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The structure of the three-body Borromean nucleus 6He is approximated by a two-body di-neutron cluster

model. The binding energy of the 2n-α system is determined to obtain a correct description of the 2n-α coordinate,

as given by a realistic three-body model calculation. The model is applied to describe the breakup effects in elastic

scattering of 6He on several targets, for which experimental data exist. We show that an adequate description of

the di-neutron-core degree of freedom permits a fairly accurate description of the elastic scattering of 6He on

different targets.

DOI: 10.1103/PhysRevC.75.064607 PACS number(s): 24.10.Eq, 25.10.+s, 25.45.De, 27.20.+n

I. INTRODUCTION

The scattering of a weakly bound projectile by a target

represents a challenging as well as an interesting problem

in nuclear physics. A proper understanding of the process

requires an accurate description of the structure of the

projectile, including all bound and unbound states that can be

effectively coupled during the collision. In the case of weakly

bound two-body projectiles the problem has been solved

using the Continuum Discretized Coupled-Channels (CDCC)

method [1–3]. Within the CDCC method, the reaction process

of a loosely bound two-body projectile by a structureless

target is treated within a three-body picture. The idea of the

method is to represent the continuum part of the two-body

projectile spectrum by a finite set of square integrable states.

These states are then used to generate the diagonal as well as

the nondiagonal coupling potentials that enter the system of

coupled equations.

In principle, the method can be extended to three-body

projectiles. This will be the case, for instance, of Borromean

nuclei, consisting of loosely bound and spatially extended

three-body systems, typically composed of a compact core

plus two weakly bound neutrons (n + n + c), and with no

bound binary subsystems. In this case, a description of the

three-body spectrum of the projectile is required. However, the

calculation of the unbound spectrum of a three-body system

is a very complicated problem by itself. In general, each

physical state will be a complicated superposition of many

channels with all possible spin and orbital angular momenta

configurations. The calculation of the coupling potentials and

the solution of the set of coupled equations in this large basis

represents a complicated task. Despite these difficulties, in two

recent works [4,5], this method has been applied to describe

the scattering of 6He on 12C and 209Bi. These calculations

reproduce successfully the existing elastic scattering data for

these reactions and represent an important advance toward the

understanding of few-body nuclear reactions.

Most of the complexity of these processes involving

Borromean nuclei arises from the fact that these systems

exhibit many excitation modes, which can be associated with

two different degrees of freedom: the n-n relative motion, and

the (nn)-c motion. In general, both modes will be excited

during the collision. However, when the system is scattered by

a medium mass or heavy target, the projectile-target interaction

will excite mainly the coordinate between the neutrons and

the core, because the repulsive Coulomb interaction will tend

to repel the charged core, while the neutrons can approach

closer to the target. Moreover, the nuclear interaction will

attract more strongly the weakly bound neutrons. So, the net

effect of the interaction with the target will be to stretch

the nn-c coordinate, pushing the core apart from the target

and pulling the neutrons close to it. Thus, a description of

the projectile excitation mechanism that takes into account

explicitly the nn-c coordinate should explain the main features

of the reaction mechanism of the three-body system with the

target.

Given the complexity of the full CDCC calculations with

three-body projectiles, the development of these simple models

can be very helpful to understand the main features of these

processes by retaining only the essential ingredients to keep

the model realistic.

In this work we revisit the so called di-neutron model for

the 6He case. In Sec. II, we address the problem of the 6He

structure within a three-body model. In Sec. III, we review

the di-neutron model for this nucleus, and we propose a

method to improve the accuracy of the model, while keeping its

simplicity. In Sec. IV the new method is tested against existing

experimental data for 6He scattering on several targets. Finally,

Sec. V is for summary and conclusions.

II. THREE-BODY MODEL FOR 6He

Within a three-body picture, the wave function of the 6He

system can be conveniently expressed in terms of one of the

Jacobi sets of coordinates. For the purposes of the present

work, the most suitable representation is that in terms of

the neutron-neutron relative coordinate, x, and the nn-4He

coordinate, y. This wave function, here denoted �3B (x, y), can

be obtained by solving the Schrödinger equation, using any of

the methods proposed in the literature. Here, we followed the

procedure proposed in Refs. [6] and [7], in which the wave
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function is expanded in hyperspherical coordinates. The basic

ingredient of the calculation are the two-body interactions

between the subsystems (n-n and n-α). Besides the two-body

potentials, the model Hamiltonian also includes a simple

central three-body force depending on the hyperradius. This is

introduced to overcome the underbinding caused by the other

closed channels, such as the t + t channel. The n-4He potential

is taken from Refs. [8] and [9], with central and spin-orbit

components, and the neutron-neutron potential, with central,

spin-orbit, and tensor components, from the prescription of

Gogny, Pires, and Tourreil [10]. These calculations were

performed with the code STURMXX [11], which uses the

formalism described in Ref. [9]. The maximum hyperangular

momentum was set to Kmax = 20 and the three-body force was

adjusted to give the right binding energy. The calculated three-

body wave function has a binding energy of ǫb = −0.955 MeV

and a rms point nucleon matter radius of 2.557 fm when

assuming an α-particle rms matter radius of 1.47 fm. Further

details of these calculations can be found in Refs. [9] and [12].

It should be noted that the three-body wave function is a

complicated superposition of many channel configurations.

Each channel is characterized by the angular momentum in the

n-n and (nn)-α coordinates (lx and ly), the total orbital angular

momentum (L), and the total spin of the neutron pair (Sx). In

the 6He ground state the dominant configuration corresponds

to Sx = lx = ly = 0, which contributes to 80% of the norm.

To compare with the di-neutron model, presented below,

we consider now the behavior of the wave function in the

y coordinate. For this purpose, we calculate the probability

density in the (nn)-α relative coordinate, y, here denoted

as ρ(y). This was calculated by integrating the square

of the three-body wave function on the neutron-neutron

coordinate, i.e.,

ρ3B(y) = y2

∫
|�3B(x, y)|2dxd�y, (1)

where �(x, y) is the total three-body wave function and

�y denotes the angular variables (θy, φy). This density is

plotted in Fig. 1, depicted by the thick solid line. To illustrate

the dominance of the Sx = lx = ly = 0 component, we show

also the same quantity, retaining only this component in the

wave function (thick dashed line). It can be noticed that, for

y > 5 fm, the di-neutron density is completely determined by

this component. Consequently, a realistic model for the 6He

ground state wave function must account, at least, for this

configuration.

In scattering calculations involving the 6He nucleus it is

essential to include also a realistic description of the continuum

states, given the large breakup probability of weakly bound

nuclei. In the case of the Coulomb interaction, the response of

the continuum to excitations of multipolarity λ is conveniently

treated in terms of the reduced transition probability, B(Eλ)

[13]. In Fig. 2 we consider the B(E1) (upper panel) and

B(E2) (bottom panel) distributions, plotted as a function of the

excitation energy of the 6He nucleus with respect to the ground

state. In both panels the full three-body calculation is depicted

by the thick solid line. In these calculations, the continuum

states were represented by true scattering wave functions, as
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FIG. 1. (Color online) Neutron density in the di-neutron model,

compared with a realistic three-body model. The di-neutron calcu-

lations use a Woods-Saxon potential with radius R = 1.9 fm and

diffuseness a = 0.25 fm.

reported in Ref. [9]. The narrow peak in the B(E2) corresponds

to the known 2+ low lying resonance.
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FIG. 2. (Color online) B(E1) and B(E2) transition strengths for

the 6He nucleus using different structure models. The solid lines

correspond to the three-body calculation obtained with the true

scattering states [9]. Di-neutron calculations using for the 2n-α

binding energy either the two-neutron separation energy (dotted-line)

or the modified value ǫb = −1.6 MeV (dotted-dashed line) are also

shown.
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III. THE DI-NEUTRON CLUSTER MODEL OF 6He

We want to consider situations in which the (nn)-c degree

of freedom is more relevant than the nn degree of freedom in
6He. This is the case, for example, when electric operators are

considered in structure calculations, or when Coulomb forces

dominate in a collision. One could think then of approximating

the three-body wave function by a product of two-body wave

functions, i.e.,

�3B(x, y) ≃ �2B (y)ψ(x). (2)

The di-neutron model takes into account only the (nn)-c

degree of freedom, whereas the relative motion between the

two valence neutrons is ignored. This amounts to considering

that the neutron pair remains in a highly correlated state ψ(x)

during the collision and, hence, excitations in this coordinate

are not permitted. Moreover, the neutrons are assumed to be

coupled to spin zero and bound to an inert α core in an s-

wave relative motion, which, as we have seen before, is the

dominant configuration in the 6He ground state wave function.

This model is inspired by the deuteron-α cluster model, which

has been very successful in the description of 6Li scattering

within the continuum discretized coupled-channels method

(e.g., Refs. [14–16]).

The problem in the di-neutron model lies in evaluating the

wave functions, for the bound and continuum states, describing

the motion of the halo neutrons relative to the α core, �2B (y).

Following the cluster model, one assumes that these wave

functions can be obtained as the eigenstates of the Hamiltonian

corresponding to a certain 2n-α interaction. Typically, one

assumes some reasonable geometry for the 2n-α interaction

and then adjusts the potential depth to obtain a given binding

energy for the 2n-α system.

In all the calculations presented here, the α + 2n interaction

was parameterized using a standard Woods-Saxon form, with

radius R0 = 1.90 fm and diffuseness a = 0.25 fm, which

corresponds to the set III of Ref. [17]. The ground state wave

function was assumed to be a pure 2S configuration, because,

due to the Pauli principle, the 1S state is forbidden.

So, the key question is: which is the binding energy that one

should use for the 2n-α system so that the corresponding wave

function gives a reasonable description of 6He in a di-neutron

model?

In the application of the deuteron-α cluster model to 6Li

[14–16], one evaluates the binding energy for d − α just as

the separation energy of 6Li into d + α. This is a reasonable

procedure, which can be applied because the deuteron is bound

by 2.2 MeV, which is more than the separation energy of 6Li

into d + α, and so one can argue that the relative wave function

of the valence proton and neutron within 6Li is not very

different from that in a free deuteron. Besides, the deuteron-α

cluster model gives reasonable values for the mean square radii

of 6Li.

In the applications of the di-neutron model done so far

to 6He [17–22], the binding energy of the di-neutron has

been taken as the two-neutron separation energy of 6He,

i.e., |ǫb| = S2n = 0.975 MeV. It should be noticed that, with

this choice, one is assuming implicitly that the relative wave

function of two neutrons within 6He would be in a state similar

to that of two neutrons with zero relative energy. This leads to

an unrealistic wave function for the di-neutron-α motion, as

discussed below.

The use of a binding energy ǫb = −0.975 MeV yields the

potential depth V0 = 93.51 MeV. For the ℓ = 0 and ℓ = 1

continuum states we used the same potential as for the

ground state. For the ℓ = 2 continuum, the potential depth

was changed to V0 = 91.25 MeV, to get the 2+ resonance at

the value obtained in the the three-body calculation, which,

in turn, is close to the experimental value (ǫx = 0.825 MeV

above the breakup threshold).

To illustrate this, we compare the density probability

associated with the nn-c coordinate in the two- and three-

body models. In the di-neutron model, the neutron density

analogous to Eq. (1) is simply obtained as ρ2B (y) = |yR(y)|2,

where R(y) is the radial part of the wave function �2B . In

Fig. 1, the density probability obtained with this model is given

by the dotted line. When compared to the realistic three-body

calculation (thick solid line) it becomes apparent that the

former extends to considerably larger distances. For example,

the rms associated with the di-neutron-α coordinate is 4.36 fm,

considerably larger than the prediction of the three-body

model, 3.25 fm. In view of this result, it is not surprising that

the coupling of the ground state wave function with the dipole

continuum states is unphysically enhanced in the two-body

model.

This is indeed the case, as we can see in Fig. 2. In both

panels, the dotted line corresponds to the di-neutron model.

These distributions clearly overestimate both the E1 and E2

strengths predicted by the three-body model (thick solid lines).

Not surprisingly, previous attempts to describe 6He scattering

by heavy targets [23,24] using this model showed that this

simplified description of the 6He nucleus tends to overestimate

the effect of the continuum couplings. In Ref. [22] it was

shown that by reducing the strength of the dipole couplings

the agreement with the data could be significantly improved.

We consider that the 2n-α binding energy used in the

di-neutron model should not be given by the two-neutron

separation energy. The di-neutron system that appears in 6He

is a correlated state, which, in the absence of the α particle,

will be given by a wave packet with positive expectation value

of the energy. Thus, the actual 2n-α binding energy should

be more negative, to compensate for the positive energy of

the di-neutron. We propose to obtain 2n-α binding energy to

reproduce the known properties of the 6He system, such as the

rms radius and the transition strengths, within the di-neutron

model. Asymptotically, the di-neutron wave function behaves

as ∝ exp(−ky), with k =
√

2µ|ǫb|/h̄ and µ the 2n-α reduced

mass. Then, a natural choice for |ǫb| is to make the slope as

close as possible to the three-body case. This leads to the value

|ǫb| = 1.6 MeV. The density calculated with this value, shown

by the dotted-dashed line in Fig. 1, reproduces very well the

three-body calculation (thick solid line) for separations beyond

4 fm. The di-neutron-α mean square separation obtained with

the new wave function is reduced to 3.4 fm, in much better

agreement with the three-body result. With the new binding

energy, the depth of the s wave is modified to V0 = 96.06 MeV.

Again, this depth was used for the p waves. The depth of the

ℓ = 2 potential had to be changed to V0 = 92.7 MeV to get
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the 2+ resonance at the correct excitation energy with respect

to the ground state.

We note that, among the three geometries proposed in

Ref. [17], namely, set I (a = 0.65 fm), set II (a = 0.39 fm),

and set III (a = 0.25 fm), the latter is found to reproduce more

accurately the three-body density. The other two geometries,

having a larger diffuseness, give rise to a higher rms, even after

modification of the two-neutron separation energy to correct

the slope of the di-neutron density.

It can be seen that, with this geometry and binding energy,

the E1 and E2 transition strengths are also well reproduced.

This is shown in Fig. 2 by the dotted-dashed lines. It is observed

that this increase of the binding energy reduces both strengths,

showing a much better agreement with the prediction of the

three-body calculation. Note that, because of the modification

of the binding energy, the breakup threshold appears at a higher

energy in our di-neutron model. So, the di-neutron model does

not describe the low-energy continuum of 6He, which is below

1.6 MeV excitation energy. However, it describes fairly well

the continuum around the maximum of the B(E1) distribution

(2 MeV) and beyond.

IV. CALCULATIONS

In the remaining, we compare the two-body models

discussed above with the elastic scattering data for several

reactions induced by 6He. In all the calculations presented

here, we used the geometry of the 2n-α potential with the

smaller diffuseness (a = 0.25 fm). All these calculations are

performed within the standard CDCC method [1].

We first consider the reaction 6He + 64Zn at Coulomb

barrier energies, which was recently measured by Di Pietro

et al. [25]. The 6He (=2n + α) continuum was discretized

into N = 7 energy bins, evenly spaced in the asymptotic

momentum k, and up to a maximum excitation energy of

ǫmax = 7 MeV. We included s, p, and d waves for the 2n-α

relative orbital angular momentum. Inclusion of f waves had

a negligible effect on the elastic angular distributions.

In these calculations, the α + 64Zn interaction was taken

from the optical model fit performed in Ref. [25]. For

the 2n + 64Zn interaction, we used the parameters of the

d + 56Fe potential obtained in Ref. [26]. Diagonal as well as

nondiagonal potentials were derived from these potentials by

means of a single-folding method, as described elsewhere [17].

The coupled equations were integrated up to 100 fm and used

50 partial waves for the projectile-target relative motion. These

calculations were performed with the code FRESCO [27].

In Fig. 3 we show the results for the elastic scattering

angular distribution at the laboratory energies E = 10 and

13.6 MeV, along with the data of Di Pietro et al. [25]. For each

energy three curves are shown: the dashed line is the cluster-

folded calculation in which the projectile-target interaction

is folded with the ground-state density of the 6He nucleus,

without inclusion of the continuum. At the higher energy this

calculation exhibits a pronounced rainbow that is not observed

in the data. Moreover, at both energies these calculations

clearly underestimate the data at backward angles. Inclusion

of the continuum within the conventional di-neutron model
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FIG. 3. (Color online) Elastic scattering angular distribution,

divided by the Rutherford cross section, for the reaction 6He + 64Zn

at E = 10 and 13.6 MeV. The dashed line is the cluster-folding

calculation without inclusion of the continuum. The dashed line and

the thick solid line are the di-neutron model calculations using the

binding energy ǫb = S2n = −0.975 MeV and the modified binding

energy ǫb = −1.6 MeV, respectively. The experimental data are taken

from Ref. [25].

(dotted lines) improves the agreement at backward angles,

but reduces too much the cross section at the rainbow, thus

underpredicting the data. This effect is a direct consequence of

the overprediction of the B(E1) distribution in the di-neutron

model, as explained above. Finally, the thick solid line is the

CDCC calculation with the di-neutron model with a modified

binding energy (ǫb = −1.6 MeV). This calculation improves

the agreement at the rainbow, particularly at E = 13.6 MeV.

At E = 10 MeV, this calculation slightly underestimates the

data at backward angles, but we could not find an explanation

for this discrepancy.

Next, we study the 6He + 208Pb, 209Bi, and 197Au reactions,

which were recently analyzed in Ref. [22]. In Fig. 4 we

present the calculations for the Pb and Bi targets, along with

the experimental data from Kakuee et al. [28] and Aguilera

et al. [29], respectively. Details of the fragment-target optical

potentials and binning scheme can be found in Ref. [22]. The

meaning of the lines is the same as in Fig. 3. In both cases, the

calculation without continuum displays a marked rainbow that

is not observed in the data. We have added also a calculation

without continuum, but with the modified binding energy

ǫb = −1.6 MeV (thin solid line). This calculation illustrates

the static effect caused by the change in the ground state

wave function produced by the modification of the binding
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FIG. 4. (Color online) Elastic scattering angular distribution,

divided by Rutherford cross section, for the reactions 6He + 209Bi

at E = 22.5 MeV (top) and 6He + 208Pb at E = 27 MeV (bottom).

The dashed line is the calculation without inclusion of the continuum,

using the binding energy ǫb = −0.97 MeV. The thin solid line is a

similar calculation, but with ǫb = −1.6 MeV. The dotted line and

the thick solid line are the di-neutron model calculations using the

binding energy ǫb = S2n = −0.975 MeV and the modified binding

energy ǫb = −1.6 MeV, respectively. Experimental data are from

Refs. [28] and [29].

energy. Qualitatively, these two calculations are very similar.

In particular, the pronounced rainbow is still present in the

new calculation. The similitude between these two calculations

indicates that the trend of the data can not be simply explained

by changing the size of the di-neutron-α wave function and,

consequently, dynamical effects are indeed very important.

Inclusion of the continuum within the conventional di-neutron

model (dotted line) produces a strong reduction of the cross

section at intermediate angles, largely underestimating the

data. As noted above, this is caused by the overestimation of

the dipole couplings in this model. In the modified di-neutron

model the rainbow is also suppressed, but the final result is in

very good agreement with the data.

Finally, we discuss the results for the 6He + 197Au reaction

at E = 27, 29, and 40 MeV and compare them with the data of

Ref. [30]. The lines have the same meaning as in Figs. 3 and 4.

Similarly to the case of the lead target, at E = 27, 29 MeV, the

one channel calculation exhibits a pronounced rainbow, which

is almost absent in the data. This effect is very well accounted

for in the modified di-neutron calculation. At E = 40 MeV,

the rainbow is suppressed somewhat, but not completely, in

the full CDCC calculation. The lack of data at the relevant

angles does not permit us to make strong conclusions about

the existence of the rainbow, but the agreement between the
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FIG. 5. (Color online) Elastic scattering angular distribution,

divided by the Rutherford cross section, for the reaction 6He + 197Au

at E = 27, 29, and 40 MeV. The dashed line is the cluster-folding

calculation without inclusion of the continuum. The dotted line and

the thick solid line are the calculations using the di-neutron model

with ǫb = −S2n = −0.975 MeV and ǫb = −1.6 MeV, respectively.

The experimental data are taken from Ref. [30].

data and the calculation is fairly good where the comparison

is possible.

It is interesting to note that the underestimation of the

data in the conventional di-neutron model is more pronounced

at lower energies. This is because at lower energies dipole

Coulomb couplings become more important and, as we showed

before, these couplings are unphysically enhanced in the

conventional di-neutron model.

All these calculations show that the proposed model

describes fairly well the elastic data for different targets and

could even be used as a predictive tool for reactions for which

data do not exist. The good agreement with the data clearly

supports the idea, anticipated in the Introduction, that the

degree of freedom that enters actively in the elastic scattering

of Borromean systems on medium mass and heavy targets is

that for the relative motion between the halo neutrons and the

core.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied the application of the

di-neutron model to describe 6He structure and scattering. We

find that, when the di-neutron model is applied assuming for

the 2n-α binding energy the two-neutron separation energy

of 6He, the description of the structure of 6He obtained is
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not in agreement with the results of a realistic three-body

calculation. One obtains an unrealistically long tail of the

2n-α relative wave function and too large values of the B(E1)

and B(E2) distributions. When this model of 6He is used in

scattering calculations, the couplings between the ground state

and the continuum states are overestimated, and this produces

too much absorption from the elastic channel.

We have proposed a modified di-neutron model in which the

2n-α binding energy is set to reproduce the density distribution

in the 2n-α coordinate given in a realistic three-body model.

We find that a 2n-α binding energy of 1.6 MeV produces a rms

and B(E1) and B(E2) distributions that are similar to those

obtained in a realistic three-body calculation.

The model has been tested for several reactions induced

by 6He, providing in all cases a very good description of

the elastic scattering data. These results indicate that, despite

its simplicity, the model can provide a useful and reliable

description of reactions involving the 6He nucleus. Using an

identical procedure, the method could be also extended to other

Borromean systems, such as 11Li or 14Be.

We would like to emphasize that the present model is

not intended to replace the realistic three-body calculations

for the scattering of Borromean nuclei. The development of

these models, although numerically more demanding, are of

great importance for a full quantitative understanding of these

processes. However, we believe that simple models, such as

those discussed here, are also very useful to provide us with a

transparent physical interpretation of these collisions.
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