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Abstract

In this paper, we study differentiable neural

architecture search (NAS) methods for natu-

ral language processing. In particular, we im-

prove differentiable architecture search by re-

moving the softmax-local constraint. Also,

we apply differentiable NAS to named entity

recognition (NER). It is the first time that dif-

ferentiable NAS methods are adopted in NLP

tasks other than language modeling. On both

the PTB language modeling and CoNLL-2003

English NER data, our method outperforms

strong baselines. It achieves a new state-of-

the-art on the NER task.

1 Introduction

Neural architecture search (NAS) has become

popular recently in machine learning for their abil-

ity to find new models and to free researchers from

the hard work of designing network architectures.

The earliest of these approaches use reinforcemen-

t learning (RL) to learn promising architectures

in a discrete space (Zoph and Le, 2016), where-

as others have successfully modeled the problem

in a continuous manner (Liu et al., 2019; Xie

et al., 2019b; Huang and Xiang, 2019). As an

instance of the latter, differentiable architecture

search (DARTS) employs continuous relaxation to

architecture representation and makes gradient de-

scent straightforwardly applicable to search. This

leads to an efficient search process that is orders of

magnitude faster than the RL-based counterparts.

Like recent methods in NAS (Xie and Yuille,

2017; Zoph and Le, 2016; Baker et al., 2016),

DARTS represents networks as a directed acyclic

graph for a given computation cell (see Figure

1(a)). An edge between nodes performs a pre-

defined operation to transform the input (i.e., tail)
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Figure 1: An overview of DARTS cell and our cell

to the output (i.e., head). For a continuous net-

work space, DARTS uses the softmax trick to re-

lax the categorical choice of edges to soft deci-

sions. Then, one can optimize over the graph us-

ing standard gradient descent methods. The opti-

mized network is inferred by choosing the edges

with maximum weights in softmax.

However, DARTS is a “local” model because

the softmax-based relaxation is imposed on each

bundle of edges between two nodes. This leads to

a biased model in that edges coming from different

nodes are not comparable. Such a constraint limit-

s the inference space to sub-graphs with one edge

between each pair of nodes. Also, the learned net-

work might be redundant because every node has

to receive edges from all predecessors no matter

they are necessary or not. This problem is simi-

lar to the bias problem in other graph-based mod-

els where local decisions make the model non-

optimal (Lafferty et al., 2001; Daphne Koller and

Nir Friedman, 2009).

Here we present an improvement of DARTS,
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called I-DARTS, that further relaxes the softmax-

local constraint. The idea is simple - we consider

all incoming edges to a given node in a single soft-

max. This offers a broader choice of edges and en-

larges the space we infer the network from. For ex-

ample, one can simultaneously select multiple im-

portant edges between two nodes and leave some

node pairs unlinked (see Figure 1(b)).

I-DARTS outperforms strong baselines on the

PTB language modeling and CoNLL named entity

recognition (NER) tasks. This gives a new state-

of-the-art on the NER dataset. To our knowledge,

it is the first time to apply differentiable architec-

ture search methods to NLP tasks other than lan-

guage modeling. More interestingly, we observe

that our method is 1.4X faster than DARTS for

convergence of architecture search. Also, we pro-

vide the architectures learned by I-DARTS, which

can be referred for related tasks.

2 The Method

Although we will restrict ourselves to language

modeling and NER for experiments, in the sec-

tion, we discuss the more general case. We choose

recurrent neural networks (RNNs) to model the

sequence generation and tagging problems. Giv-

en a sequence of input vectors {x1, ..., xL}, we

repeat applying RNN cells to generate the out-

put {h1, ..., hL}. The RNN cell is defined as:

ht = g(xt, ht−1), where t is the time step and

g(·, ·) is the function of the cell. In NAS, the ob-

jective is to search for a good g(·, ·) in an automat-

ic fashion.

2.1 Architecture Search Space

We follow the assumption that g(·, ·) is a DAG

consisting of N nodes and edges among them (Liu

et al., 2019; Xie et al., 2019b; Pham et al., 2018).

An edge oi,j(·) between node pair (i, j) indicates

an activation function from node j to node i. For

node i, it simply sums over vectors from all pre-

decessor nodes (j < i), followed by a linear trans-

formation with a parameter matrix Wi. More for-

mally, let si be the state of node i. We define si to

be:

si =
∑

j<i

oi,j(sj ·Wj) (1)

See Figure 1 for an example network (red lines).

Note that this model can encode an exponential

number of graphs by choosing different sub-sets

of edges (i.e., choosing oi,j(·) for each (i,j)). The

output of search is the optimal edge selection and

the corresponding network.

2.2 Improved DARTS

Given a set of edges {oi,jk }, one can try each o
i,j
k

to induce a network, and then train and evaluate

it. The optimal choice is the edge with highest

accuracy on the validation set. In I-DARTS, we

instead do this in a soft way. We re-define si as:

si =
∑

j<i

∑

k

α
i,j
k · oi,jk (sj ·Wj) (2)

where α
i,j
k is the weight indicating the importance

of o
i,j
k (·). It is computed by the softmax normal-

ization over edges between nodes i and j, like this

α
i,j
k =

exp(wi,j
k )

∑
k′ exp(w

i,j
k′ )

(3)

where w
i,j
k is the model parameter. This model

reduces the architecture search problem to learn

continuous variables {αi,j
k }, which can be imple-

mented using efficient gradient descent methods.

After training, the final architecture is encoded by

the edges with largest weights.

Eq. (3) imposes a constraint that weights {αi,j
k }

are normalized for each j. Such a model in gen-

eral faces the local decision and bias problem-

s as pointed out in graph-based methods (Laffer-

ty et al., 2001; Daphne Koller and Nir Friedman,

2009). Moreover, the inference has to be per-

formed in a smaller space because we have to infer

exactly one edge between each node pair and ex-

clude networks violating this constraint.

Here we remove the constraint and system bias.

To this end, we compute the softmax normaliza-

tion over all incoming edges for node i:

α
i,j
k =

exp(wi,j
k )

∑
j<i

∑
k′ exp(w

i,j
k′ )

(4)

It provides us a way to compare all incoming

edges in the same manner, rather than making a

local decision via a bundle of edges from node j.

As another bonus, this method can search for net-

works that are not covered by DARTS, e.g., net-

works that contain two edges between the same

node pair.

See Figure 1(b) for an illustration of our

method. To infer the optimal architecture, we ba-

sically do the same thing as in DARTS. The differ-
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ence lies in that we select top-n edges with respect

to α
i,j
k . Here n is a hyper-parameter that control-

s the density of the network. E.g., n = 1 means

a sparse net, and n = ∞ means a very dense net

involving all those edges.

3 Experiments

We test our method on language modeling and

named entity recognition tasks. Our experiments

consist of two parts: recurrent neural architecture

search and architecture evaluation. In architecture

search, we search for good RNN cell architectures.

Then, we train and evaluate the learned architec-

ture.

3.1 Architecture Search

For language modeling, we run neural search

on the PTB corpus. We use the standard pre-

processed version of the dataset (Pham et al.,

2018). To make it comparable with previous work,

we copy the setup used in (Pham et al., 2018; Liu

et al., 2019). The recurrent cell consist of 8 nodes.

The candidate operation set of every edge contain

5 activation functions, including zeroize, tanh, re-

lu, sigmoid, and identity. To learn architectures,

we run the search system for 40 training epochs

with a batch size of 256. We optimize models pa-

rameters {Wi} using SGD with a learning rate of

20 and a weight decay rate of 5e-7, and optimized

softmax relaxation parameters {wi,j
k } by Adam

with a learning rate of 3e-3 and a weight decay

rate of 1e-3. For RNN models, we use a single-

layer recurrent network with embedding and hid-

den sizes = 300. It takes us 4 hours to learn the

architecture on a single GPU of NVIDIA 1080Ti.

For named entity recognition, we choose the

CONLL-2003 English dataset. We follow the

same setup as in language modeling but with a d-

ifferent learning rate (0.1) and a different hidden

layer size (256). It takes us 4 hours to learn the

architecture on the same GPU.

3.2 Architecture Evaluation

Firstly, the discovered architecture is evaluated on

the language modeling task. Before that, we train

it on the same data used in architecture search. The

size of hidden layers is set to 850. We use av-

eraged SGD to train the model for 3,000 epochs,

with a learning rate of 20 and a weight decay rate

of 8e-7. For a fair comparison, we do not fine-tune

the model at the end of the training.

Architecture
Perplexity Search Cost

val test (GPU days)

V-RHN 67.9 65.4 -
LSTM 60.7 58.8 -
LSTM + SC 60.9 58.3 -
LSTM + SE 58.1 56.0 -

ENAS 60.8 58.6 0.50
DARTS 58.3 56.1 0.25

Random RNNs 63.7 61.2 -
I-DARTS (n = 1) 58.0 56.0 0.17
I-DARTS (n = 2) - - -

Table 1: Perplexities on PTB (lower is better). V-RHN

(Zilly et al., 2016) indicates Variational RHN. LSTM +

SC (Yang et al., 2018) indicates LSTM with skip con-

nection. LSTM + SE (Merity et al., 2018) indicates

LSTM with mixture of softmax. Random RNNs indi-

cates that the network generated by random initialized.

Table 1 shows the perplexities of different RN-

N models on PTB. We also report the results of

previous systems. The model discovered by I-

DARTS achieves a validation perplexity of 58.0

and a test perplexity of 56.0 when n = 1. It is

on par with the state-of-the-art models that are de-

signed either manually or automatically. Howev-

er, we find that the model failed to optimize when

n = 2. It might result from the complex interac-

tion between operations. We leave this issue for

future study.

Since architecture search is initialization-

sensitive (Pham et al., 2018; Liu et al., 2019), we

search the architectures for 4 times with different

random seeds. We evaluate the architecture every

10 search epochs by retraining it on PTB for 500

epochs. We compare DARTS with our I-DARTS

method with the same random seed. See Figure

2(b) for averaged validation perplexities over 4 d-

ifferent runs at different search epochs. We see

that I-DARTS is easier to converge than DARTS (4

hours). It is 1.4X faster than that of DARTS. An-

other interesting finding is that I-DARTS achieves

a lower validation perplexity than DARTS during

architecture search. This may indicate better ar-

chitectures found by I-DARTS because the search

model is optimized with respect to validation per-

plexity.

Then, we test the learned architecture in a

named entity recognition system on the English

data from CoNLL-2003 shared task (Sang and

Meulder, 2003). Following previous work (Akbik

et al., 2018; Peters et al., 2017), we report the av-

eraged F1 score over 5 runs on the test set. For

modeling, we choose the single-layer RNN-CRF
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model because it achieved state-of-the-art results

on several sequence labeling tasks (Lample et al.,

2016; Ma and Hovy, 2016). We use GloVe 100-

dimensional word embeddings (Pennington et al.,

2014) and pooled contextual embeddings (Akbik

et al., 2019) as pre-trained word embeddings. We

replace the standard bidirectional LSTMs with the

discovered recurrent neural cells. Also, we set

the hidden layer size to 512 and apply variational

dropout to the input and output of the RNN layer.

We train the network using SGD with a learning

rate of 0.1 and a gradient clipping threshold of 5.0.

We reduce the learning rate by a factor of 0.25 if

the test error does not decrease for 2 epochs.

Table 2 shows a comparison of different meth-

ods. Our baseline uses RNN cells generated from

random initialized whose F1-score varies greatly

and is lower than that of the standard LSTMs. I-

DARTS significantly outperforms Random RNNs

and DARTS. The best score is achieved when n =
1. It indicates that the task prefers a sparse net-

work. Also, we see that our model works with the

advanced pre-trained language models in that we

replace the LSTM cell to our cell. The I-DARTS

architecture yields a new RNN-based state-of-the-

art on this task (93.47 F1-score). In Table 2, We

find it interesting that Random RNNs are good for

NER task. This may result from the design of

search space that fit for such tasks substantially.

Search space is also a key factor in neural architec-

ture search that new efforts should focus on (Xie

et al., 2019a).

We visualize the discovered cells in Figure 3.

Each cell is a directed acyclic graph consisting of

an ordered sequence of 8 nodes with an activation

function applied on each edge. These automati-

cally discovered cells are complex and hard to be

designed manually. An interesting phenomenon

comes up that the best architecture on language

modeling is different from that on name entity

recognition. This might result from the fact that

different tasks have different inductive bias. Al-

so, this suggests the possibility of architecture se-

lection from the top-k search results on the target

task.

4 Related Work

Neural architecture search has been proposed

to automatically search for better architectures,

showing competitive results on several tasks, e.g.,

image recognition and language modeling. A s-
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Model F1

best published

BiLSTM-CRF (Lample et al., 2016) 90.94
BiLSTM-CRF+ELMo (Peters et al., 2018) 92.22
BERT Base (Devlin et al., 2018) 92.40
BERT Large (Devlin et al., 2018) 92.80
BiLSTM-CRF+PCE (Akbik et al., 2019) 93.18

Random RNNs w/o pre-trained LM 90.64
DARTS w/o pre-trained LM 91.05
I-DARTS (n = 2) w/o pre-trained LM 90.96
I-DARTS (n = 1) w/o pre-trained LM 91.23

Random RNNs 92.89
DARTS 93.13
I-DARTS (n = 2) 93.14
I-DARTS (n = 1) 93.47

Table 2: F1 scores on the CoNLL-2003 English NER

test set.

trand of NAS research focuses on reinforcemen-

t learning (Zoph and Le, 2016) and evolutionary

algorithm-based (Xie and Yuille, 2017) method-

s. They are powerful but inefficient. Recent ap-

proaches speed up the search process by weight

sharing (Pham et al., 2018) and differentiable ar-

chitecture search (Liu et al., 2019). But there is no

discussion on the softmax-local problem in previ-

ous work. Moreover, previous methods are often

tested on language modeling. It is rare to see stud-

ies on these methods for other NLP tasks.
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Figure 3: Cells discovered by I-DARTS for language

modeling (top) and NER (bottom).



3589

5 Conclusions

We improved the DARTS to address the bias prob-

lem by removing the softmax-local constraint.

Our method is search efficient and discovers sev-

eral better architectures for PTB language model-

ing and CoNLL named entity recognition (NER)

tasks. We plan to consider the network density

problem in search and apply I-DARTS to more

tasks in our future study.
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