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Abstract

Mathematical models of cardiac electro-mechanics typically consist of three tightly coupled parts: 

systems of ordinary differential equations describing electro-chemical reactions and cross-bridge 

dynamics in the muscle cells, a system of partial differential equations modelling the propagation 

of the electrical activation through the tissue and a nonlinear elasticity problem describing the 

mechanical deformations of the heart muscle. The complexity of the mathematical model 

motivates numerical methods based on operator splitting, but simple explicit splitting schemes 

have been shown to give severe stability problems for realistic models of cardiac electro-

mechanical coupling. The stability may be improved by adopting semi-implicit schemes, but these 

give rise to challenges in updating and linearising the active tension. In this paper we present an 

operator splitting framework for strongly coupled electro-mechanical simulations and discuss 

alternative strategies for updating and linearising the active stress component. Numerical 

experiments demonstrate considerable performance increases from an update method based on a 

generalised Rush–Larsen scheme and a consistent linearisation of active stress based on the first 

elasticity tensor.
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1. Introduction

The pumping of the heart is the result of a complex interaction between electro-chemical 

reactions in the heart cells, passive mechanical properties of the heart muscle tissue and the 

haemodynamics of the circulatory system. Given the clinical importance of the heart, it is 

not surprising that all of these processes have been studied extensively. As a result, we now 

have detailed knowledge of these processes covering the full range of spatial scales, from 
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sub-cellular all the way to the complete organ level. However, in spite of these advances, 

much is still unknown, both of certain critical processes such as cross-bridge interaction and 

cooperative mechanisms (see for instance Rice and deTombe 2004). Development of 

detailed mathematical models for each process, which can be combined into complete 

computational models of heart electro-mechanics, is a valuable research activity for 

advancing this knowledge further. However, although remarkable progress has been 

achieved in this area, the development is slowed by the complexity and multi-scale nature of 

the equations, and the lack of efficient computational methods for full-scale heart modelling.

When modelling the contracting heart muscle, it is convenient to view the process as 

consisting of three tightly integrated parts: (i) electro-chemical reactions in the cardiac 

myocytes, causing cross-bridge cycling and active tension development in the cells; (ii) 

conduction of the electrical signal from cell to cell by means of membrane depolarisation 

and (iii) deformation caused by the balance of contractile forces, passive mechanical 

properties of tissue and loading induced by the blood pressure inside the cavities. Very 

detailed and accurate mathematical models exist for all these parts. On the cellular level, 

electrophysiological states such as membrane channels and ionic concentrations are 

described in impressive detail, and, although they have to some extent lagged behind the 

electrophysiology models, models of myofilament interaction and force development are 

becoming increasingly accurate. The CellML web page (2012) provides an extensive 

repository of both electro-physiology and contraction models. On a tissue level, models 

based on the bidomain concept have been widely accepted as descriptions of cardiac 

activation (see e.g. Lines et al. 2002), whereas the mechanical deformations can be 

described by the fundamental laws of continuum mechanics. A wide range of constitutive 

relations have been developed for the material behaviour of the muscle (see e.g. Holzapfel 

and Ogden 2009 for a recent example).

The mathematical models for the various processes may be readily coupled together, but 

solving the resulting systems of differential equations remains a challenge. Examples of 

coupled electro-mechanics simulations in the literature employ a variety of different solution 

methods. Some studies have employed advanced models for the mechanics, but computed 

the activation sequence prior to and independently from the deformations (Usyk et al. 2002; 

Kerckhoffs et al. 2003). Others have solved the problem fully coupled, including mechano-

electric feedback, but have used simplified models both for electrophysiology and 

mechanical properties (see Nash and Panfilov 2004). In Nickerson et al. (2005), the 

electrophysiology and mechanics equations were solved in a coupled manner using 

biophysically detailed models for cellular reactions and contraction. An improved 

computational method for strongly coupled simulations was presented by Niederer and 

Smith (2008), targeting the contraction model of Niederer et al. (2006), whereas 

Pathmanathan and Whiteley (2009) present a different algorithm for the same contraction 

model. Other studies, Campbell et al. (2009) and Gurev et al. (2011a, 2011b), have 

presented strongly coupled simulations based on the contraction model of Rice et al. (2008), 

and Göktepe and Kuhl (2009) have presented a fully implicit solution scheme for coupled 

cardiac electro-mechanics. Recent studies (Land et al. 2012; Lafortune et al. 2012) have 

studied computational efficiency of electro-mechanical simulations on different 

computational architectures.
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The aim of this paper was to present an operator splitting framework for computer 

simulations of strongly coupled cardiac electro-mechanics and to discuss alternative solution 

methods for the resulting sub-problems. The splitting method separates the overall model 

into three tightly linked sub-problems corresponding to (i)–(iii) above and combines sub-

problem solutions to obtain a robust solution method for the coupled problem. The main 

focus of the paper is on deriving stable and accurate schemes for solving the mechanics sub-

problem, and we mainly focus on the contraction model of Rice et al. (2008). This model 

features a different deformation–force feedback formulation from Niederer et al.’s (2006) 

model and related contraction models. The added detail and complexity of the feedback 

model gives rise to additional challenges in deriving a stable solution scheme.

The paper is organised as follows. In Section 2, we describe the mathematical models for the 

three subprocesses included in the modelling and show how they are coupled to form a 

complete mathematical model. In Section 3, the proposed numerical method is presented, 

with emphasis on methods for the mechanics sub-problem. Section 4 presents numerical 

results to investigate the performance of the alternative methods, whereas Section 5 contains 

a short summary and concluding remarks.

2. Mathematical model

The mathematical model for cardiac electro-mechanics can be written as a system of 

ordinary differential equations (ODEs) and partial differential equation (PDEs):

(1)

(2)

(3)

(4)

with the constitutive relations

(5)

(6)

(7)

and the boundary conditions
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(8)

(9)

(10)

(11)

(12)

In the above equations, the system of ODEs for cell electrophysiology and excitation–

contraction coupling is given by (1), where s is the vector of state variables at time t, 

typically describing membrane channels and intracellular ionic concentrations. The 

transmembrane potential v is the difference between the intracellular potential ui and the 

extracellular potential ue, and λ is the fibre extension ratio, i.e. the current sarcomere length 

divided by the slack length. A comprehensive overview of cell electrophysiology and 

mechanics is found on the CellML web page (2012). Models for active force development 

include simple models like the model applied by Nash and Panfilov (2004), as well as more 

detailed contraction models like the Hunter–McCulloch–ter Keurs (HMT) model (see 

Hunter et al. 1998) and the model by Rice et al. (2008). The cell electromechanics models 

obtained by combining these two types of models show large variations in complexity due to 

their physiological level of detail. For instance, the model applied by Nash and Panfilov 

consists of only three ODEs, whereas the main model addressed in this paper has 40 ODEs. 

This model results from combining the model of Winslow et al. (1999) for cell 

electrophysiology with the model of Rice et al. (2008) for force development. Some 

numerical results are presented for a model which combines Winslow et al.’s model with the 

HMT model for mechanics, resulting in a system of 32 ODEs. In brief, the coupled electro-

mechanics model is formed by taking intracellular calcium predicted by the 

electrophysiology model as input to the contraction model. Since the binding of Ca to 

Troponin C (TnC) is described by all three models, there is some redundancy in the coupled 

model which needs to be resolved. For coupling Winslow et al.’s model to the HMT model, 

we have used calcium binding equations from Winslow et al.’s model, but modified for 

stretch dependence according to the HMT model. Rice et al.’s model uses two ODEs to 

describe Ca2+ binding to TnC, and in the coupled model we have replaced the single 

equation in Winslow et al.’s model by these two. Several alternative coupled models exist as 

described, for instance, in Nickerson et al. (2001), Campbell et al. (2009) and Gurev et al. 

(2011a, 2011b).

The propagation of the electrical pulse is described by bidomain model, (2) and (3) (Tung 

1978). Here, Iion is the total ionic current, which has been scaled with the membrane 

capacitance. Moreover, Mi and Me are the intracellular and extracellular conductivity 

tensors, respectively, which have been scaled with the membrane capacitance and the cell 
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membrane area to volume ratio (see, for instance, Sundnes et al. 2005, 2006, for details on 

the scaling). For simplicity we consider an isolated heart, where the no-flux boundary 

conditions (8) and (9) apply to the complete boundary. Also note that (2) and (3) are solved 

on the undeformed geometry, and we do not consider the effect of deformation on the tissue 

conductivity, as described by Nash and Panfilov (2004).

The mechanical behaviour is described by the equilibrium Equation (4), combined with the 

constitutive relations (5)–(7). Here F is the deformation gradient, whereas S is the second 

Piola–Kirchhoff stress tensor. A total Lagrangian formulation is employed in (4), in which 

all quantities are mapped back to the reference geometry H (i.e. at t = 0; see e.g. Holzapfel 

2000). As expressed in (5), the second Piola–Kirchhoff stress tensor is written as a sum of a 

passive part Sp and an active part Sa. Assuming that the myocardium can be modelled as a 

hyperelastic material, the passive part of the second Piola–Kirchhoff stress tensor (6) is 

defined as the first derivative of the strain energy function Ψ with respect to the components 

of the Green–Lagrange strain tensor. Examples of widely used models for passive tissue 

behaviour can be found in Guccione et al. (1995), Hunter et al. (1998), Usyk et al. (2000) 

and Holzapfel and Ogden (2009). For the numerical experiments presented in this paper, we 

have employed the transversely isotropic version of the exponential strain energy function 

from Usyk et al. (2002):

(13)

(14)

Here C, Ccompr, bff, bxx and bfx are material parameters, Eij are components of the Green–

Lagrange strain tensor E and J is the determinant of the deformation gradient F. The 

material is modelled as slightly incompressible, in which the penalty factor Ccompr in (13) is 

adjusted to control the volume changes.

The active part of the second Piola–Kirchhoff stress tensor is expressed in (7), where σa is 

the active Cauchy stress tensor. Referred to a local fibre coordinate system, only the normal 

stress components (i.e. the diagonal components) of the active Cauchy stress tensor are non-

zero. The active force development in cardiac muscle is triggered by an increase in 

intracellular calcium concentration, which is contained in the state vector s described above. 

In addition, the force is known to depend on the extension ratio λ and its time derivative, 

denoted by λ̇. As noted above, we compute the fibre tension from two alternative models: 

the HMT model and the model by Rice et al. (2008). The HMT model includes the reference 

tension Tref as a model parameter, and we apply the same parameter to scale the normalised 

tension produced by the model of Rice et al. (2008). We refer to the original publications for 

the details on the active tension formulations. Although intuitively one will expect the force 

developed by the cardiac cells to be primarily directed in the direction of the fibres, 

experimental results indicate significant active forces in the transverse directions (see e.g. 
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Lin and Yin 1998). We compute the transverse stress components by introducing two 

additional material constants γs and γn, and setting σss = γsσff and σnn = γnσff.

For the mechanical part of the problem it is appropriate to divide the boundary into three 

disjoint sub-domains, ∂H = ∂H1 ∪ ∂H2 ∪ ∂H3. We apply displacement con-ditions to certain 

parts of the boundary ∂H1, an externally applied constant normal stress load σ̄1 to other parts 

∂H2, and a time-dependent externally applied normal stress load σ̄2 to the rest of the 

boundary ∂H3, expressed by (10)–(12), respectively. Typically, the time-dependent normal 

stress load will be applied to the endocardial surface of the ventricle, to mimic the effect of 

the blood pressure for the different phases of the heart cycle. The temporal changes of blood 

pressure may be described by sophisticated closed-loop circulation models, as described in 

Kerckhoffs et al. (2007), but for this study we adopt a simpler approach. In the passive 

filling phase we apply a prescribed pressure increasing in time, while in the other phases the 

pressure depends on the deformation state, and has to be determined through an iterative 

procedure. In the isovolumic phases the pressure load must fulfil the constant cavity volume 

constraint, whereas in the ejection phase the pressure load (and cavity volume) is obtained 

from a two-element Windkessel model:

(15)

where V is the cavity volume, p is the cavity pressure, Cart is the total arterial compliance, p0 

is the venous pressure and Rper is the total peripheral resistance. Furthermore, a constant 

normal stress load is often employed at the epicardial surface of the ventricle. Displacement 

restrictions are applied at certain points of the boundary to avoid rigid body motions. The 

normal vector η refers to the reference geometry H.

3. Numerical methods

In this section we introduce the operator splitting framework for solving the strongly 

coupled electromechanics problem. The solvers for the electro-physiology sub-problem are 

briefly described, while most of the section is devoted to methods for updating and 

linearising active tension. As shown in Niederer and Smith (2008), these steps are crucial for 

the efficiency and reliability of the numerical scheme.

3.1 Operator splitting

Equations (1)–(12) define a highly complex system of nonlinear ODEs and PDEs, for which 

it is difficult to design efficient solution techniques. Although examples of fully coupled 

splitting methods exist (see e.g. Göktepe and Kuhl 2009), the majority of published methods 

are based on some form of operator splitting (see e.g. Niederer and Smith 2008; Campbell et 

al. 2009; Gurev et al. 2011a, 2011b).

We propose a Gauss–Seidel approach to separate the nonlinear elasticity problem from the 

cellular reactions and the bidomain model. Moreover, a Godunov splitting is employed to 

separate the nonlinear ionic current term from the bidomain model, as described in Sundnes 

et al. (2005). The proposed approach results in an algorithm by which three sub-problems 
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are solved at each time step: a nonlinear ODE system for each nodal point describing 

cellular reactions (including both cell electrophysiology and the ODEs describing cross-

bridge activation), a linear system of PDEs modelling propagation of the electrical signal 

and a nonlinear elasticity equation describing the mechanical deformations. Assuming that 

the fields vn, sn and un are known at time tn, one time step of the algorithm can be written as 

follows:

1. Solve the ODE system

(16)

(17)

to determine the updated state vector sn+1 and an intermediate approximation v* for 

the membrane potential (see Sundnes et al. 2005, for details). For solving these 

ODE systems we employ a third-order Singly Diagonally Implicit Runge Kutta 

(SDIRK) method with adaptive time stepping, as described in Sundnes et al. 

(2001).

2. Use v(tn) = v* as initial condition and solve the linear PDE system

(18)

(19)

for x ∈ H and tn < t ≤ tn+1, to obtain the transmembrane potential vn+1 and the 

extracellular potential ue,n+1 at time tn+1. A common approach is to solve these 

equations one by one in a sequential manner, as described in Skouibine et al. 

(2000) and Lines et al. (2002). However, we have chosen to discretise this system 

fully coupled, applying a backward Euler scheme in time and a Galerkin method in 

space. The resulting block-structured linear system is solved with a multigrid 

preconditioned conjugate gradient method, as described in Sundnes et al. (2002).

3. Employ the most recent value of the state vector sn+1 in the calculation of the active 

stress tensor Sa and solve the nonlinear equilibrium equation

(20)

to determine the new displacement vector field un+1. This nonlinear equation is 

solved using Newton’s method and a standard finite element spatial discretisation 

derived from the linearised weak form of (20) (see e.g. Holzapfel 2000 for a 

detailed derivation). Note that because the active stress depends strongly on the 

fibre stretch λ and its time derivative λ̇, it is crucial that this part is updated for 
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every Newton iteration. Efficient techniques for updating and linearising the active 

stress component of recent cell contraction models are discussed in detail below.

The convergence of the complete numerical method will be governed by the accuracy of the 

splitting algorithm, as well as the accuracy of the solvers for the sub-problems. The Gauss–

Seidel method and the Godunov splitting can be shown to be first order accurate methods. 

The convergence of the total algorithm is therefore limited to first order.

An additional advantage of operator splitting is the convenience of employing different 

spatial and temporal discretisations, to reflect the different scales of the subproblems. For 

the present problem we will use a relatively coarse mesh and time step for the mechanics 

part and for the communication between mechanics and electrophysiology, whereas the 

bidomain model is solved on a finer mesh and with smaller time steps. The 

electrophysiology solver is based on a geometric multigrid method (see Sundnes et al. 

2002), and the mesh used for the mechanics equations is simply the coarsest mesh of the 

grid hierarchy. This approach facilitates the interpolations and restrictions necessary to 

communicate variables between the two subproblems. The cell equations in Step (1) are 

solved using an adaptive time step, which is very small in the upstroke phase and identical to 

the bidomain time step during the smoother time intervals (see Sundnes et al. 2001).

3.2 Discretisation and linearisation of active tissue mechanics

The main purpose of this study is to evaluate different techniques for solving the nonlinear 

elasticity problem defined by (20) and the constitutive relations (5)–(7), (13) and (14). The 

main challenges of this problem are related to the handling of active stress, because of its 

strong dependence on both deformation and the cellular states governed by (16) and (17). In 

essence, the challenge is to derive a stable and efficient time discretisation scheme for the 

differential-algebraic system composed by the ODEs (16) and (17) and the constraint (20).

3.2.1 Update methods for the active stress—The most intuitive approach to Step 3 of 

the algorithm above would be to insert the updated state vector sn+1 in (7) to compute Sa, 

and then solve (20) for mechanical equilibrium while holding Sa fixed. As shown by 

Whiteley et al. (2007) and Niederer and Smith (2008), this approach leads to severe stability 

problems for all realistic models of cardiac contraction, because of the strong dependence of 

dynamic tension on strain and strain rate.

As shown by Niederer and Smith (2008), the stability problems can be resolved by re-

calculating the dynamic tension for every Newton iteration using updated strain fields. With 

this approach, relations (5)–(7) may be viewed as a parameterised constitutive law for the 

heart tissue. For a given parameter s, Equations (5)–(7) yield a unique relation between 

strains/strain rates and stresses. The update of dynamic tension is conveniently realised for 

the HMT model and related models (see Niederer et al. 2006). The reason is that these 

models formulate the active tension as a product of a tension depending on states s, and 

scaling factors depending on λ and λ̇. For these models the state-dependent tension may 

therefore be held constant over a time step, while the scaling factors are updated for every 

iteration.
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A popular and fairly recent model for cardiac contraction is the model by Rice et al. (2008). 

The force development in this model is based on the cross-bridge distortion model of 

Razumova et al. (1999), which describes the cross-bridges as linear springs. The developed 

tension is proportional to the number of cross-bridges occupying strongly bound states, 

multiplied with their average distortion. Rice et al. (2008) assume the cross-bridges cycle 

through four states, out of which two contribute to tension development. This gives the 

following general behaviour of the dynamic tension:

(21)

Here XBPre R and XBPost R are fractions of cross-bridges in the strongly bound pre- and post-

rotation states, and xXBPre R and xXBPost R are their respective distortions. We refer to Rice 

et al. (2008) for a full description of the active tension and the remaining states of the model.

The critical variables in this context are the cross-bridge distortions xXBPre R and xXBPost R, 

as these are the variables mainly responsible for the deformation–force feedback. All other 

model variables, including XBPre R and XBPost R, are only weakly dependent on deformation, 

and are therefore easily adapted to the operator splitting scheme outlined above. The 

challenge of the distortion states is that they depend strongly on both deformation and state 

changes, as becomes evident from the governing ODEs:

(22)

(23)

The first terms on the right-hand sides of (22) and (23) represent the effect of sarcomere 

length changes (SL = λSL0) on cross-bridge distortion, whereas the rightmost terms 

represent distortion changes resulting from cross-bridge cycling. Here fapp T and hbT are 

constants; hfT is a function of xXBPre R; ϕ and x0 are constants and  and 

 are steady-state solutions of cross-bridge states assuming full activation. See 

Rice et al. (2008) for a complete specification of these terms.

In this study we will investigate three different approaches to handling the deformation–

force feedback mechanisms described by (22) and (23).

1. The first scheme is a modified version of the semi-implicit scheme proposed by 

Campbell et al. (2009) and Pathmanathan and Whiteley (2009). The idea is that 

when solving (20) for mechanical equilibrium, a subset of the ODEs is re-

integrated over the most recent time step using the updated deformation state (λ and 

λ̇). This will ensure that all deformation-dependent states are sufficiently updated. 

In Campbell et al. (2009), all states contributing directly to the active tension were 

re-integrated for every iteration (XBPre R, XBPost R, xXBPre R and xXBPost R). In 
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order to minimise the book-keeping and communication between sub-problem 

solvers, we choose to reintegrate only the state variables that are strongly 

dependent on deformation (xXBPre R and xXBPost R). Hence, for every Newton 

iteration, (22) and (23) are re-integrated using a single forward Euler (FE) step, 

using the most recent value for SL and a finite difference approximation for dSL/dt. 

In the following, we will refer to this scheme as the FE method.

2. The second approach to be examined takes advantage of the particular structure of 

(22) and (23). We introduce new variables xSL,  and , such that 

 and . The new variables are 

governed by

(24)

(25)

(26)

The motivation for this splitting is that only xSL will be strongly dependent on 

deformation, so that the state-dependent variables  and  can be 

kept constant through the Newton loop. Furthermore, (26) can be solved 

analytically to give

where SL0 is the initial sarcomere length. This variable is conveniently updated 

inside each Newton iteration. In the following, we will refer to this method as the 

xSL method.

3. The third update scheme is a modification of the first one. We observe that if we 

keep the rate function hfT in (23) constant at its known value from time tn, (22) and 

(23) become linear in xXBPre R and xXBPost R. If we also introduce the finite 

difference approximation dSL/dt ≈(SLn+1 − SLn)/Δt, the resulting quasi-linear 

equations can be solved analytically. This solution method is often referred to as a 

generalised Rush–Larsen (GRL) scheme (Rush and Larsen 1978; MacLachlan et al. 

2007), and gives explicit update formulas for xXBPre R and xXBPost R:

(27)
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(28)

with the steady-state values and time constants given by

We see that the equations are updated one by one using the known value from time 

tn for  in the update of xXBPre R and vice versa. The equations could also 

be solved as a system of two quasi-linear ODEs, which would require computing 

eigenvalues and eigenvectors of a two-by-two matrix. Although in certain cases 

this approach has been shown to give increased accuracy and stability, we have 

chosen to avoid this additional complexity. We will refer to this scheme as the GRL 

method.

All three update schemes treat the velocity term dSL/dt as constant over a time step and are 

in this respect similar to the update scheme proposed by Niederer and Smith (2008). 

However, as the formulation of velocity dependence is very different in Rice et al.’s (2008) 

model compared with Niederer et al.’s (2006), the update schemes also differ substantially. 

The performance of the three alternative update schemes is evaluated and compared below.

3.2.2 Linearisation of the active stress—All the update schemes outlined above lead 

to an active stress tensor that is a nonlinear function of the current strain. Any explicit 

dependence on strain rate (λ̇) is avoided through a finite difference approximation that 

defines the strain rate as a function of current strain. For stable and efficient solution of (20), 

both the active and passive stress tensor in (5) must be linearised with respect to the 

displacement. The passive stress component Sp is derived from a strain energy function in 

the usual way, and the linearisation follows the standard steps from textbooks on nonlinear 

solid mechanics (see e.g. Holzapfel 2000). However, the formulation of the active stress is 

very different, and standard linearisation methods prove to be less suitable for this part.

Linearisation using the second elasticity tensor: The most common linearisation 

technique found in text books on nonlinear solid mechanics starts from (20) and proceeds to 

replace F and S by consistent linearisations around known states F0 and S0 along a direction 

Δu:

(29)
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(30)

Here ∇(Δu) is the gradient of the increment in the displacement field, whereas ΔE is the 

increment in the Green–Lagrange strain (see, for instance, Holzapfel 2000, for a detailed 

discussion of the linearisation process). Furthermore,  is the second elasticity tensor, which 

is a fourth-order tensor that characterises the tangential stiffness of the tissue around the 

current stress state S0. Introducing vector-valued trial and test functions ϕi and ϕj, the 

approximations (29) and (30) lead to a stiffness matrix of the form

(31)

The components of  are computed as partial derivatives of S with respect to the Green–

Lagrange strain S:

For the passive elastic stress, given by (6), the second elasticity tensor is readily computed 

as second derivatives of the strain energy function:

For the active component of the stress, the situation is more complicated. As seen in (7) the 

active stress is normally defined in terms of a Cauchy stress tensor, which is pulled back to 

the reference configuration. The differentiation of Sa with respect to components Eij is 

complicated by the fact that the non-symmetric deformation gradient F contains more 

information than the symmetric Green–Lagrange strain E. It is in general not possible to 

compute the components of F from the components of E, and it is therefore difficult to 

differentiate Sa with respect to E. A reasonable approximation may be obtained by 

differentiating σa with respect to the strains, and treating the deformation gradients in (7) as 

constants. However, as will be demonstrated below, this approach gives reduced 

convergence.

The standard linearisation technique is hence well suited for constitutive laws that are based 

on the second Piola–Kirchhoff stress tensor, but much less so for stress–strain laws that are 

naturally expressed in terms of the Cauchy stress or the first Piola–Kirchhoff stress.

Linearisation using the first elasticity tensor: For constitutive laws involving the Cauchy 

stress or the first Piola–Kirchhoff stress, which includes the most common models of the 

active stress component in the heart, it is more convenient to base the linearisation on a 
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slightly different formulation of mechanical equilibrium. The first Piola–Kirchhoff stress is 

given by P = FS, and consequently, (4) can be expressed as

The linearisation of P around a known stress state P0 in the direction Δu can be written as

(32)

where  is known as the first elasticity tensor, and defined as

In the finite element framework, the linearisation in (32) leads to a stiffness matrix 

formulation in the following form:

(33)

For the active–passive decomposition of the stress that we employ in the heart muscle,  is 

naturally decomposed into two separate terms:

The passive constitutive law is defined in terms of the Green–Lagrange strain and the 

second Piola–Kirchhoff stress, but the first term in  can still be computed easily by 

numerical differentiation of

As introduced above, the constitutive law for the active stress is normally given in terms of 

either first Piola–Kirchhoff or Cauchy stress, which are both easy to differentiate with 

respect to the components of F. For the active stress law applied above, which yields the 

active part of the second Piola–Kirchhoff stress as a pull-back of a Cauchy stress tensor, we 

first need to convert this to a first Piola–Kirchhoff stress,
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Extracting the components of  by numerical differentiation of this term with respect to F 
is trivial.

A mixed elasticity tensor: We have seen above that the active stress is most conveniently 

linearised using the first elasticity tensor, whereas both the first and second elasticity tensor 

may be applied for the passive stress component. Although in principle the two linearisation 

approaches are equivalent for the passive stress component, the use of numerical 

differentiation gives rise to small differences between the two formulations. Following the 

standard approach, a number of analytical steps are applied to arrive at the stiffness matrix 

formulation in (31), and numerical differentiation is applied only to establish the tensor Cijkl. 

In the techniques based on the first elasticity tensor, the analytical steps are replaced by a 

single numerical differentiation step to achieve the stiffness matrix in (33). This is 

potentially less accurate and motivates the use of (31) whenever possible, and (33) only for 

the active stress component. Using this approach, the combined finite element stiffness 

matrix becomes

(34)

Here  is the passive stress from the previous iteration, F is the deformation gradient from 

the previous iteration and  and  are the second elasticity tensor for the passive stress and 

the first elasticity tensor for the active stress, respectively.

4. Numerical results

In this section, we evaluate the performance of the three different semi-implicit update 

schemes outlined above, and the three alternative methods for linearising the active stress 

tensor.

4.1 Update schemes for active contraction

Stable update schemes for the HMT model and related contraction models were extensively 

studied in Niederer and Smith (2008). As noted above, we therefore focus on update 

schemes for the contraction model by Rice et al. (2008) and compare the performance of the 

three update methods outlined above (FE, xSL and GRL). The performance evaluation is 

based on a simplified test case, in which a single cell is stimulated and allowed to contract 

freely against a nonlinear elastic force. For this simplified deformation state, an 

incompressible form of (13) and (14) may be expressed in terms of λ and the hydrostatic 

pressure p:

The elastic force is assumed to be in parallel with the active contractile force, and assuming 

no external forces the equilibrium equation reduces to
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(35)

For s given, this is a system of two equations (zero stress in fibre and cross-fibre direction) 

and two unknowns (λ and p). The transverse component may be used to eliminate p and 

formulate the relation in terms of λ and s only. The system hence reduces to a differential-

algebraic system consisting of ODEs (16) and (17) and a scalar constraint derived from (35). 

The material parameters are C = 0.876 kPa, bff = 20, bxx = 4, Tref = 125 kPa and γs = γn = 

0.2.

The results of the test simulations are summarised in Table 1. The table shows the relative 

root mean square (RRMS) errors for all simulation schemes, using a reference solution 

based on the FE scheme and a very small time step. Computing the reference solution with 

any of the other schemes did not change the results significantly. The step sizes referred to 

in the table are the global time steps for the operator splitting scheme defined above, 

whereas the cell model ODEs are stepped forward using smaller internal steps. We see that 

the FE scheme, as applied here, suffers from severe stability problems, failing to converge 

for time steps larger than 0.1 ms. This problem could most likely be solved by taking several 

internal FE steps to update the cross-bridge distortions inside every Newton iteration, but 

due to the additional complexity associated with multiple internal steps, we did not 

investigate this further. The two other schemes both produce stable solutions at all choices 

of the global time step, and both methods appear to give first-order convergence. The 

accuracy of the two schemes is, however, significantly different, with the GRL scheme 

generally producing lower errors than the xSL scheme. This is illustrated further in Figure 1, 

in which we see that the xSL scheme converges very slowly, and does not produce 

satisfactory solutions for time steps of 5.0 and 1.0 ms.

4.2 Efficiency of linearisation methods

A second set of numerical experiments has been run to evaluate the linearisation methods 

for the combined active and passive stress tensors. We employ three different test cases: (i) 

active, free contraction of a tissue slab, as illustrated in Figure 2; (ii) passive inflation of the 

bi-ventricular geometry displayed in the left panel of Figure 3 and (iii) a complete, dynamic, 

heart cycle based on the same bi-ventricular geometry.

Case (i) is based on uniform activation and stress-free boundaries, making this 3D 

experiment very similar to the zero-dimensional case in Section 4.1. The left panel of Figure 

2 shows the initial geometry (outline) and the maximally contracted slab (mesh). The initial 

dimensions are 5.0 × 0.5 × 0.5 cm3, which is represented by a finite element mesh of 80 

trilinear elements (20 × 2 × 2). The material parameters are set to C = 0.876 kPa, bff = 20, 

bxx = bfx = 4, Tref = 55 kPa, Ccompr = 100 kPa and γs = γn = 0.2. At maximal shortening the 

slab measures 3.71 × 0.56 × 0.56 cm. The volume reduction during contraction is 

approximately 7%, which is reasonably realistic for cardiac tissue. The right panel of Figure 

2 shows the resulting fibre shortening. In Case (ii) the active stress is zero, reducing this 

example to a fairly standard case of nonlinear hyperelasticity, with the material law (13) and 

(14) and boundary conditions outlined in Section 2. The endocardial pressure is ramped 

from zero to a specified end diastolic pressure in 28 steps. For the left ventricle the end 
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diastolic pressure is set to 1.8 kPa, whereas for the right ventricle it is set to 0.7 kPa. Case 

(iii) is initiated with the same passive inflation as in (ii), but continues through the 

isovolumic contraction, ejection and isovolumic relaxation, employing the haemodynamic 

boundary conditions outlined in Section 2. For Cases (ii) and (iii), the mechanical material 

parameters are C = 0.45 kPa, bff = 20, bxx = 5, bfx = 8, Tref = 27.5 kPa, Ccompr = 50 kPa, γs 

=0.4 and γn = 0. The finite element mesh consists of 6270 trilinear elements with 8088 

nodes. The bidomain conductivities are as specified in Sundnes et al. (2006), but with the 

surface to volume ratio set to 1 cm− 1. The right panel of Figure 3 shows the resulting 

pressure volume loop.

The results of the four test cases are summarised in Table 2. The table shows the total 

Newton iterations and the normalised CPU times for the three different linearisation 

methods. For both cases of the actively contracting tissue slab, the linearisation based on the 

first elasticity tensor takes considerably fewer iterations than the standard approach. 

Although each iteration is slightly more expensive for the approach based on the first tensor, 

we still see a considerable reduction in CPU time. The mixed elasticity tensor gives exactly 

the same iteration numbers as the first elasticity tensor, but slightly higher CPU times due to 

the increased cost of computing two separate stiffness tensors.

As expected, we see that all three methods give very similar results for the passive inflation 

test case. In fact, the iteration numbers are identical for all three methods, which indicates 

that any roundoff error introduced by using the first elasticity tensor is insignificant. In terms 

of CPU time the mixed elasticity tensor gives the worst performance, since there is some 

overhead associated with computing two different elasticity tensors.

For the dynamic pressure–volume (PV) loop simulations in Case (iii), we see that the 

formulation based on the mixed elasticity tensor outperforms the other two in terms of 

number of iterations, while taking some additional CPU time compared with the method 

based on the first elasticity tensor. Linearisation based on the second elasticity tensor gives 

the worst performance both in terms of iterations and CPU time. Since this test case is the 

most realistic and relevant for our application, and also by far the most CPU demanding, we 

are led to the conclusion that linearisation based on the first elasticity tensor is the preferred 

method for actively contracting heart tissue. Any theoretical advantage offered by the mixed 

elasticity tensor seems to be outweighed by the additional cost of computing the two 

separate tensors.

5. Summary and discussion

We have presented an operator splitting algorithm for simulating strongly coupled cardiac 

electro-mechanics and discussed a number of challenges related to the stability and 

convergence of the active stress computations. Stability problems associated with operator 

splitting for strongly coupled simulations were analysed in detail in Niederer and Smith 

(2008), and a stable scheme based on a semi-implicit update scheme was presented. The 

scheme of Niederer and Smith was applicable for the HMT model and related models for 

cell contraction, for which the dynamic force is expressed as the product of an isometric 

force and a scaling factor accounting for the effect of deformation. We have extended the 
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discussion of semi-implicit update schemes to the widely used model from Rice et al. 

(2008), for which the form of the update scheme is less intuitive. We have proposed three 

different update schemes for Rice et al.’s model, and evaluated their performance for a 

simple test case. The results indicate that two of the solution schemes give stable solution 

for a wide range of time steps, but only the method based on the GRL scheme has sufficient 

accuracy for our application.

The introduction of semi-implicit schemes for active tension gives rise to additional 

challenges in linearisation of the stress equilibrium equation. The active stress component is 

typically given in terms of the Cauchy stress or first Piola–Kirchhoff stress, which makes it 

difficult to employ the most common linearisation technique used in nonlinear elasticity. 

This problem can be overcome by adopting a slightly different formulation of the stress 

equilibrium, and basing the linearisation on the first elasticity tensor. This improves the 

accuracy of the linearisation of active stress and leads to improved convergence of Newton’s 

method.

A limitation of this study is the relatively small selection of models and test cases. We have 

chosen to focus on the contraction model by Rice et al. (2008), since this is widely used in 

the field and introduces additional challenges compared with earlier models based on the 

HMT model. The model is also representative for other recently developed contraction 

models (see e.g. Campbell et al. 2009). However, other models of cell dynamics may give 

rise to additional and different challenges that have not been addressed in this study. With 

the demonstrated performance of the GRL scheme, a particularly relevant study is to 

evaluate the applicability of this scheme for a wider range of active tension models. 

Furthermore, although we have chosen the numerical experiments to best highlight the 

performance differences between the methods, the conclusions may not be valid for all cases 

of realistic, strongly coupled electromechanics simulations. To the extent possible, more 

extensive studies based on highly refined and realistic test cases should form the basis for a 

choice of numerical method.

Although operator splitting has obvious advantages for the complex equation system 

describing coupled cardiac electro-mechanics, examples of fully coupled solution schemes 

are available in the literature (Göktepe and Kuhl 2009). Given the stability issues discussed 

both in Niederer and Smith (2008) and in this study, we may argue that the various update 

schemes and semi-implicit splitting methods should be replaced by a fully implicit solution 

method. A natural extension of this study would be to evaluate the performance of state of 

the art splitting methods against fully coupled solution schemes.
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Figure 1. 
Plots of developed dynamic force for three different time steps, using the xSL update 

method (left) and the GRL update method (right). The solid curve is the reference solution, 

whereas the dashed, dash-dotted and dotted curves are produced with 5.0, 1.0 and 0.125 ms, 

respectively.
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Figure 2. 
Illustration of the active contraction tests using the thin slab geometry. The left panel shows 

the resting geometry (outline) and the fully contracted geometry (mesh). The right panel 

shows the time development of the fibre stretch ratio λ over a time course of 500 ms.
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Figure 3. 
Illustration of the test cases based on a human-sized bi-ventricular geometry. The left panel 

shows the computational grid used both for passive inflation and the complete, dynamic 

heart cycle. The right panel shows the PV loops obtained from the dynamic simulation.
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Table 1

Convergence results for the three proposed numerical schemes for active force computations.

Δt FE xSL GRL

5.0 – 0.66 0.037

1.0 – 0.22 0.0075

0.5 – 0.088 0.0034

0.25 – 0.030 0.0015

0.125 – 0.0085 0.00067

0.0625 0.00041 0.0045 0.00032

Note: The errors displayed are RRMS errors of the dynamic force.
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Table 2

Comparison of the three alternative linearisation methods for four different test cases.

1st tensor 2nd tensor Mixed tensor

Free contraction of HMT 144 (1.0) 282 (1.55) 144 (1.19)

Free contraction of Rice et al. 174 (2.22) 227 (2.42) 174 (2.39)

Passive inflation 144 (87.3) 144 (87.3) 144 (103.6)

PV loop of Rice et al. 2326 (1168) 3416 (1562) 2184 (1345)

Notes: The total number of Newton iterations summed over all time steps, with the numbers in parentheses being normalised CPU times for the 
entire simulation.
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