and ur(M) are in

good agreement with most of the previously published values.

For this work (section 3), we used an SAES Model GC50

getter to purify argon. (Other groups have used the same

model [3, 5, 6].) According to the manufacturer, this getter

Figure 8. Comparison of argon molar masses. The data sources are
Nier [34]; NIST-M and NIST-A [3]; Lee [32]; NPL #1 through
IRMM [31]; NPL #1 2011 through SUERC #3 [33]. Note: [33] did
not calibrate their spectrometer with argon samples of well-known
isotopic abundances; therefore, their results are relative.

Table 5. KRISS analysis of BIP argon.

Gas Upper bound u (upper bound)

He <1.6 × 10−6 0.9×10−6

Ne <1.1 × 10−6 0.6×10−6

Kr <0.3 × 10−6 0.2×10−6

Xe <0.5 × 10−6 0.3×10−6

reduces the concentrations of H2O, CO, CO2, O2, H2, N2,

CH4 and other hydrocarbons in argon gas to less than 0.01

parts per million by volume. Therefore, these impurities made

negligible contributions to MAr and its uncertainty.

The upper concentration bounds of noble gas impurities

(table 5) contributed a relative uncertainty of 1.12 × 10−6

to ur(kB). To summarize, we used the value M =
39.947 810(10) g mol−1 for cases I and II and the value M =
39.947 843(5) g mol−1 for case III.

4.5. Frequency measurements

4.5.1. Spectrum of the evacuated resonator. Figure 9

compares the spectrum of the voltage amplitude at the detector

when the cavity was evacuated to the spectrum when the cavity

was filled with argon at 150 kPa and 273.16 K. (These spectra

were taken before we exchanged the end-plates following the

case I measurements.) The vacuum spectrum shows many

narrow features, particularly above 7 kHz; however, we did

not detect problems connected with these features. Perhaps

these features were damped when the cavity was filled with

gas. Even if they were not damped, the gas resonances in the

cavity generated signals that were a factor of 50 larger than the

features in the vacuum spectrum.

4.5.2. Determining measured resonance frequencies fN and

half-widths gN . We used the method described in [8] to

determine the measured values of the resonance frequencies

fN and the half-widths gN . We stepped the drive transducer
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Figure 9. Spectrum (amplitude) of the detected signal when the
resonator was evacuated (grey band) and when the resonator was
filled with argon at 150 kPa and 273.16 K.

through 13 synthesized, discrete frequencies in increments of

gN /3 starting at fN − 2gN and ending at fN + 2gN . Then we

changed the step size to −gN/3 and stepped back to fN −2gN .

After finishing the up and down frequency sweeps for each

mode, we waited 1200 s for the heat generated by the drive

PZT to dissipate before making additional measurements. At

each frequency, the complex voltage V ≡ u + iv generated

by the detector transducer was measured by a Stanford SR830

lock-in amplifier. The 26 frequencies and complex voltages

were fitted by the resonance function

V =
if A

f 2 − (fN + igN )2
+ B + C(f − f̃ ) + D(f − f̃ )2, (6)

where A, B, C and D are complex constants; FN = fN + igN

is the complex resonance frequency of mode N under study.

The parameter f̃ has no physical significance; it is needed only

for numerical stability; therefore, we usually set it equal to the

average frequency. The parameters B and C account for the

effects of possible cross-talk and the ‘tails’ of the modes other

than N . In all the fits, the term D(f − f̃ )2 in equation (4)

was not significant. The changes in the fitted value of FN

were insignificant when we reduced the span of the data to

fN ± 1.7gN by deleting the measurements at the highest and

lowest frequencies. For the reduced data span, fN ± 1.7gN ,

the term C(f − f̃ ) was not significant.

The contributions to gN in equation (4) from the thermal

and viscous boundary layers vary as f −1/2. This phenomenon

generates a small asymmetry in the shape of the resonance. To

account for this, we used the correction

�fN = fmeas − fN ≈ −fN/(8Q2
N ) (7)

to obtain the measured resonance frequency fmeas. In this

work, the smallest value of Q was 350 for the mode (2 0 0)

at 50 kPa, where �fN = 1.0 × 10−6 in equation (7) and the

fractional correction to kB is twice as large.

4.5.3. Excess half-widths. The calculated values of the half-

widths account for five effects:

(1) the first-order contribution g
(1)
v /f due to the viscous

boundary layer using equation (7) from [8],

(2) the first-order contribution g
(1)

th /f due to the thermal

boundary layer including penetration of the thermal wave

into the steel side-wall and the quartz end-plates of the

cavity using equation (11) from [8],

(3) thermal and viscous contributions gbulk/f due to the

volume losses using equation (12) from [8],

(4) the fill duct using a modified version of the waveguide

model presented in [22] (in this model, the values of

gduct/f range from 27 × 10−6 for the (2 0 0) mode to

7 × 10−6 for the (5 0 0) mode and have a weak pressure

dependence),

(5) the second-order correction to the half-widths from the

thermal and viscous boundary layers using

g
(2)

l,surf

f
(0)
l

= −
(

δT

R

)2 [

1

4
(2

√
Pr + 3γ − 2)(γ − 1)

+ (2
√

Pr + 3γ − 3)(
√

Pr + γ − 1)
R

L

+ 2(γ − 1)2 R2

L2

]2

(8)

from [35].

Equation (8) always decreases the calculated half-widths

and does not affect the resonance frequencies, as in the case

of the spherical cavity [36]. In this work, the values of

g(2)/f range from −6.6 × 10−6 to −0.25 × 10−6; the most

negative value occurs for the (2 0 0) mode at 50 kPa and the

least negative value occurs for the (5 0 0) mode at 550 kPa.

(Because the values of g(2)/f are so small, equation (8)

ignores the penetration of the thermal wave into walls of the

cavity.)

For calculating g(1)/f and g(2)/f , we used the zero-density

values ηAr = (20.9448±0.0050) µPa s and λAr = (16.3673±
0.0039) × 10−3 W m−1 K−1 for the viscosity and thermal

conductivity of argon at TTPW. We obtained this value of ηAr

by combining the value ηHe = (18.677 47 ± 0.000 18) µPa s

calculated by [37] with the ratio ηAr/ηHe = (1.121 39 ±
0.000 27) measured in [38]. We obtained the value of λAr

using the relation λAr = CpηAr/(P rM), with the value Pr =
(0.665 851 ± 0.000 027) for the Prandtl number calculated

by [37]. In this work, we used the same expressions for

the pressure dependence of the thermal conductivity and the

viscosity as we did in [8]. The uncertainties u(ηAr) and u(λAr)

contribute less than 0.5 × 10−6 to u(kB).

The upper panel of figure 10 displays the excess half-

widths �g ≡ gmeas − gcalc of the acoustic resonances

multiplied by 2 × 10−6/fmeas, where fmeas are the measured

frequencies and where gcalc is calculated without adjustable

parameters. (The factor of 2 × 10−6 is convenient for

comparing �g/fmeas with the components of the uncertainty

budget for the determination of kB.) At the higher pressures,

the present values of �g/fmeas approach straight lines with

mode-dependent slopes and intercepts near zero. This trend

has been reported by us [8] and by many others and is usually

attributed to dissipation in the resonator’s elastic response to

the oscillating acoustic pressure within it. At low pressures,

the present values of �g/fmeas increase approximately as

(pressure)−1 with only a weak mode dependence. Both of these
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Figure 10. Top: pressure dependence of the excess half-widths
multiplied by 2 × 106/fexp for case I. The solid curve is the function
0.5683(p/550 kPa) + 0.8496(p/550 kPa)−1. The lower three panels
show the deviations of the measured half-widths from the function
in the top panel.

trends are represented by the function 0.5683× (p/550 kPa)+

0.8496(p/550 kPa)−1 which is plotted as a solid curve in the

upper panel of figure 10.

To the best of our knowledge, the increase in �g/fmeas

at low pressures has not been reported before and we have

no explanation for it; however, we are actively studying it.

(We are considering dissipation within the transducers and

in the sound-absorbing material behind them.) As discussed

below, any p−1 dependence of the measured frequencies fmeas

would be absorbed in the term A−1p
−1 used when fitting

fmeas(p). Our values of A−1 (section 4.6.3) are consistent

with accommodation coefficients near unity. Therefore, the

low-pressure anomaly in �g/fmeas does not appear to affect

our values of kB.

4.5.4. Corrections to the resonance frequency measurements.

The measured resonance frequencies fmeas(Ti, pi) were

corrected for four effects:

(1) the viscous boundary layer including the viscous

accommodation length lv using equation (4) from [8],

(2) the thermal boundary layer accounting for penetration of

the thermal wave into the metal wall and quartz end-plates

and including the thermal accommodation length lth (for

this effect, we used equation (8) from [8]),

(3) the fill duct, using a modified version of the waveguide

model presented in [22] (the waveguide model predicts

the fractional correction to fmeas is less than 0.6 × 10−6),

(4) the motion of the shell generated by the oscillating

acoustic pressure in the argon. The shell’s response was

calculated using equations (13) and (20) from [8] with

the compliance parameters G∗
i,n ≡ 1012 J m−3 Gi,n for

(i) radial motion G∗
1,2 = 0.614, G∗

1,3 = 0.144, G∗
1,4 =

0.0602 and G∗
1,5 = 0.0211 with fsh,1 = 25 308 Hz for l =

2, 4 and fsh,1 = 64 562 Hz for l = 3, 5; (ii) axial motion

G∗
2 = 3.22 with fsh,2 = 166 61 Hz; (iii) end-plate bending

(clamped boundary) G∗
3 = 52.4 with fsh,3 = 140 70 Hz;

(iv) PZT transducer + diaphragm bending G∗
dm = 13.02

with fdm = 156 14 Hz; equation (14) in [8] was used

to estimate the frequency shift due to recoil assuming the

resonator is a free rigid body with mass MRes = 10.442 kg.

Corrections (2) and (3) in the preceding paragraph require

values for the accommodation lengths lv and lth; we calculated

these corrections assuming hv = 1 and hth = 1. These

accommodation corrections increase the measured frequencies

by a fraction [2(γ −1)lth + lv]/a = 11×10−6(50 kPa/p) where

the simple functional form and numerical value apply to the

(l 0 0) modes used in this work. To account for the possibility

that hv 	= 1 and hth 	= 1, we included the term A−1p
−1 in

equation (10), the function that we used to fit c2 as a function

of pressure. For cases I and II, the best-fit values of A−1 were

indistinguishable from zero (table 6) and for case III the term

A−1p
−1 contributed the fraction (2.2 ± 1.3) × 10−6 to c2 at

our lowest pressure 50 kPa.

The corrections do not account for dissipation due to the

transducers or the sound-absorbing material placed behind the

transducers.

The multiple corrected frequencies, fcorrected(Ti, pi), for

each mode near each target pressure were adjusted to

fcorrected(TTPW, 〈p〉) where 〈p〉 is the average target pressure.

These adjustments used the relation

fcorrected(TTPW,〈p〉)
fcorrected(Ti, pi)

= 1 +

(

1

c2

dc2

dp

)

p

(〈p〉 − pi)

+

(

1

c2

dc2

dT

)

T

(TTPW − Ti). (9)

Finally, we averaged the adjusted corrected frequencies for

the same case, mode and target pressure to obtain a single

frequency fexp,l(p) and standard deviation, which we used in

the subsequent analysis. We drop the angular brackets with

the understanding that p refers to the average pressure 〈p〉.
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Table 6. Fitted parameters and derived quantities. (�kB ≡ 106(kB/kB,CODATA − 1) with kB,CODATA = 1.380 6488(13) × 10−23 J K−1

from [19].)

Parameter Unit Case I Case II Case III

A0,2 m2 s−2 94 755.85(13) 94 755.77(13) 94 755.38(13)
A0,3 m2 s−2 94 755.96(10) 94 755.89(14) 94 755.55(10)
A0,4a m2 s−2 94 756.43(10) 94 756.39(13) —
A0,4b m2 s−2 94 756.28(10) 94 756.29(13) —
A0,5 m2 s−2 94 756.33(10) 94 756.24(14) 94 755.94(10)
104 A1,2 m2 s−2 Pa−1 2.2268(40) 2.2490(53) 2.2540(44)
104 A1,3 m2 s−2 Pa−1 2.3670(39) 2.4114(52) 2.4138(43)
104 A1,4a m2 s−2 Pa−1 2.2078(38) 2.2154(53) —
104 A1,4b m2 s−2 Pa−1 2.2044(39) 2.2266(53) —
104 A1,5 m2 s−2 Pa−1 2.3182(39) 2.3703(52) 2.3727(42)
1011 A2 m2 s−2 Pa−2 5.407(43) 5.300(63) 5.272(51)
10−2 A−1 m2 s−2 Pa −34 −15 102(59)
χ 2/ν 0.7 0.3 0.3

Derived quantities
104〈A1〉 m2 s−2 Pa−1 2.265(74) 2.295(90) 2.347(83)
〈A0〉 m2 s−2 94 756.17(25) 94 756.12(27) 94 755.62(29)
1023 〈kB〉 J K−1 1.380 6502(37) 1.380 6495(39) 1.380 6434(41)
�kB,2 −2.33 −3.11 −6.48
�kB,3 −1.19 −1.87 −4.69
�kB,4a 3.81 3.35 —
�kB,4b 2.22 2.34 —
�kB,5 2.74 1.82 −0.55
〈�kB〉 1.0 0.50 −3.9

4.5.5. Fitting acoustic isotherms. The values of fexp,l

were multiplied by the cavity’s length L and divided by the

eigenvalue l to convert them to experimental speeds of sound

cexp,l . The upper panel in figure 11 displays the differences

between the values of (cexp,l)
2 and those reported in [3]. The

differences are nearly linear functions of the pressure with

mode-dependent slopes. We attribute these differences to

imperfections of our model for the shell’s response to the

acoustic oscillations. To account for these linear dependences,

we fitted the values of (cexp,l)
2 −A3p

3 for cases I and II by the

eight-parameter function of pressure p and mode l:

(fexp,lL/l)2 − A3p3 = A0 + A1,lp + A2p
2 + A−1p

−1. (10)

In equation (10), A0 ≡ c2
0 = γ0kBTTPW/m, A2 and A−1 were

mode-independent adjustable parameters; A3 was fixed at the

value 1.45×10−18 m2 s−2 Pa−3 taken from [39], and A1,l took

on the five values A1,2, A1,3, A1,4a , A1,4b and A1,5 for modes

(2 0 0), (3 0 0), (4 0 0)a, (4 0 0)b and (5 0 0), respectively. For

case III, we did not use data from modes (4 0 0)a and (4 0 0)b,

and parameters A1,4a and A1,4b were not determined.

The deviations from the eight-parameter fitting function

are plotted in the lower three panels of figure 11. As

suggested by the dashed lines in figure 11, the deviations from

equation (10) are approximately mode-dependent constants

(independent of pressure). This implies that the eigenvalues

for the modes studied are not exact integers, or equivalently,

there are perturbations from a cylindrical shape that are missing

from our model for the cavity resonator. To quantify this mode

dependence, we fit the same data by the 12-parameter function

of the pressure p and mode l:

(fexp,lL/l)2 − A3p
3 = A0,l + A1,lp + A2p

2 + A−1p
−1,

(11)

where the single parameter A0 has been replaced by the five

parameters A0,2, A0,3, A0,4a , A0,4b and A0,5. The results of

this final fit of the data by equation (11) are listed in table 6.

The deviations of the data from this fit are the deviations of the

points in figure 11 from the corresponding dashed lines.

When fitting equations (10) and (11), we weighted each

value of (fexp,lL/l)2 by 1/σ 2(f 2) where σ(f ) is the standard

deviation of the multiple frequencies measured for each mode

after being corrected to TTPW and to each target pressure. The

values of σ(f 2) were represented by the function

σ(f 2) = f 2

(

s1 +
s2

f̃ p̃
+

s3

f̃ p̃2
+ s4f̃ p̃2 + s5f̃ p̃

)

, (12)

where the coefficients are listed in table 7 and the scaled

frequency and pressure are defined by f̃ ≡ f/(9600 Hz) and

p̃ ≡ p/(550 kPa). With these weights, the values of χ2

divided by the number of degrees of freedom ν were 0.7, 0.3

and 0.3 for cases I, II and III, respectively. This implies that

we overestimated σ 2(f 2) by less than a factor of 2.

4.6. Results

Table 6 lists results from fitting all three cases. Figure 5 com-

pares the present values of A1,l and kB,l = 3mA0,l/(5TTWP)

to reference values. As reference values, we used

A1 = 2.5202(35) × 10−4 m2 s−2 Pa−1 from [3] and kB =
1.380 6488(13)× 10−23 J mol−1 K−1 from the CODATA 2010

review [19].

4.6.1. Results for kB. The upper panel of figure 5 shows the

13 values of kB determined in this work. They are scattered in

a non-random manner about the CODATA 2010 value. First,
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Figure 11. Top: deviations of measured squared speed of sound
from the results reported in [3]. The lower three panels display the
deviations for each case from weighted fitting of the values of
(cexp,l)

2 − A3p
3 to the surface A0 + A1,lp + A2p

2 + A−1p
−1, where

the subscript ‘l’ identifies the mode-dependent parameter.

we identify the correlations in the data. Then, we compute a

particular average value 〈kB〉.
We quantify the consistent mode dependence of kB by

comparing the standard deviation of the five mode-by-mode

differences between cases I and II with the standard deviation

of the same ten values of kB. The average of the five differences

is 〈kB,case II−kB,case I〉 = (−0.54±0.41)×10−6kB. In contrast,

the average of the same ten values is 〈kB,cases I and II〉−kB,Ref =
(0.78 ± 2.60) × 10−6kB with a standard deviation that is

six times larger. We recall that, between cases I and II,

the end-plates were interchanged, the length of the cavity

decreased by a fraction of 10.0 × 10−6, and the support of

the cavity was changed from nearly free to clamped. Thus,

the small standard deviation of mode-by-mode differences

is consistent with (1) part-per-million reproducibility of the

Table 7. Coefficients for equation (12) for the uncertainty σ(f 2).

Case I Case II Case III

s1 0.0990 0.5322 0
s2 0.1165 0 0.1305
s3 0 0.0166 0
s4 0 0.4093 0
s5 0 0 0.4651

Table 8. Uncertainty budget for the re-determination of kB.

Uncertainty source Reference 106 × ur(kB)

1. Gas temperature measurement section 4.3
Thermometer calibration 0.36
Temperature gradient 0.17
TPW realized by the reference cell 0.18

2. Avogadro constant [19] 0.05

3. Molar mass section 4.4
Abundance of noble gas impurities 1.12
Isotopic abundance ratios 0.77

4. Length measurement section 4.2
Average cavity length 1.08
Optical–acoustic difference 0.50
Two-colour interferometry 0.58

5. Zero-pressure limit of section 4.5
corrected frequencies

Boundary layer corrections 0.40
Random error in A0 table 6 1.2

6. Inconsistency among four modes section 4.6.1 2.9
Combined uncertainty 3.7

measurements of temperature and length, (2) reproducible

handling of argon during ten runs and (3) apparent values of

kB that are independent of the method of supporting the cavity.

Between cases II and III, we replaced BIP+ argon with BIP

argon. The average of the three mode-by-mode differences

is 〈kB,case III − kB,case II〉 = (−2.85 ± 0.50) × 10−6kB. We

attribute this difference to a real difference between the mole

fraction average mass M of the two argon samples. The

fractional difference, 2.85 × 10−6, is 2.1 times the uncertainty

ur(M) of each test gas (section 4.4 and table 8) and it is 1.5

times 21/2ur(M), the fractional standard uncertainty of the

difference between two values of M . This estimate of ur(M)

does not separate out the random and correlated parts of the

mass uncertainty; therefore, it may be very large.

Because the values of kB from cases I and II are correlated,

both by mode and by argon sample, we treat cases I and II as a

single measurement with the result 〈kB,cases I and II〉 − kB,Ref =
0.78 × 10−6kB. We treated case III as a second measurement;

however, the data for the (4 0 0) mode were not usable for

case III. Therefore, we used the (2 0 0), (3 0 0) and (5 0 0)

modes to calculate the difference between cases {I and II}
and case III to obtain the result 〈kB,case III〉− 〈kB,cases I and II〉 =
(3.25±0.47)×10−6kB. The unweighted average of these ‘two’

measurements is 〈kB〉two − kB,Ref = −0.85 × 10−6kB, which

corresponds to kB,this work = 1.380 6476 × 10−23 J K−1. This

average is our best estimate of kB because it gives equal weight

to the data from the BIP+ argon and the BIP argon, and because

it recognizes that we used only four independent modes. If we

had simply computed the average of all 13 values of kB, we
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would have weighted the BIP+ argon data (cases I and II) a

factor of 10/3 more heavily than the BIP argon (case III) and

obtained the result 〈kB〉13 −kB,Ref = −(0.30±3.29)×10−6kB,

where the uncertainty is only the standard deviation of the 13

values of kB.

We quantify the mode-dependent inconsistency among

the values of kB by the standard deviations of the differences

between the values of kB for each case and their mean; they

are 2.7 × 10−6, 2.8 × 10−6 and 3.0 × 10−6, for cases I, II

and III, respectively. (If the values of A0,4a and A0,4b are

averaged before computing the standard deviation, the values

are 2.7×10−6 for case I and 2.9×10−6 for case II.) These results

are summarized by the entry ‘inconsistency among modes’

with the value 2.9 × 10−6 in our uncertainty budget in table 8.

4.6.2. Results for the acoustic virial coefficients A1 and

A2. The lower panel of figure 5 show the 13 values of A1

determined in this work. (The values of A1,n are listed in

table 6.) They are scattered about the reference value A1 =
2.5202(35) × 10−4 m2 s−2 Pa−1 from [3]. The mode-by-mode

differences have the averages 〈A1,case II −A1,case I〉 = (0.030±
0.018) × 10−4 m2 s−2 Pa−1 and 〈A1,case III − A1,case II〉 =
(0.0033 ± 0.0015). Because A1 has contributions from both

the second acoustic virial coefficient of argon and from the

response of the resonator to the gas oscillations, it is not

surprising that exchanging the end-plates and changing the

support of the resonator changed 〈A1〉. Furthermore, the values

of A1 for the odd modes (3 0 0) and (5 0 0) changed more

than the values for the even modes, perhaps because the odd

modes tend to move the centre of mass of the resonator while

the even modes do not. We did not expect 〈A1〉 to change

when we changed argon from BIP+ to BIP. Consistent with

this expectation, the gas change was associated with a change

in 〈A1〉 that was only 1/10th of the change associated with the

support and was barely significant.

Fitting equation (11) yielded the result 〈A2〉 =
(5.326 ± 0.071) × 10−11 m2 s−2 Pa−2 which agrees, within

combined uncertainties, with the value (5.321 ± 0.062) ×
10−11 m2 s−2 Pa−2 reported in [3].

4.6.3. Results for A−1 and the accommodation coefficients h.

For cases I and II, the best-fit values of A−1 in table 6 are zero

within the uncertainty of the fit. The value zero is equivalent

to a combined accommodation coefficient h = 1, assuming

that the thermal and the viscous accommodation lengths lv
and lth are both multiplied by the factor (2−h)/h. Determining

separate values for hv and hth would require studying both

longitudinal and non-longitudinal acoustic modes; this is not

necessary to determine kB with the present uncertainties.

For case III, the value of A−1 is equivalent to a combined

accommodation coefficient h = 0.68 ± 0.17. Values of hth

close to 1 have been reported by other groups that measured

kB using acoustic resonators [40].

4.7. Uncertainty budget

Our determination of kB is connected to the quantities that we

measured (frequencies f , length L, temperature T , pressure

p), the calculated eigenvalues l and frequency perturbations

�f , the fundamental constant NA, and to quantities measured

by others (A3, M). Therefore, the uncertainty ur(kB) of

the value means kB has contributions from the uncertainties,

ur(fl), ur(M), ur(T ), ur(L
2), as well a contribution from fitting

the frequencies in each run to determine A0. Table 8 lists

these contributions to ur(kB) and refers to the sources of the

uncertainty estimates.

By far the largest contribution to ur(kB) is the

inconsistency among the modes. This suggests that our

cavity differs from a perfect cylinder in ways that we have

not modelled. Although we do not know the origin of

this inconsistency, we have treated it as a random effect for

estimating uncertainties.

The second largest contribution to ur(kB) results from the

random uncertainty of the values of A0 generated by fitting

the data on each isotherm. The third largest contribution to

ur(kB) resulted from the uncertainty of the molar mass of

the argon samples. This uncertainty contribution had two

parts. The larger of the two resulted from the upper bounds

to the concentrations of noble gas impurities provided by the

manufacturer. The smaller of these two contributions resulted

from the analysis of the relative isotopic abundances.

The root sum of the squares of all the contributions to

ur(kB) is 3.7×10−6 and this is our estimate of ur(kB).

5. Discussion

We have re-determined kB using very different techniques from

those that led to the CODATA 2010 value of kB. Our result

differs from this reference by a fraction (−0.9 ± 3.7) × 10−6.

Our result is probably the most accurate value of the speed of

sound ever measured with a cylindrical resonator.

The present frequency measurements had a higher signal-

to-noise ratio than our previous work and this enabled us to

detect a low-pressure anomaly in half-width results. We are

actively investigating possible sources of this anomaly. In this

work, we reduced the dispersion among the modes; however,

this is still a major source of uncertainty. The dispersion

indicates that our model for the geometry of the cavity (i.e.

its dimensions, including the fill duct and the joints between

the end-plates and the sides of the cavity) can be improved.

In [21] we proposed transferring end-plates from one

fixed-length cavity resonator to a second, twice-as-long, cavity

resonator and to determine kB by comparing modes of the

two cavities at nearly the same frequency. The feasibility

of measuring kB in this way is supported by our observation

that values of kB from cases I and II are nearly identical. If

the inconsistency among the modes results from some stable

property of the end-plates or some repeatable property of the

joint between the end-plates and the cylinder, the two-cavity

scheme will reduce the uncertainty of kB.

In this work we measured the difference between the speed

of sound in two different samples of argon using four acoustic

modes. The relative standard deviation of the differences in c2
0

was 0.47 × 10−6. This demonstrates the feasibility of using

a sample of isotopically enriched 40Ar as a mass standard to

determine the mass of working gases such as those in particular
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cylinders of ‘BIP’ and ‘BIP+’. As shown in [3], this will reduce

the uncertainty of M , particularly if tighter upper bounds can

be placed on the concentrations of the noble gas impurities

in argon.
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