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Improved Disk-Drive Failure Warnings
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Charles Elkan

Abstract—Improved methods are proposed for disk-drive
failure prediction. The SMART (Self Monitoring and Reporting
Technology) failure prediction system is currently implemented in
disk-drives. Its purpose is to predict the near-term failure of an
individual hard disk-drive, and issue a backup warning to prevent
data loss. Two experimental tests of SMART show only moderate
accuracy at low false-alarm rates. (A rate of 0.2% of total drives
per year implies that 20% of drive returns would be good drives,
relative to 1% annual failure rate of drives). This requirement
for very low false-alarm rates is well known in medical diagnostic
tests for rare diseases, and methodology used there suggests ways
to improve SMART.

Two improved SMART algorithms are proposed. They use
the SMART internal drive attribute measurements in present
drives. The present warning-algorithm based on maximum error
thresholds is replaced by distribution-free statistical hypothesis
tests. These improved algorithms are computationally simple
enough to be implemented in drive microprocessor firmware
code. They require only integer sort operations to put several
hundred attribute values in rank order. Some tens of these ranks
are added up and the SMART warning is issued if the sum exceeds
a prestored limit.

These new algorithms were tested on 3744 drives of 2 models.
They gave 3–4 times higher correct prediction accuracy than error
thresholds on will-fail drives, at 0.2% false-alarm rate. The highest
accuracies achievable are modest (40%–60%). Care was taken to
test will-fail drive prediction accuracy on data independent of the
algorithm design data.

Additional work is needed to verify and apply these algorithms
in actual drive design. They can also be useful in drive failure anal-
ysis engineering. It might be possible to screen drives in manufac-
turing using SMART attributes. Marginal drives might be detected
before substantial final test time is invested in them, thereby de-
creasing manufacturing cost, and possibly decreasing overall field
failure rates.

Index Terms—Disk drive, failure prediction, magnetic
recording, predictive failure analysis, SMART.

ACRONYMS1

ATA standard drive interface, desktop computers
CSS contact start-stops
DCL DC loop bias level on chip
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1The singular and plural of an acronym are always spelled the same.

FA failure analysis of apparently failed drive
FAR false-alarm rate, 100 times probability value
FLY fly height, head/disk
GDC grown defect count
GMX maximum G’s mechanical shock
MSE mean square-error in data read detector
MVRS multivariate rank-sum statistical test
NPF drive failed, butNo problem found in FA
POH power-on hours of drive
RAID redundant array of independent disks
RRT recalibrate retry in track seek servo
RSE read soft error in data detector
- implies the statistical meaning

SCSI standard drive interface, high-end computers
SKE seek errors in track servo
SUT spinup time, to drive ready
SMART self monitoring and reporting technology
TAS thermal asperity count
TMP internal-drive temperature
TMR Offtrack error in track servo
WA failure warning accuracy (probability).

NOTATION

number of reference (old) measurements
number of warning (new) measurements

: total ranked measurements
number of different attributes measured
Gaussian probability

RS rank-sum statistical hypothesis test
sum of ranks of warning set data
critical value of : predict fail if
rank-sum of attribute considered alone
mean
standard deviation.

I. INTRODUCTION

COMPUTER disk drives are reliable data storage devices
with annual failure rates of 0.3% to 3% per year [1], [2]. (A

1% nominal failure rate is used for comparisons in this paper.)
Nonetheless, drive failure can cause a catastrophic loss of user
data. This is often far more serious than the hardware cost of
replacing the failed drive. If impending drive failure could be
predicted, then a warning could be issued to the drive user to
back up the data onto another storage device.

In 1995, the drive industry adopted SMART: a standardized
specification for such failure warnings. SMART is based on
monitoring a number of internal drive technology measurements
relevant to impending failure. A failure warning algorithm is run
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by the drive microprocessor firmware. This checks whether the
measurements exceed maximum thresholds and produces a bi-
nary (won’t-fail/will-fail) warning. The SMART warning-time
goal is 24 hours before drive failure.

Computer operating systems can issue standardized drive
commands to enable and to read this failure warning. These
commands are defined for the 2 predominant computer-to-drive
interface standards, ATA and SCSI [3], [19]. Additionally, the
SCSI Enclosure Services specification allows RAID
array controllers to be notified if thresholds are exceeded on
drive external environments such as power supply voltage,
current, and ambient temperature [3], [19].

SMART technology is implemented in most 3.5-inch disk
drives manufactured today, the most widely used disk-drives
from personal computers to supercomputers. However, it is
unknown how many computer systems today enable or read
the SMART warning. In some personal computers, SMART is
checked on computer bootup by the CMOS/BIOS firmware.
Drive manufacturers supply diagnostic programs that read the
SMART warning. Information on SMART warning accuracy is
anecdotal at best, and the drive internal monitoring technology
is manufacturer proprietary.

This paper assesses the accuracy of the existing SMART
failure-warning algorithm in drives, and an improved algorithm.
Experimental data are from drive-design reliability testing of
2 different Quantum Corporation disk-drive models. Trade-off
curves of the WA are calculated versus the FAR (defined as the
probability that a fail warning will occur in a drive that does
not subsequently fail).

II. FAILURE WARNING TECHNOLOGY

A. Background

Failure warning markedly differs from usual disk-drive relia-
bility methodology. The latter statistically predicts failure prob-
ability over an entire drive population, and assumes that all
drives are equally likely to fail [2], [4], [5]. SMART predicts
individual drive failure.

Failure warning technologies such as condition-monitoring
and predictive-maintenance are also used, in process control and
large motor monitoring [6]–[8].

B. SMART Disk-Drive Failure Warning

The SMART ATA drive specification [3], [19] allows up
to 30 internal drive measurements. These are termed failure
attributes and are periodically measured by a drive. Attribute
values are stored in the “drive reserved data area” with other
drive operational parameters. For a drive user to receive a
SMART warning, the computer system must issue specific
drive interface commands to enable the algorithm and then to
read the resultantwon’t-fail/will-fail warning [9].
Some drives will unilaterally shut down if internal sensors
detect extreme temperature or mechanical g-shock [10].

Maximum thresholds are defined for each attribute by
the drive manufacturer. The SMART warning-flag is set in
response to an ATA SMARTReturn Status command, if
any attribute exceeds its threshold. This is a logicalORoper-
ation among the several attribute threshold tests, and is used

TABLE I
SMART ATTRIBUTES

because some drive failures can be predicted by only one at-
tribute. But thisORoperation can also cause a high false-alarm
rate, because it does not require multiple confirming attribute
signatures to trigger the warning.

Table I lists SMART attributes, starting with basic nearly
universal attributes, to proposed future attributes. The basic at-
tributes exploit existing drive internal technology (thus allowing
minimal added cost). Many were historically adopted for drive
error recovery and for reliability analysis, with SMART warning
thresholds added later. Most attributes areincremental error
counts over a fixed time interval. For example, certainrates
of seek and read soft errors are allowed by drive designers, and
if the incremental counts of these errors remains stable, then
failure is not indicated. Cumulative counting would mislead.

POH is a traditional measure of drive age. Low POH can
imply infant-mortality failure risk and high POH can imply
end-of-life failure risk. But for failure warning, both need
corroboration by other attributes. A related attribute is CSS,
which is a count of drive power cycles; i.e., power on, disks
spin up, heads fly, power off, heads contact disk while spinning
to stop. High CSS increases the risk of head/disk sliding contact
wear. (Some drives avoid head–disk contact and have no CSS
attribute). These attributes arecumulative .

SKE is an incremental count of track seeks that require a
second re-seek to find the intended track. The count is reset
to 0 after a fixed number of thousands of seek commands. If
a re-seek also fails, then a RRT reinitializes the head tracking
servo system, and is counted in a separate RRT attribute.

An RSE is a data read error detected and corrected by an
error correction code. It can indicate disk defects, high head fly,
or head off-track. Repeated RSE errors at the same user data
disk location can invoke drive error recovery which moves the
user data to a new location, and records a GDC. Read channel
parameters such as the Viterbi detector MSE can warn of an
approaching GDC before an RSE occurs [11].

SUT is the elapsed time from power-on to drive “ready for
data transfer.” Increasing SUT can indicate head–disk stiction
(static friction), raising the risk that the drive spin motor might
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be close to its maximum starting torque limit. Disk spin motor
current and spin servo parameters can detect late head fly
takeoff, bearing damage, or runout.

TMR monitors the track servo misregistry error signal [12],
which can indicate mechanical G-shock, head mechanical reso-
nance faults, or spindle bearing runout. It is also used to inhibit
writing, to eliminate the risk of corrupting data on an adjacent
track.

FLY can be measured using magnetic recording physics, such
as playback pulse width PW50, or the pulse peak amplitude
normalized by pulse area, or read channel equalization param-
eters [11]. The Wallace spacing loss formula can also be used
[13]. One head flying appreciably high (compared to the average
of other heads in the drive) indicates a risk of poor writing or
reading, and a low fly head increases head–disk wear risk.

TMP is measured by some manufacturers using a dedicated
thermal sensor in the drive, or from read preamplifier outputs
which indicate the magneto-resistive read sensor resistance, and
hence its temperature. High temperature stresses the electrome-
chanics of the drive, and low temperature can allow moisture
condensation on the disks, leading to head stiction. G-shock can
be monitored (GMX) by a G-sensor.

C. The Failure-Rarity Problem

SMART failure-warning algorithms can be tested using ex-
perimental data sets of periodic attribute reads over the life of
drives. Times when drives appear to fail are noted, and failure is
verified by physical failure analysis. Because drive failure rates
are only about 1%/year, thousands of drives must be tested for
more than a year to get-significant numbers (15) of failed
drives. This is larger than the number of drives in most large
RAID arrays, even in many supercomputers.

Controlling the false-alarm rate places the most critical de-
mand on SMART warning algorithms. A seemingly small false-
alarm rate of 1%/year would double the total number of drives
returned for failure, because this rate is about equal to actual
annual failure rates. This requirement for very low false-alarm
rates is well-known in medical diagnostic epidemiology tests for
rare diseases [14].

One good source of experimental data (used here) is testing
new drive designs. Typically, several thousand drives of a new
design are tested by a drive manufacturer to expose latent design
and reliability problems. Thus, more failures are anticipated
than in production drives. The testing includes drives with ex-
perimental components or built under experimental conditions
that are not used in full-scale mass production. Consequently,
appreciable numbers and types of failures are likely to occur.
This has the advantage of producing more failures for statis-
tical SMART test development. However, caution is necessary
to guard against failure modes caused by test conditions rather
than inherent drive technology. The test data used here seem to
be valid for SMART analysis because the failure types are rep-
resentative and typical of field failures.

FA is performed to verify failed drives and determine failure
causes for corrective redesign. Typically 20%–30% of appar-
ently failed drives are NPF drives, which operate normally when
analyzed. Therefore, FA is important for a valid data set, and is
also highly effective in gathering definitive failure data and sta-
tistics, which can guide attribute performance and selection.

Fig. 1. Grown-defect data histograms: All won’t-fail drives (top) versus all
will-fail drives (bottom).

These NPF rates also imply that disk-drives have a
false-alarm rate of 0.2%–0.3% even in the absence of SMART
(20%–30% of the 1%/yearperceived failure rate).

Another possibility (not tried here) is to mathematically-char-
acterize the experimental data sets in order to generatesimu-
lated attribute data using Monte Carlo methods.

D. Attribute-Data Characteristics

In addition to the SMART warning flag, the original ATA
SMART specifications [3], [19] define a 512-byte SMART data-
record format. This allows the drive internal SMART attributes
to be read out, as 1–12 byte integers (raw, unnormalized attribute
data are used here [3], [19]).

Figs. 1–3 shows histograms of GDC, SKE, and RSE attribute
data from 1 of the 2 drive design tests. Data on top are from
“won’t-fail drives,” and data below are from “will-fail drives”
(which subsequently failed during the test). These histograms
are all the attribute data from all the drives of one model, to il-
lustrate the nature of the attribute data. For example, there were
about 53 000 occurrences of 0 grown defects among all the at-
tribute data reads taken from all drives that did not fail, and 75
0-GDC reads from drives that did ultimately fail during the test.

The characteristic distinguishing the “will-fail drives” from
the “won’t-fail drives” is a pattern of high attribute values during
a warning measurement interval. A single high value could be a
statistical or transitory accident, but ascatter dominance
pattern appears important in Figs. 1–3. Precise attribute values
are not as important as a pattern of scatter.

In statistical terms, this isordinal data, in that increasing
attribute values imply increased failure risk, but a doubled at-
tribute value does not necessarily double the risk.

Although there appears to be randomness in these histograms,
they do not resemble continuous parametric distributions, such
as Gaussian or Weibull. Because drive failure is caused by im-
portant physical changes, the only relationship between will-fail
and won’t-fail drive data can be simply that they appreciably
differ from each other, more than would be anticipated from sta-
tistical noise.
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Fig. 2. Seek errors histograms: All won’t-fail drives (top) versus all will-fail
drives (bottom).

Fig. 3. Read soft errors histograms: All won’t-fail drives (top) versus all
will-fail drives (bottom).

E. Special Data Factors in Drive Design Tests

Low POH and CSS values generally indicate infant mortality
risk; and high values suggest increased end-of-life failure
potential. But these are not conclusive without other confirming
attributes. Additionally, in drive design tests of fixed duration,
these attributes can appear 100% predictive but misleading.
(All won’t-fail drives get the full test duration POH and CSS;
will-fail drives obviously get less.)

Drive design testing is done to expose latent problems, in
order to eliminate them by redesign. The drives being tested
have higher failure rate than mass production drives (see Sec-
tion II-C). This is similar to medical research conditions that
accelerate the disease under study [14].

Using the same drive test data, both to select a SMART al-
gorithm and to test its accuracy, can be misleading. Here, the
algorithm parameters are selected to give an acceptable FAR on
won’t-fail drives, and then tested for WA on a different data set,
viz., the will-fail drives. In addition the same algorithm is tested

on two independent drive models. The FAR on production drive
data should be lower, because the test purpose is to remove drive
design failure modes.

F. Rank-Sum Statistical SMART Tests

SMART algorithms can be regarded as statistical hypothesis
tests. They use SMART data to test the hypothesis that “a drive
will fail” against the null hypothesis that “a drive is remaining
stable and will not fail.” The existing SMART threshold al-
gorithm uses only the most recent attribute values, and issues
a failure warning if any attribute is above its critical failure
threshold. This is a logical OR of independent tests on each at-
tribute.

Wilcoxon rank-sum [15] statistical tests are proposed here to
replace the threshold tests, to improve failure warning accuracy
and to lower false-alarm rates.

Rank-sum tests are widely recommended for rare failure sit-
uations (such as rare disease epidemiology) where false-alarms
are costly. They are particularly useful when the statistical dis-
tributions are unknown and suspected of being non-Gaussian
[14], [16].

For drive failure warning, an appropriate hypothesis test is
to use awarning data set of recent attribute values and then
to compare it to an originalreference data set taken from
the drive population during manufacture. If the 2 data sets vary
only in probable statisticalnoise , then the null hypothesis is
selected. Namely, the drive is stable and no warning is issued.
Figs. 1–3 illustrate the general idea: the upper histogram of each
attribute represents the reference set; the lower histogram repre-
sents the warning set. (But the warning histogram would be data
from anindividual drive, not all the drives as in Figs. 1–3.)

Thewarning data set for each drive is taken to be its latest
5 samples of each attribute (the most-recent 5 days of data for
these drive models).

The reference data set for each attribute is taken to be
50 random samples of that attribute taken from initial SMART
reads; and averaged over many good drives. The optimum data
set sizes depend on factors such as the SMART attribute read
interval. These data set sizes gave the best WA and FAR results
for these test data.

The best reference sets were using the first few attribute
values from the (several thousand) good drives. They were
randomly divided into 50 groups, and each attribute for the
group taken as the (single) average of 50 values (rounded
to an integer). Will-fail drives are not included in the refer-
ence-set averaging. They can be kept as-independent data
for predictive accuracy testing. (Even if they were included
in a production-drive situation, 1% FAR implies that the
averaging should wash out their influence.)

Thus, if 50 typical measurements from new drives have 1 or
2 SKE, an example SKE reference data set might consist of 48
“0”s, a single “1” count, and a “2” count (in any order).

The warning and reference data sets might look like Fig. 3,
with many ties at the lowest rank (zero seek errors), and the
maximum rank being 1 instance of 43 seek errors in this 1-day
time interval. (Fig. 3 is actually all drives.)

The rank-sum test for a given drive is computed numerically
by a sorting operation on the combined warning and reference
data sets for each attribute. The reference data never change for
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a given drive, but its warning data do change because it is the
last 5 samples before the SMART warning test is to be made.

Rank-1 is given to the smallest combined attribute value,
rank-2 to the next,et al.The rank-sum statistic is the sum of the
ranks of the warning attribute values, among all the attribute
values in the warning and reference data sets. If the drive is
stable, the warning data ranks should intersperse randomly
among the reference data ranks, because the 2 data sets have the
same statistical distribution (which does not have to be known).
If the rank-sum is higher than a fixed limit (precalculated and
stored in the drive), the test concludes that the 2 data sets have
distinct statistical differences, within a specified FAR. This
implies that the drive attributes have statistically changed since
manufacture, indicating potential failure.

G. Numeric Example of Rank-Sum Test

The Appendix presents the mathematics and derivation of the
rank-sum test. The following numeric example demonstrates it.

Consider the made-up seek error data in Table II. Each ref-
erence datum in column 2 is a seek error count over a speci-
fied SMART frame interval, randomly taken from good drives.
There are 8 occurrences of 1 seek error, 3 occurrences of 2 er-
rors, and 1 occurrence of 4 errors. These reference data never
change.

The latest warning data error counts from 1 drive are in
column 3. They show a pattern of higher counts, qualitatively
suggesting that this drive is now making more seek errors and
might fail.

Column 4 shows the total ranks of columns 2 and 3 data.
When ties occur at any error count, then all the tied data are
given the average rank of the ties. (Appendix A.4 discusses why
data ties are given their average rank, and why 0 error counts are
ignored.) The rank for the 8 1 9 error counts of 1 seek error
is therefore the average rank of 1 and 9 for all 9 error counts.
Thus, the rank of the single seek error count of 1 in the warning
set is (1 9)/2 5. This is the first term in the warning set
rank-sum, shown in column 5. There are 32 5 error counts
of 2, taking total ranks 10–14, 2 of which are in the warning
data; thus the rank-sum gets 2 entries with the average rank of
12. There is only 1 warning error count of 3; thus the warning
rank-sum gets its rank of 15. The next warning rank is at 5 errors,
and its total rank of 17 goes into the rank-sum. There are no
6-error counts, and the rank-sum gets the next rank of 18 for
its single 7-error count. The resulting rank-sum is 79. No error
count datum is ignored—the rank averaging of the ties keeps the
total rank count equal to the total 126 18 error counts.

If the 18 total rank numbers-independently result from
the same probability distribution, then the rank-sum of the 6
warning data should be the sum of 6 random integers from the
set 1, 2, …, 18. Each datum has an equally random rank if all
are -independently drawn from any single distribution. The
average rank-sum should be about 6 times the average integer:
6 (1 18)/2 57. The rank-sum variance should be 6 times
the variance of a uniform probability distribution with range
from 1 to 18; thus

The warning rank-sum of 79 is (7957)/12 1.8 above its
mean, appreciably higher than from random probability. (These
rough statistics are from Appendix A.1.)

TABLE II
EXAMPLE RANK-SUM SEEK ERRORDATA

This rank-sum procedure is repeated for each drive attribute.
The results are combined into a single drive failure warning, if
any rank-sum exceeds a maximum threshold (as in present disk-
drive SMART), or if a single overall rank-sum can be computed
(see Section II-B).

H. Rank-Sum Test Advantages

Several advantages follow from rank hypothesis testing.
1) The rank warning is based on a-significant test that a

warning data set differs from the reference set, instead of the
single data point used in threshold SMART. This can lower the
FAR by statistical averaging.

2) The rank-sum test makes no mathematical assumptions nor
needs any information about the statistical distribution function
of the data. It assumes only that: a) the data have some fixed
distribution if the drive is remaining stable, and b) the attribute
samples are-independent.

3) Rank-sum is a stochastic-dominance test based on ordinal
statistics. This means that failure risk is increasing if the at-
tribute values are statistically increasing, but no numerical pro-
portionality is assumed.

4) The ranks are relatively immune to errors in the attribute
data. Extreme value outliers merely get the maximum rank no
matter how large they are.

5) Summing the ranks exploits the known monotonicity of the
attributes—attributes are defined such that larger values imply
increased failure risk (see Section II-D).

6) Rank-sum mathematics is simple enough to implement in
disk-drive firmware, requiring only sorting and adding of at-
tribute integer values. The Appendix presents the mathematics
of the rank-sum test.

I. Multivariate Tests versus ORing Single Attribute Tests

Like the threshold SMART algorithm, rank-sum SMART
tests attributes individually, and issues the SMART warning if
any attribute is appreciably increasing. Combining single-at-
tribute hypothesis tests by this OR operation (also used in
threshold SMART) could increase the false-alarm rate.

A warning algorithm based on the entire set of warning and
reference attribute data could offer higher predictive accuracy
at lower false-alarm rate by exploiting statistical correlations
between the attributes. A multivariate SMART decision rule
was developed for this purpose (Appendix A.4). It can operate
on variables defined so that increasing-values imply increasing
failure-risk. This covers all attributes in Table I, except for pos-
sibly using POH/CSS to capture infant-mortality failures. (For
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TABLE III
DRIVE TEST SUMMARY

that situation, the highest rank could be put on the smallest
POH/CSS values, but this simple inversion would be unable to
test for end-of-life failure risk.)

III. EXPERIMENTAL RESULTS

Experimental data sets were obtained from drive design
testing of 3744 drives of 2 different Quantum Corporation
drive models (Table III). Each set contains 2–3 months of
reliability design test data. There were 36 verified drive failures
(1.0%, or 4%–6% annual rate, see Section II-C). The attributes
found most predictive in these data were: GDC, SKE, RSE.
These 3 attributes are also physically reasonable for the actual
drive-failure causes. Examples of verified failure causes in
model drives and their SMART attribute warnings are:

• grown defects from disk mechanical misalignment (GDC
warning);

• mobile thermal asperities (foreign particles on the disk)
causing GDC;

• unstable servo due to head problem (SKE);
• head arm flex cable electrically intermittent (RSE);
• head instability (RSE);
• head burst noise (RSE).

These are typical design failure types with perhaps an unusually
large number of head problems.

Figs. 4 and 5 show tradeoff curves of WA versus FAR, for the
2 drive models A and B. In Figs. 4 and 5, the NPF drives are
grouped with the won’t-fail drives. But because the NPF drives
did apparently suffer some transient failure during the test, in-
ternal damage might have occurred even though failure analysis
found them operational and they were returned to the testing.
Such NPF failures are also often caused by external problems
like drive power supply, connectors, and ambient temperature.
The dotted line shows the change in the multivariate rank-sum
test, if NPF drives are grouped with the will-fail drives. Calling
the NPF drives failures, lowers the rank-sum accuracy from
about 32% to 20% at 0.2% FAR.

Fig. 4 shows an ORed rank-sum test correct warning proba-
bility of about 40%, at 0.2% FAR probability. The multivariate
rank-sum is similar. Conventional SMART ORed thresholds
have warning accuracy 3–4 times lower, at 0.2% FAR.

Fig. 5 shows overall poorer results for drive model. Multi-
variate rank-sum is best at 12% with ORed rank-sum and ORed
threshold tests at 4%, both at 0.2% FAR. However, this data set
was difficult to analyze: 14 of the 1808 nonfaildrives had cor-
rupted data. These were eliminated. Of the 27 will-faildrives,
18 had all-zero attribute reads and their failure is unpredictable
by any method. (If these 18 drives are ignored, the 12% WA in-
creases to 36%.) Additionally, only 57 of the 1724 won’t-fail

Fig. 4. Drive modelA: Warning accuracy versus false-alarm rate. Dotted
curve: MV rank-sum if NPF drives are called fails.

Fig. 5. Drive modelB: Warning accuracy versus false-alarm. Dotted curve:
MV rank-sum if NPF drives are called fails.

drives had any nonzero attributes. This weakens the reliability
of the FAR values obtained on.

If SMART warnings were used to signal drive replacement,
the 0.2% FAR quoted above might be acceptable by drive manu-
facturers. It would put a 20% limit on the increase in apparently
failing drives, compared to a nominal 1.0% annual drive failure
rate. It is also roughly the false-alarm rate with no SMART at
all (20% NPF drives in 1% perceived-failure drives per year).
For a drive user, this FAR might be acceptable if the 40% WA
in Fig. 4 were a useful accuracy. In a RAID array or enterprise
storage network, higher FAR might be acceptable, if SMART
is used to trigger data backup instead of drive replacement. The
highest WA attainable in drives was 60%, at 0.5% FAR.

These results indicate appreciable accuracy improvement po-
tential over present SMART, tested on two-independent drive
models, using the same new SMART algorithms. However, re-
sults from drive-design test-data do not prove anticipated WA in
production drives.

Additionally, disk-drives have a variety of possible failure
modes; not all monitored by SMART attributes; thus, the WA
cannot be 100%. Two of the 9 modeldrive fails were unpre-
dictable because their attribute-reads were all 0s. Figs. 4 and 5
may show the highest realistic WA with the present attributes.
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APPENDIX

A.1 Rank-Sum Hypothesis Test

Consider an individual attribute,, a set of warning mea-
surements, , and areference data set of measurements.
For example, the warning set in any individual drive being the
last 5 read soft error counts per SMART read interval of
(say) 8 or 24 hours, stored as few-byte integers. The reference
data set might be 50 reads taken from nominal drives that
passed design testing. All drives of one model made in one pro-
duction configuration could have the same reference-set data
stored in them.

The rank-sum algorithm first puts all attribute
measurements in rank order, ignoring which data set they came
from, with the highest rank on the numerically largest measure-
ment. This is a simple integer sort. Then the numerical ranks of
the warning set measurements are added up. The resul-
tant rank-sum is compared to a precomputed limit (2-byte
rank-summing and a 2-byte critical limit constant stored in the
drive firmware code is sufficient for 250 data samples).

is computed under the null hypothesis that both data sets are
from the same distribution, using its meanand variance
[17], [18]:

(A-1)

(A-2)

(A-3)

Using and , the -significance level (false-alarm probability)
of the rank-sum test is used to calculate a critical rank-sum value
limit , using the single-tail Gaussian distribution

, with :

FAR (A-4)

If a warning test, , exceeds , then the 2 data sets are statis-
tically dissimilar and failure should be predicted.

This Gaussian distribution approximation is widely used if
, but is inadequate with this SMART data set, and

was numerically set (Appendix A.6) to get a desired FAR,
producing Figs. 4 and 5.

A.2 Simplified Rank-Sum Mathematical Derivation

Under the null hypothesis (drive is remaining stable), all
measurements are-independent samples from the same

statistical distribution. This distribution can be discontinuous or
have any shape, mean, and/or variance.

These minimal assumptions make it equally likely that any
measurement has any rank from 1 to. Whatever the unknown
underlying distribution is, the rank of measurement #1 is a
random selection from the integers 1 to. The probability
of any particular integer is . Measurement #2 has equal
probability of having any of the remaining ranks. (This
key observation that the ranks are uniformly distributed random
integers underlies many of these distribution-free statistical
methods.)

Consider a set of balls, marked with the integers: 1–. The
rank-sum is a statistic obtained by drawingof these balls, and
adding their marked values. Ignoring for the moment that the
drawing is without replacement, then each integer is a random

number taken with equal probability from the uniform dis-
crete probability distribution with range 1 to. Each one has
-expected value

(A-5)

The sum of -independently sampled integers strongly con-
verges to a Gaussian distribution, and its mean is ; thus

, which is (A-1). Proving (A-2) is
more difficult, due to negative covariance between pairs of ranks
caused by the nonreplacement [17].

Rank-sum tests as used and described here should be dis-
tinguished from other rank-sum tests used for tests of location
(mean) shift between 2 data sets, and tests of paired data [18].

A.3 Choosing the Data Sample-Sizes

For the Gaussian distribution approximation (A-4) to be valid,
and have to be sufficiently large for the central limit the-

orem to be valid. Thewarning data set size 5 used in
this paper is too small for this purpose—and made worse by
the many ties in this situation of counting discrete, rare errors:
see Appendix A.5. Smaller values can detect failure sooner,
after sudden attribute changes occur. Also, the experimental data
sets included some drives with only 5 nonzero SMART sam-
ples. Equation (A-3) shows that thetest statistical variability,

, decreases to an asymptotic constant as is
increased. AmpleGood drive reference experimental data were
available, and a somewhat arbitrary 50 was chosen.

A.4 Multivariate Rank-Sum Test

An overall rank-sum for all attributes can be defined as

(A-6)

Because the attributes are defined to be monotonic (larger
values mean increased failure risk, Section II-D), this multi-
variate rank-sum exploits any favorable-correlations among
the failure attributes, because they should be positive. Re-
placing the error counts by their ranks, automatically solves
problems of scale and normalization. The individual attribute
ranks can be simply added. Under the null hypothesis, the
individual attribute measurements are assumed-independent
within each attribute (as in the single-variable rank-sum), and
the attribute measurements are assumed-independent of each
other. For simplicity, assume that each of the attributes has the
same warning and reference data set size,and . The mean
and variance of are then:

(A-7)

(A-8)

These values can be used along with, as the -function argu-
ment in (A-4).

A.5 Data-Ties and Zeros

The rank-sum test was originally developed for continuous
data, with only accidental data-ties, but ties are prevalent in
this case of discrete-valued SMART error count attributes. For
example, most SMART attribute reads in Figs. 1–4 are tied
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at 0. With the experimental data used here, best results were
with 0 attribute-values ignored; this is not surprising because 0
error-counts give little information.

The standard recipe [17, section 5.1] for the rank-sum
test, states that one imagines that tied variates are arbitrarily
separated infinitesimally. Ranks are then assigned and the
average rank of all infinitesimally close data is assigned to
each of them. For example, if 10 identical error-counts of 1
occur in the reference plus warning data sets, then each of them
gets rank (1 10)/2 5.5 (because the zero error counts are
ignored). This rule worked well with the discrete SMART data,
and best preserves the rank-sum virtue that “drive failure trends
producing simultaneous positive shifts in the attributes” will
produce large changes in the rank-sum, toward the failure limit.

A.6 Setting the Rank-Sum Failure Limit Parameter

Equations (A-1)–(A-4) change and lose accuracy with ties, al-
though the rank-sum remains a robust statistical test [17]. Dis-
crete valued rare-error attributes can produce enough ties that
the Gaussian approximation leading to (A-4) is inaccurate. As
a rough rule, the number of untied values in the smaller data
should exceed 20 [18]. For the experimental data here, the-sig-
nificance level had to be set numerically to get a desired FAR.

A good method to do this is simply to find the rank-sum
limit producing the desired FAR in thewon’t-fail drives.
Average over “all experimental drives” and “all warning sets
of sequential attribute reads of each drive” (all possible
SMART read times). This was tested on the new rank-sum
tests (their ORed SMART flag result) and on the (single)
multivariate rank-sum test.

Section II-E discusses why this should be a conservative es-
timate of production drive FAR.
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