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Abstract

Background: Automated emotion classification could aid those who struggle to recognize emotions, including children with
developmental behavioral conditions such as autism. However, most computer vision emotion recognition models are trained on
adult emotion and therefore underperform when applied to child faces.

Objective: We designed a strategy to gamify the collection and labeling of child emotion–enriched images to boost the
performance of automatic child emotion recognition models to a level closer to what will be needed for digital health care
approaches.

Methods: We leveraged our prototype therapeutic smartphone game, GuessWhat, which was designed in large part for children
with developmental and behavioral conditions, to gamify the secure collection of video data of children expressing a variety of
emotions prompted by the game. Independently, we created a secure web interface to gamify the human labeling effort, called
HollywoodSquares, tailored for use by any qualified labeler. We gathered and labeled 2155 videos, 39,968 emotion frames, and
106,001 labels on all images. With this drastically expanded pediatric emotion–centric database (>30 times larger than existing
public pediatric emotion data sets), we trained a convolutional neural network (CNN) computer vision classifier of happy, sad,
surprised, fearful, angry, disgust, and neutral expressions evoked by children.

Results: The classifier achieved a 66.9% balanced accuracy and 67.4% F1-score on the entirety of the Child Affective Facial
Expression (CAFE) as well as a 79.1% balanced accuracy and 78% F1-score on CAFE Subset A, a subset containing at least
60% human agreement on emotions labels. This performance is at least 10% higher than all previously developed classifiers
evaluated against CAFE, the best of which reached a 56% balanced accuracy even when combining “anger” and “disgust” into
a single class.

Conclusions: This work validates that mobile games designed for pediatric therapies can generate high volumes of domain-relevant
data sets to train state-of-the-art classifiers to perform tasks helpful to precision health efforts.

(JMIR Pediatr Parent 2022;5(2):e26760) doi: 10.2196/26760
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Introduction

Automated emotion classification can serve in pediatric care
solutions, particularly to aid those who struggle to recognize

emotion, such as children with autism who have trouble with
emotion evocation and recognizing emotions displayed by others
[1-3]. In prior work, computer vision models for emotion
recognition [4-6] used in digital therapeutics have shown
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significant treatment effects in children with autism [7-17]. The
increasing use of signals from sensors on mobile devices, such
as the selfie camera, opens many possibilities for real-time
analysis of image data for continuous phenotyping and repeated
diagnoses in home settings [18-33]. However, facial emotion
classifiers and the underlying data sets on which they are trained
have been tailored to neurotypical adults, as demonstrated by
repeatedly low performance on image data sets of pediatric
emotion expressions [34-39].

The Child Affective Facial Expression (CAFE) data set is
currently the most popular facial expression data set pertaining
to children. Prior machine learning efforts that do not include
CAFE images in the training set have reached 56% accuracy
on CAFE [36,37,39], even after combining facial expressions
(eg, “anger” and “disgust”) into a single class, thus limiting
granularity. We do not discuss prior publications that report
higher accuracy using subsets of the CAFE data set in the
training and testing sets. This overall lack of performance in
prior work highlights the need for developing facial emotion
classifiers that work for children. With a lack of labeled data
being the fundamental bottleneck to achieving clinical-grade
performance, low-cost and speedy data generation and labeling
techniques are pertinent.

As a first step toward the creation of a large-scale data set of
child emotions, we have previously designed GuessWhat, a
dual-purpose smartphone app that serves as a therapeutic for
children with autism while simultaneously collecting highly
structured image data enriched for emoting in children.
GuessWhat was designed for children aged 2 and above to
encourage prosocial interaction with a gameplay partner (eg,
mom or dad), focusing the camera on the child while presenting
engaging but challenging prompts for the child to try to act out
[40-43]. We have previously tested GuessWhat’s potential to
increase socialization in children with autism as well as its
potential to collect structured videos of children emoting facial
expressions [44]. In addition to collecting videos enriched with
emotions, GuessWhat gameplay generates user-derived labels

of emotion by leveraging the charades-style gameplay structure
of the therapy.

Here, we document the full pipeline for training a classifier
using emotion-enriched video streams coming from GuessWhat
gameplay, resulting in a state-of-the-art pediatric facial emotion
classifier that outperforms all prior classifiers when evaluated
on CAFE. We first recruited parents and children from around
the world to play GuessWhat and share videos recorded by the
smartphone app during gameplay. We next extracted frames
from the videos, automatically discarding some frames through
quality control algorithms, and uploaded the frames on a custom
behavioral annotation labeling platform named
HollywoodSquares. We prioritized the high entropy frames and
shared them with a group of 9 human annotators who annotated
emotions in the frames. In total, we have collected 39,968 unique
labeled frames of emotions that appear in the CAFE data set.
Using the resulting frames and labels, we trained a facial
emotion classifier that can distinguish happy, sad, surprised,
fearful, angry, disgust, and neutral expressions in naturalistic
images, achieving state-of-the-art performance on CAFE and
outperforming existing classifiers by over 10%. This work
demonstrates that therapeutic games, while primarily providing
a behavioral intervention, can simultaneously generate sufficient
data for training state-of-the-art domain-specific computer vision
classifiers.

Methods

Data Collection
The primary methodological contribution of this work is a
general-purpose paradigm and pipeline (Figure 1) consisting of
(1) passive collection of prelabeled structured videos from
therapeutic interventions, (2) active learning to rank the collected
frames leveraging the user-derived labels generated during
gameplay, (3) human annotation of the frames in the order
produced in the previous step, and (4) training a classifier while
artificially augmenting the training set. We describe our
instantiation of this general paradigm in the following sections.

Figure 1. Pipeline of the model training process. Structured videos enriched with child emotion evocation are collected from a mobile autism therapeutic
deployed in the wild. The frames are ranked for their contribution to the target classifier by a maximum entropy active learning algorithm and receive
human labels on a rating platform named HollywoodSquares. The frames are corresponding labels that are transferred onto a ResNet-152 neural network
pretrained on the ImageNet data set.

Ethical Considerations
All study procedures, including data collection, were approved
by the Stanford University Institutional Review Board (IRB

number 39562) and the Stanford University Privacy Office. In
addition, informed consent was obtained from all participants,
all of whom had the opportunity to participate in the study
without sharing videos.
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Recruitment
To recruit child video subjects, we ran a marketing campaign
to gather rich and diverse video inputs of children playing
GuessWhat while evoking a range of emotions. We posted
advertisements on social media (Facebook, Instagram, and
Twitter) and contacted prior study participants for other digital
smartphone therapeutics developed by the lab [13-15]. All
recruitment and study procedures were approved by the Stanford
University IRB.

User Interfaces

GuessWhat Smartphone Therapeutic
GuessWhat is a mobile autism therapy implemented on iOS
and Android, which has been previously documented as a useful
tool for the collection of structured video streams of children
behaving in constrained manners [40-44], including evocation
of targeted emotions. GuessWhat features a charades game
where the parents place the phone on their forehead facing the
child, while the child acts out the emotion prompt displayed on
the screen. The front-facing camera on the phone records a video
of the child in addition to corresponding prompt metadata. All
sessions last for 90 seconds. Upon approval by the parent, each
session video is uploaded to a Simple Storage Service (S3)
bucket on Amazon Web Services (AWS). The app has resulted
in 2155 videos shared by 456 unique children. Parents are asked
to sign an electronic consent and assent form prior to playing
GuessWhat. After each gameplay session, parents can (1) delete
the videos, (2) share the videos with the research team only, or
(3) share the videos publicly.

Emotions Considered
We sought labels for Paul Ekman’s list of six universal
emotions: anger, disgust, fear, happiness, sadness, and surprise
[45-48]. Ekman originally included contempt in the list of
emotions but has since revised the list of universal emotions.

Because CAFE does not include labels of contempt, we did not
train our classifier to predict contempt. We added a seventh
category named neutral, indicating the absence of an expressed
emotion. Our aim was to train a 7-way emotion classifier
distinguishing among Ekman’s 6 universal emotions plus
neutral.

HollywoodSquares Frame Labeling
We developed a frame-labeling website named
HollywoodSquares. The website provides human labelers with
an interface to speedily annotate a sequential grid of frames
(Figure 2) that were collected during the GuessWhat gameplay.
To enable rapid annotation, HollywoodSquares enables users
to label frames by pressing hot keys, where each key
corresponds to a particular emotion label. To provide a label,
users can hover their mouse over a frame and press the hot key
corresponding to the emotion they want to label. As more frames
are collected by GuessWhat, they continue to appear on the
interface. Because the HollywoodSquares system displays over
20 images on the screen at once, it encourages rapid annotation
and enables simultaneous engagement by many independent
labelers. This permits rapid convergence of a majority rules
consensus on image labels.

We ran a labeling contest with 9 undergraduate and high school
annotators, where we challenged each annotator to produce
labels that would result in the highest performing classifier on
the CAFE data set. Raters were aged between 15 and 24 years
and were from the Bay Area, Northeastern United States, and
Texas. The raters included 2 males and 7 females. For the frames
produced by each individual annotator, we trained a ResNet-152
model (see Model Training). We updated annotators about the
number of frames they labeled each week and the performance
of the classifier trained with their individual labels. We awarded
a cash prize to the annotator with the highest performance at
the end of the 9-week labeling period.

Figure 2. HollywoodSquares rating interface. Annotators use keyboard shortcuts and the mouse to speedily annotate a sequence of frames acquired
during GuessWhat gameplay.
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HollywoodSquares was also used for a testing phase, during
which iterations of the frame-labeling practices were made
between the research and annotation teams. All the labeled
frames acquired during this testing phase were discarded for
final classifier training.

All annotators were registered as research team members
through completion of the Health Insurance Portability and
Accountability Act of 1996 and Collaborative Institutional
Training Initiative training protocols in addition to encrypting
their laptop with Stanford Whole Disk Encryption. This provided
annotators with read-only access to all the videos and derived
frames from GuessWhat gameplay that were shared with the
research team.

The final labels were chosen by the following process. If all
annotators agreed unanimously about the final frame label, then
this label was assigned as the final frame label. If disagreements
existed between raters, then the emotion gameplay prompt
associated with that frame (the “automatic label”) was assigned
as the final label for that frame, as long as at least 1 of the human
annotators agreed with the automatic label. If disagreements
existed between raters but the automatic label did not match
any human annotations, then the frame was not included in the
final training data set.

Machine Learning

Model Training
We leveraged an existing CNN architecture, ResNet-152 [49],
with pretrained weights from ImageNet [50]. We used
categorical cross entropy loss and Adam optimization with a

learning rate of 3 × 10-4, with β1 set to .99 and β2 set to .999.
We retrained every layer of the network until the training
accuracy converged. The model converged when it did not
improve against a validation data set for 20 consecutive epochs.
We applied the following data augmentation strategies in
conjunction and at random for each training image and each
batch of training: rotation of frames between –15 and 15 degrees,
zooming by a factor between 0.85 and 1.15, shifting images in
every direction by up to 1/10th of the width and height, changing
brightness by a factor between 80% and 120%, and potential
horizontal flipping.

The CNN was trained in parallel on 16 graphics processing unit
(GPU) cores with a p2.16xlarge Elastic Cloud Compute instance
on AWS using the Keras library in Python with a Tensorflow
2 backend. With full GPU usage, the training time was 35
minutes and 41 seconds per epoch for a batch size of 1643,
translating to US $14.4 per hour.

We trained 2 versions of the model, with 1 exclusively using
non-GuessWhat public data set frames from (1) the Japanese
Female Facial Expression (JAFFE) [51], (2) a random subset
of 30,000 AffectNet [52] images (a subset was acquired to avoid
an out of memory error), and (3) the Extended Cohn-Kanade

(CK+) data set [53]; the other model was trained with these
public data set frames plus all 39,968 labeled and relevant
GuessWhat frames.

Model Evaluation
We evaluated our models against the entirety of the CAFE data
set [54], a set of front-facing images of racially and ethnically
diverse children aged 2 to 8 years expressing happy, sad,
surprised, fear, angry, fearful, and neutral emotions. CAFE is
currently the largest data set of facial expressions from children
and has become a standard benchmark for this field.

Although existing studies have evaluated models exclusively
against the entirety of the CAFE data set [34-39], we
additionally evaluated them on Subset A and Subset B of CAFE,
as defined by the authors of the data set. Subset A contains
images that were identified with an accuracy of 60% or above
by 100 adult participants [54], with a Cronbach α internal
consistency score of .82 (versus .77 for the full CAFE data set).
Subset B contains images showing “substantial variability while
minimizing floor and ceiling effects” [54], with a Cronbach α
score of .768 (close to the score of .77 for the full data set).

Results

Frame Processing
The HollywoodSquares annotators processed 106,001 unique
frames (273,493 including the testing phase and 491,343 unique
labels when counting multiple labels for the same frame as a
different label). Of the 106,001 unique frames labeled, 39,968
received an emotion label corresponding to 1 of the 7 CAFE
emotions (not including the testing phase labels). Table 1
contains the number of frames that were included in the training
set for each emotion class, including how many children and
videos are represented for each emotion category. The frames
that were not included received labels of “None” (corresponding
to a situation where no face or an incomplete face appears in
the frame), “Unknown” (corresponding to the face not
expressing a clear emotion), or “Contempt” (corresponding to
the face not expressing an emotion in the CAFE set). The large
number of curated frames displaying emotion demonstrates the
usefulness of HollywoodSquares in filtering out emotion events
from noisy data streams. The lack of balance across emotion
categories is a testament particularly to the difficulty of evoking
anger and sadness as well as disgust and fear, although to a
lesser extent.

Of the children who completed 1 session of the Emoji challenge
in GuessWhat and uploaded a video to share with the research
team, 75 were female, 141 were male, and 51 did not specify
their gender. Table 2 presents the racial and ethnic makeup of
the participant cohort. Representative GuessWhat frames and
cropped faces used to train the classifier, obtained from the
subset of participants who consented explicitly to public sharing
of their images, are displayed in Figure 3.
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Table 1. Emotions represented in the HollywoodSquares data set, including how many children and videos are represented for each emotion category.

Number of videosNumber of childrenFrequencyEmotion

6228643Anger

95461723Disgust

89411875Fear

2287313,332Happy

2898716,055Neutral

9331947Sad

135525393Surprise

Table 2. Representation of race and ethnicity of children whose who played the “Emoji” charades category and uploaded a video to the cloud.

FrequencyRace/ethnicity

6Arab

16Black or African

16East Asian

36Hispanic

7Native American

5Pacific Islander

14South Asian

7Southeast Asian

100White or Caucasian

60Not specified
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Figure 3. Example of frames collected from GuessWhat gameplay, including examples of cropped (A) and original (B) frames. We have displayed
these images after obtaining consent from the participants for public sharing.

Performance on CAFE, CAFE-Defined Subsets, and
CAFE Subset Balanced in Terms of Race, Gender, and
Emotions
The ResNet-152 network trained on the entire labeled
HollywoodSquares data set as well as the JAFFE, AffectNet
subset, and CK+ data sets achieved a balanced accuracy of

66.9% and an F1-score of 67.4% on the entirety of the CAFE
data set (confusion matrix in Figure 4). When only the
HollywoodSquares data set was included in the training set, the
model achieved a balanced accuracy of 64.12% and an F1-score
of 64.2%. When only including the JAFFE, AffectNet subset,
and CK+ sets, the classifier achieved an F1-score of 56.14%
and a balanced accuracy of 52.5%, highlighting the contribution
of the HollywoodSquares data set.
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Figure 4. Confusion matrix for the entirety of the Child Affective Facial Expression data set.

To quantify the contribution of the neural network architecture
itself, we compared the performance of several state-of-the-art
neural network architectures when only including the
HollywoodSquares data set in the training set (Table 3). We
evaluated the following models: ResNet152V2 [49],
ResNet50V2 [49], InceptionV3 [55], MobileNetV2 [56],
DenseNet121 [57], DenseNet201 [57], and Xception [58]. The
same training conditions and hyperparameters were used across
all models. We found that ResNet152V2 performed better than
the other networks when trained with our data, so we used this
model for the remainder of our experiments.

The performance improved, resulting in a balanced accuracy
of 79.1% and an F1-score of 78% on CAFE Subset A (confusion
matrix in Figure 5), a subset containing more universally
accepted emotions labels. When only including the
non-GuessWhat public images in the training set, the model
achieved a balanced accuracy of 65.3% and an F1-score of
69.2%. On CAFE Subset B, the balanced accuracy was 66.4%
and the F1-score was 67.2% (confusion matrix in Figure 6); the
balanced accuracy was 57.2% and F1-score was 57.3% when
exclusively training on the non-GuessWhat public images.
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Table 3. Comparison of several popular neural network architectures trained on the same data seta.

Number of network parametersF1-score (%)Balanced accuracy (%)Model

60,380,64864.264.12ResNet152V2; He et al [49]

25,613,80063.1263.67ResNet50V2; He et al [49]

23,851,78459.6659InceptionV3; Szegedy et al [55]

3,538,98458.1957.63MobileNetV2; Sandler et al [56]

8,062,50459.1958.2DenseNet121; Huang et al [57]

20,242,98458.9557.02DenesNet201; Huang et al [57]

22,910,48060.5858.16Xception; Chollet and François [58]

aDefault hyperparameters were used for all networks.

Figure 5. Confusion matrix for Child Affective Facial Expression Subset A.
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Figure 6. Confusion matrix for Child Affective Facial Expression Subset B.

Classifier Performance Based on Image Difficulty
CAFE images were labeled by 100 adults, and the percentage
of participants who labeled the correct class are reported with
the data set [54]. We binned frames into 10 difficulty classes
(ie, 90%-100% correct human labels, 80%-90% correct human
labels, etc). Figure 7 shows that our classifier performs
exceedingly well on unambiguous images. Of the 233 images

with 90%-100% agreement between the original CAFE labelers,
our classifier correctly classifies 90.1% of the images. The true
label makeup of these images is as follows: 131 happy, 58
neutral, 20 anger, 9 sad, 8 surprise, 7 disgust, and 0 fear images.
This confirms that humans have trouble identifying nonhappy
and nonneutral facial expressions. Of the 455 images with
80%-100% agreement between the original CAFE labelers, our
classifier correctly classifies 81.1% of the images.
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Figure 7. Classifier performance versus original CAFE annotator performance for 10 difficulty bins. The classifier tends to perform well when humans
agree on the class and poorly otherwise. The numbers in parentheses represent the number of images in each bin. This highlights the issue of ambiguous
labels in affective computing and demonstrates that our model performance scales proportionally to human performance. CAFE: Child Affective Facial
Expression.

Discussion

Principal Results
Through the successful application of an in-the-wild child
developmental health therapeutic that simultaneously captures
video data, we show that a pipeline for intelligently and
continuously labeling image frames collected passively from
mobile gameplay can generate sufficient training data for a
high-performing computer vision classifier (relative to prior
work). We curated a data set that contains images enriched for
naturalistic facial expressions of children, including but not
limited to children with autism.

We demonstrate the best-performing pediatric facial emotion
classifier to date according to the CAFE data set. The
best-performing classifiers evaluated in earlier studies involving
facial emotion classification on the CAFE data set, including
images from CAFE in the training set, achieved an accuracy of
up to 56% on CAFE [36,37,39] and combined “anger” and
“disgust” into a single class. By contrast, we achieved a balanced
accuracy of 66.9% and an F1-score of 67.4% without including
any CAFE images in the training set. This is a clear illustration
of the power of parallel data curation from distributed mobile
devices in conjunction with deep learning, and this approach
can possibly be generalized to the collection of training data
for other domains.

We collected a sufficiently large training sample to alleviate
the need for extracting facial keypoint features, as was the case
in prior works. Instead, we used the unaltered images as inputs
to a deep CNN.

Limitations and Future Work
A major limitation of this work is the use of 7 discrete and
distinct emotion categories. Some images in the training set
might have exhibited more than 1 emotion, such as “happily
surprised” or “fearfully surprised.” This could be addressed in
future work by a more thorough investigation of the final
emotion classes. Another limitation is that similar to existing
emotion data sets, our generated data set contains fake emotion
evocations by the children. This is due to limitations imposed
by ethics review committees and the IRB who, understandably
so, do not allow provoking real fear or sadness in participants,
especially young children who may have a developmental delay.
This issue of fake emotion evocation has been documented in
prior studies [4,5,59,60]. Finding a solution to this issue that
would appease ethical review committees is an open research
question.

Another limitation is that we did not address the possibility of
complex or compound emotions [61]. A particular facial
expression can consist of multiple universal expressions. For
example, “happily surprised,” “fearfully surprised,” and even
“angrily surprised” are all separate subclasses of “surprised.”
We have not separated these categories in this study. We
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recommend that future studies explore the possibility of
predicting compound and complex facial expressions.

There are several fruitful avenues for future work. The paradigm
of passive data collection during mobile intervention gameplay
could be expanded to other digital intervention modalities, such
as wearable autism systems with front-facing cameras
[7,8,11,13-17]. This paradigm can also be applied toward the
curation of data and subsequent training of other behavioral
classifiers. Relevant computer vision models for diagnosing
autism could include computer vision–powered quantification
of hand stimming, eye contact, and repetitive behavior, as well
as audio-based classification of abnormal prosody, among
others.

The next major research step will be to evaluate how systems
like GuessWhat can benefit from the incorporation of the

machine learning models back into the system in a closed-loop
fashion while preserving privacy and trust [62]. Quantification
of autistic behaviors during gameplay via machine learning
models trained with gameplay videos can enable a feedback
loop that provides a dynamic and adaptive therapy for the child.
Models can be further personalized to the child’s unique
characteristics, providing higher performance through
customized fine-tuning of the network.

Conclusions
We have demonstrated that gamified digital therapeutic
interventions can generate sufficient data for training
state-of-the-art computer vision classifiers, in this case for
pediatric facial emotion. Using this data curation and labeling
paradigm, we trained a state-of-the-art 7-way pediatric facial
emotion classifier.
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