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Abstract

The degree splitting problem requires coloring the edges of a graph red or blue such that each

node has almost the same number of edges in each color, up to a small additive discrepancy. The

directed variant of the problem requires orienting the edges such that each node has almost the

same number of incoming and outgoing edges, again up to a small additive discrepancy.

We present deterministic distributed algorithms for both variants, which improve on their

counterparts presented by Ghaffari and Su [SODA’17]: our algorithms are significantly simpler

and faster, and have a much smaller discrepancy. This also leads to a faster and simpler determ-

inistic algorithm for (2 + o(1))∆-edge-coloring, improving on that of Ghaffari and Su.
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1 Introduction and Related Work

In this work, we present improved distributed (LOCAL model) algorithms for the degree

splitting problem, and also use them to provide simpler and faster deterministic distributed

algorithms for the classic and well-studied problem of edge coloring.

LOCAL Model. In the standard LOCAL model of distributed computing[15, 17], the network

is abstracted as an n-node undirected graph G = (V, E), and each node is labeled with a

unique O(log n)-bit identifier. Communication happens in synchronous rounds of message
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19:2 Improved Distributed Degree Splitting and Edge Coloring

passing, where in each round each node can send a message to each of its neighbors. At the

end of the algorithm each node should output its own part of the solution, e.g., the colors of

its incident edges in the edge coloring problem. The time complexity of an algorithm is the

number of synchronous rounds.

Degree Splitting Problems. The undirected degree splitting problem seeks a partitioning

of the graph edges E into two parts so that the partition looks almost balanced around

each node. Concretely, we should color each edge red or blue such that for each node, the

difference between its number of red and blue edges is at most some small discrepancy value

κ. In other words, we want an assignment q : E → {+1, −1} such that for each node v ∈ V ,

we have
∣

∣

∑

e∈E(v) q(e)
∣

∣ ≤ κ, where E(v) denotes the edges incident on v. We want κ to be

as small as possible.

In the directed variant of the degree splitting problem, we should orient all the edges such

that for each node, the difference between its number of incoming and outgoing edges is at

most a small discrepancy value κ.

Why Should One Care About Distributed Degree Splittings? On the one hand, degree

splittings are natural tools for solving other problems with a divide-and-conquer approach.

For instance, consider the well-studied problem of edge coloring, and suppose that we are

able to solve degree splitting efficiently with discrepancy κ = O(1). We can then compute

an edge coloring with (2 + ε)∆ colors, for any constant ε > 0; as usual, ∆ is the maximum

degree of the input graph G = (V, E). For that, we recursively apply the degree splittings on

G, each time reapplying it on each of the new colors, for a recursion of height h = O(log ε∆).

This way we partition G in 2h edge-disjoint graphs, each with maximum degree at most

∆′ =
∆

2h
+

h
∑

i=1

κ

2i
≤

∆

2h
+ κ = O(1/ε).

We can then edge color each of these graphs with 2∆′ − 1 colors, using standard algorithms

(simultaneously in parallel for all graphs and with a separate color palette for each graph),

hence obtaining an overall coloring for G with 2h · (2∆′ − 1) ≤ 2∆ + 2hκ = (2 + ε)∆ colors.

We explain the details of this relation, and the particular edge coloring algorithm that we

obtain using our degree splitting algorithm, later in Section 2.

On the other hand, degree splitting problems are interesting also on their own: they

seem to be an elementary locally checkable labeling (LCL) problem[16], and yet, even on

bounded degree graphs, their distributed complexity is highly non-trivial. In fact, they

exhibit characteristics that are intrinsically different from those of the classic problems of

the area, including maximal independent set, maximal matching, ∆ + 1 vertex coloring, and

2∆ − 1 edge coloring. All of these classic problems admit trivial sequential greedy algorithms,

and they can also be solved very fast distributedly on bounded degree graphs, in Θ(log∗ n)

rounds[15]. In contrast, degree splittings constitute a middle ground in the complexity: even

on bounded degree graphs, deterministic degree splitting requires Ω(log n) rounds, as shown

by Chang et al. [6], and randomized degree splitting requires Ω(log log n) rounds, as shown

by Brandt et al. [4]. These two lower bounds were presented for the sinkless orientation

problem, introduced by Brandt et al. [4], which can be viewed as a very special case of

directed degree splitting: In sinkless orientation, we should orient the edges so that each

node of degree at least d, for some large enough constant d, has at least one outgoing edge.

For this special case, both lower bounds are tight[11].
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What is Known? First, we discuss the existence of low-discrepancy degree splittings. Any

graph admits an undirected degree splitting with discrepancy at most 2. This is the best

possible, as can be seen on a triangle. This low-discrepancy degree splitting can be viewed

as a special case of a beautiful area called discrepancy theory (see e.g. [7] for a textbook

coverage), which studies coloring the elements of a ground set red/blue so that each of a

collection of given subsets has almost the same number of red and blue elements, up to a

small additive discrepancy. For instance, by a seminal result of Beck and Fiala from 1981[2],

any hypergraph of rank t (each hyperedge has at most t vertices) admits a red/blue edge

coloring with per-node discrepancy at most 2t − 2. See [5, 3] for some slightly stronger

bounds, for large t. In the case of standard graphs, where t = 2, the existence proof is

straightforward: Add a dummy vertex and connect it to all odd-degree vertices. Then, take

an Eulerian tour, and color its edges red and blue in an alternating manner. In directed

splitting, a discrepancy of κ = 1 suffices, using the same Eulerian tour approach and orienting

the edges along a traversal of this tour.

In the algorithmic world, Israeli and Shiloach [13] were the first to consider degree

splittings. They used it to provide an efficient parallel (PRAM model) algorithm for maximal

matching. This, and many other works in the PRAM model which later used degree splittings

(e.g., [14]) relied on computing Eulerian tours, following the above scheme. Unfortunately,

this idea cannot be used efficiently in the distributed setting, as an Eulerian tour is a non-local

structure: finding and alternately coloring it needs Ω(n) rounds on a simple cycle.

Inspired by Israeli and Shiloach’s method [13], Hanckowiak et al. [12] were the first to

study degree splittings in distributed algorithms. They used it to present the breakthrough

result of a polylog(n)-round deterministic distributed maximal matching, which was the first

efficient deterministic algorithm for one of the classic problems. However, for that, they

ended up having to relax the degree splitting problem in one crucial manner: they allowed a

δ = 1/ polylog n fraction of nodes to have arbitrary splits, with no guarantee on their balance.

As explained by Czygrinow et al. [8], this relaxation ends up being quite harmful for edge

coloring; without fixing that issue, it seems that one can get at best an O(∆ log n)-edge

coloring.

Very recently, Ghaffari and Su[11] presented solutions for degree splitting without sacrifi-

cing any nodes, and used this to obtain the first polylog n round algorithm for (2 + o(1))∆-

edge coloring, improving on prior polylog(n)-round algorithms that used more colors: the

algorithm of Barenboim and Elkin [1] for ∆ · exp(O( log ∆
log log ∆ )) colors, and the algorithm of

Czygrinow et al. [8] for O(∆ log n) colors. The degree splitting algorithm of Ghaffari and

Su[11] obtains a discrepancy κ = ε∆ in O((∆2 log5 n)/ε) rounds. Their method is based

on iterations of flipping augmenting paths (somewhat similar in style to blocking flows in

classic algorithms for the maximum flow problem[9]) but the process of deterministically and

distributedly finding enough disjoint augmenting paths is quite complex. Furthermore, that

part imposes a crucial limitation on the method: it cannot obtain a discrepancy better than

Θ(log n). As such, this algorithm does not provide any meaningful solution in graphs with

degree o(log n).

Our Contributions. Our main result is a deterministic distributed algorithm for degree

splitting that improves on the corresponding result of [11]. The new algorithm is (1) simpler,

(2) faster, and (3) it gives a splitting with a much lower discrepancy.

◮ Theorem 1. For every ε > 0, there are deterministic O
(

ε−1·log ε−1·
(

log log ε−1
)1.71

·log n
)

-

round distributed algorithms for computing directed and undirected degree splittings with the

following properties:

DISC 2017



19:4 Improved Distributed Degree Splitting and Edge Coloring

(a) For directed degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 1 if d(v) is odd and at most ε · d(v) + 2 if d(v) is even.

(b) For undirected degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 4.

An important corollary of this splitting result is a faster and simpler algorithm for

(2 + o(1))∆-edge coloring, which improves on the corresponding result from [11]. The related

proof is deferred to the full version [10].

◮ Corollary 2. For every ε > 1/ log ∆, there is a deterministic distributed algorithm that

computes a (2 + ε)∆-edge coloring in O
(

log2 ∆ · ε−1 · log log ∆ · (log log log ∆)1.71 · log n
)

rounds.

This is significantly faster than the O(log11 n/ε3)-round algorithm of [11]. Furthermore,

we are hopeful that with the future improvements in edge coloring for low-degree graphs,

this splitting result will play an even more important role. Ideally, in the ultimate solution

for edge coloring, say with (1 + o(1))∆ colors, this splitting will be one half of the solution:

This half brings down the degree to a small value, with a negligible (1 + o(1)) factor loss,

and the other half would hopefully color those small degree graphs efficiently.

Theorem 1 has another fascinating consequence. Assume that we have a graph in which

all nodes have an odd degree. If ε < 1/∆, we get a directed degree splitting in which each

node v has outdegree either ⌊d(v)/2⌋ or ⌈d(v)/2⌉. Note that the number of nodes for which

the outdegree is ⌊d(v)/2⌋ has to be exactly n/2. We therefore get an efficient distributed

algorithm to exactly divide the number of nodes into two parts of equal size in any odd-degree

graph. For bounded-degree graphs, the algorithm even runs in time O(log n).

Our Method in a Nutshell. The main technical contribution is a distributed algorithm

that partitions the edge set of a given graph in edge-disjoint short paths such that each node

is the start or end of at most δ paths. We call such a partition a path decomposition and δ

its degree. Now if we orient each path of a path decomposition with degree δ consistently,

we obtain an orientation of discrepancy at most δ. Moreover, such an orientation can be

computed in time which is linear in the maximum path length.

To study path decompositions in graph G, it is helpful to consider an auxiliary graph H

in which each edge {u, v} represents a path from u to v in G; now δ is the maximum degree

of graph H. To construct a low-degree path decomposition where δ is small, we can start

with a trivial decomposition H = G, and then repeatedly join pairs of paths: we can replace

the edges {u, v1} and {u, v2} in graph H with an edge {v1, v2}, and hence make the degree of

u lower, at a cost of increasing the path lengths—this operation is called a contraction here.

If each node u simply picked arbitrarily some edges {u, v1} and {u, v2} to contract, this

might result in long paths or cycles. The key idea is that we can use a high-outdegree

orientation to select a good set of edges to contract: Assume that we have an orientation in

H such that all nodes have outdegree at least 2k. Then each node could select k pairs of

outgoing edges to contract; this would reduce the maximum degree of H from δ to δ − 2k

and only double the maximum length of a path.

In essence, this idea makes it possible to amplify the quality of an orientation algorithm:

Given an algorithm A that finds an orientation with a large (but not optimal) outdegree, we

can apply A repeatedly to reduce the maximum degree of H. This will result in a low-degree

path decomposition of G, and hence also provide us with a well-balanced orientation in G.
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Outline. In Section 2 we show how to partitioning graphs into edge-disjoint short paths. In

Section 3 we use these results to prove our main result on the distributed computation of

edge-splittings (Theorem 1). The proof of Corollary 2 is deferred to the full version of the

paper [10].

2 Short Path Decompositions

The basic building block of our approach is to find consistently oriented and short (length

O(∆)) paths in an oriented graph. The first crucial observation is that an oriented path going

through a node v is “good” from the perspective of v in the sense that it provides exactly

one incoming and one outgoing edge to v. Another important feature is that flipping a

consistently oriented path does not increase the discrepancy between incoming and outgoing

edges for any non-endpoint node along the path. Following these observations, we recursively

decompose a graph into a set of short paths, and merge the paths to ensure that every

node is at the end of only a few paths. If a node v is at the end of δ(v) paths an arbitrary

orientation of these paths will provide a split with discrepancy at most δ(v) for v.

The recursive graph operations may turn graphs into multigraphs with self-loops. Thus

throughout the paper a multigraph is allowed to have self-loops and the nodes of a path

v1, . . . , vk do not need to be distinct; however, a path can contain each edge at most once. A

self-loop at a node v contributes two to the degree of v.

2.1 Orientations and Edge Contractions

The core concept to merge many paths in parallel in one step of the aforementioned recursion

is given by the concept of weak k(v)-orientations. We begin by extending and adapting prior

work[11] on weak orientations to our needs.

◮ Definition 3. A weak k(v)-orientation of a multigraph G = (V, E) is an orientation of the

edges E such that each node v ∈ V has outdegree at least k(v).

Note that a weak 1-orientation is a sinkless orientation. By earlier work, it is known that a

weak 1-orientation can be found in time O(log n) in simple graphs of minimum degree at

least three.

◮ Lemma 4 (sinkless orientation, [11]). A weak 1-orientation can be computed by a determ-

inistic algorithm in O(log n) rounds in simple graphs with minimum degree 3 (and by a

randomised algorithm in O(log log n) rounds in the same setting).

In our proofs, we may face multigraphs with multiple self-loops and with nodes of degree

less than three and thus, we need a slightly modified version of this result.

◮ Corollary 5 (sinkless orientation, [11]). Let G = (V, E) be a multigraph and W ⊆ V a

subset of nodes with degree at least three. Then, there is a deterministic algorithm that finds

an orientation of the edges such that every node in W has outdegree of at least one and runs

in O(log n) rounds (and a randomised algorithm that runs in O(log log n) rounds).

Proof. For every multi-edge, both endpoints pick one edge and orient it outwards, ties broken

arbitrarily. For every self-loop, the node will orient it arbitrarily. This way, every node with

an incident multi-edge or self-loop will have an outgoing edge.

From here on, let us ignore the multi-edges and self-loops and focus on the simple

graph H remaining after removing the multi-edges. For every node v with degree at most

DISC 2017



19:6 Improved Distributed Degree Splitting and Edge Coloring

two in H, we connect v to 3 − d(v) copies of the following gadget U . The set of nodes of

U = {u1, u2, u3, u4, u5} is connected as a cycle. Furthermore, we add edges {u2, u4} and

{u3, u5} to the gadget and connect u1 to v. This way, the gadget is 3-regular.

In the simple graph constructed by adding these gadgets, we run the algorithm of

Lemma 4. Thus, any node of degree at least three in the original graph that was not initially

adjacent to a multi-edge or self-loop gets an outgoing edge. Since we know that every node

incident to a multi-edge or self-loop in G also has an outgoing edge, the claim follows. ◭

The sinkless orientation algorithm from Corollary 5 immediately leads to an algorithm

which finds a weak ⌊d(v)/3⌋-orientation in multigraphs in time O(log n).

◮ Lemma 6 (weak ⌊d(v)/3⌋-orientation). There is a deterministic algorithm that finds a

weak ⌊d(v)/3⌋-orientation in time O(log n) in multigraphs.

Proof. Partition node v into ⌈d(v)/3⌉ nodes and split its adjacent edges among them such

that ⌊d(v)/3⌋ nodes have exactly three adjacent edges each and the remaining node, if any,

has d(v) mod 3 adjacent edges. Note that the partitioning may cause self-loops to go between

two different copies of the same node. Then, use the algorithm from Corollary 5 to compute

a weak 1-orientation of the resulting multigraph where degree two or degree one nodes do

not have any outdegree requirements. If we undo the partition but keep the orientation of

the edges we have a weak ⌊d(v)/3⌋-orientation of the original multigraph. ◭

The techniques in this section need orientations in which nodes have at least two outgoing

edges. Lemma 6 provides such orientations for nodes of degree at least six; but for nodes

of smaller degree it guarantees only one outgoing edge. It is impossible to improve this for

nodes with degree smaller than five (cf. [10, Theorem 7.1]) in time o(n). But we obtain the

following result for the nodes with degree five. Its proof relies on different techniques than

the techniques in this section, and therefore it is deferred to the full version of the paper.

◮ Lemma 7 (outdegree 2). The following problem can be solved in time O(log n) with

deterministic algorithms and O(log log n) with randomised algorithms: given any multigraph,

find an orientation such that all nodes of degree at least 5 have outdegree at least 2.

The concept of weak orientations can be extended to both indegrees and outdegrees.

◮ Definition 8. A strong k(v)-orientation of a multigraph G = (V, E) is an orientation of

the edges E such that each node v ∈ V has both indegree and outdegree at least k(v).

2.2 Path Decompositions

We now introduce the concept of a path decomposition. The decomposition proves to be a

strong tool due to the fact that it can be turned into a strong orientation (cf. Lemma 11).

◮ Definition 9. Given a multigraph G = (V, E), a positive integer λ, and a function

δ : V → R≥0, we call a partition P of the edges E into disjoint paths P1, . . . , Pρ a (δ, λ)-path

decomposition if

for every v ∈ V there are at most δ(v) paths that start or end in v,

each path Pi is of length at most λ.

For each path decomposition P, we define the multigraph G(P) as follows: the vertex set of

G(P) is V , and there is an edge between two nodes u, v ∈ V if P has a path which starts at

u and ends at v or vice versa. The degree of v in P is defined to be its degree in G(P) and

the maximum degree of the path decomposition P is the maximum degree of G(P).
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Figure 1 In two sequences of three illustrations this figure depicts two sets of contractions. In

each line the first illustration is the situation before the contraction, the second one depicts the

orientation and the selected outgoing edges which will be contracted in parallel and the third

illustration shows the situation after the contraction where new edges are highlighted.

A contraction may produce isolated nodes, multi-edges and self loops. If a self loop {v, v} is

selected to be contracted with any other edge {v, w} it simply results in a new edge {v, w} as if the

self loop was any other edge. Such a contraction still reduces the degree of v by two.

Note that we used a graph with small node degrees for illustration purposes. We cannot quickly

compute an orientation with large outdegree for nodes with degree less than five.

Notice that δ(v) is an upper bound on the degree of v in P and maxv∈V δ(v) is an upper

bound on the maximum degree of the path decomposition. Note that dG(v) − dG(P)(v)

is always even. To make proofs more to the point instead of getting lost in notation, we

often identify G(P) with P and vice versa. A distributed algorithm has computed a path

decomposition P if every node knows the paths of P it belongs to. Note that it is trivial to

compute a (d(v), 1)-path decomposition in 1 round, because every edge can form a separate

path.

Let ⌊·⌋∗ denote the function which rounds down to the previous even integer, that is,

⌊x⌋∗ = 2⌊x/2⌋. The following virtual graph transformation, which we call edge contraction,

is the core technical construction in this section.

Disjoint Edge Contraction

The basic idea behind edge contraction is to turn two incident edges {v, u} and {v, w} into a

single edge {u, w} by removing the edges {v, u} and {v, w} and adding a new edge {u, w}.

We say that node v contracts when an edge contraction is performed on some pair of edges

{v, u} and {v, w}. When node v performs a contraction of edges {v, u} and {v, w}, its degree

d(v) is reduced by two while maintaining the degrees of u and w. Furthermore, any set

of nodes contracting any set of their incident edges at most doubles the distance between

any pair of non-isolated nodes. Notice that adjacent nodes can only contract disjoint pairs

of edges in parallel and a contraction may also produce isolated nodes, multi-edges and

self-loops. If a self-loop {v, v} is selected to be contracted with any other edge {v, w} it

simply results in a new edge {v, w} as if the self-loop was any other edge. Such a contraction

still reduces the degree of v by two as the self-loop was considered as both – an incoming

and an outgoing edge of v. See Figure 1 for an illustration.

DISC 2017



19:8 Improved Distributed Degree Splitting and Edge Coloring

Figure 2 The first two illustrations show that selecting the outgoing edges for a contraction can

be seen as dividing the node into a set of virtual nodes, each incident to two outgoing edges. Then,

in the third illustration, the contraction is obtained by removing the virtual nodes but keeping the

connection alive. The last two illustrations show how an orientation on contracted edges is used to

orient the edges of the original graph such that virtual nodes obtain an equal split (and such that

the original node obtains a good split).

Edge contractions can be used to compute path decompositions, e.g., an edge which is

created through a contraction of two edges can be seen as a path of length two. If an edge

{u, v} represents a path from u to v in G, e.g., when recursively applying edge contractions

on the graph G(P) for some given path decomposition P , each contraction merges two paths

of P . If each node simply picked arbitrarily some edges to contract, this might result in long

paths or cycles. The key idea is to use orientations of the edges to find large sets of edges

which can be contracted in parallel. If every node only contracts outgoing edges of a given

orientation all contractions of all nodes can be performed in parallel.

If we start with a trivial decomposition, i.e., each edge is its own path, and perform k

iterations of parallel contraction, where, in each iteration, each node contracts two edges, we

obtain a (d(v)−2k, 2k)-path decomposition. If we want the degrees d(v)−2k to be constant we

have to choose k, i.e., the number of iterations, in the order of ∆ which implies exponentially

long paths and runtime as the path lengths (might) double with each contraction.

The technical challenge to avoid exponential runtime is to achieve a lot of parallelism

while at the same time reducing the degrees quickly. We achieve this with the help of

weak orientation algorithms: An outdegree of f(v) at node v allows the node to contract

⌊f(v)⌋∗ edges at the same time and in parallel with all other nodes. If f(v) is a constant

fraction of d(v) this implies that O(log ∆) iterations are sufficient to reach a small degree.

As the runtime is exponential in the number of iterations and the constant in the O-notation

might be large, this is still not enough to ensure a runtime which is linear in ∆, up to

polylogarithmic terms. Instead, we begin with the weak orientation algorithm from the

previous section and iterate it until a path decomposition with a small (but not optimal!)

degree is obtained. Then we use it to construct a better orientation algorithm. Then, we use

this better orientation to compute an even better one and so on. Recursing with the correct

choice of parameters leads to a runtime which is linear in ∆, up to polylogarithmic terms.

We take the liberty to use the terms recursion and iteration interchangeably depending on

which term is more suitable in the respective context. Refer to Figure 2 for an illustration of

the edge contraction technique with a given orientation.

We will now apply a simple version of our contraction technique to obtain a fast and

precise path decomposition algorithm in ∆-regular graphs for ∆ = O(1). The result can also

be formulated for non-regular graphs, but here we choose regular graphs to focus on the

proof idea which is the key theme throughout most proofs of this section.

◮ Theorem 10 ((∆ − 2k, 2k)-path decomposition). Let G = (V, E) be a ∆-regular multigraph.

For any positive integer k ≤ ∆/2 − 2 there is a deterministic distributed algorithm that

computes a (∆ − 2k, 2k)-path decomposition in time O(2k log n).
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Proof. We recursively compute k multigraphs H1, . . . , Hk where Hk corresponds to the

resulting path decomposition. To obtain H1, we begin by computing a weak 2-orientation

π of G with the algorithm from Lemma 6 (note that by assumption we have k ≥ 1 and

therefore ∆ ≥ 6). Then, every node contracts a pair of outgoing incident edges. Notice that

contractions of adjacent nodes are always disjoint. The degree of v is reduced to ∆ − 2 and

each edge in the resulting multigraph H1 consists of a path in G of length at most two.

Applying this method recursively with recursion depth k yields multigraphs H1, . . . , Hk

where the maximum degree of Hi is ∆ − 2i and each edge in Hi corresponds to a path in G

of length at most 2i. Thus, Hk corresponds to a (∆ − 2k, 2k)-path decomposition. Note that

there is one execution of Lemma 6 in each recursion level and it provides a weak 2-orientation

of the respective graph because the degree of each node is at least six due to i ≤ k ≤ ∆/2 − 2.

One communication round in recursion level i can be simulated in 2i rounds in the original

graph. Thus, the runtime is dominated by the application of Lemma 6 in recursion level k

which yields a time complexity of O(2k log n). ◭

Next, we show how to turn a (δ, λ)-path decomposition efficiently into a strong orientation.

The strong orientation obtained this way has δ(v) as an upper bound on the discrepancy

between in- and outdegree of node v.

◮ Lemma 11. Let G = (V, E) be a multigraph with a given (δ, λ)-path decomposition P.

There is a deterministic algorithm that computes a strong 1
2 (d(v) − δ(v))-orientation of G in

O(λ) rounds.

Proof. Let H = G(P) be the virtual graph that corresponds to P and let πH be an arbitrary

orientation of the edges of H. Let (u, v) be an edge of H oriented according to πH and

let P = u1, . . . , uk, where u1 = u and uk = v, be the path in the original graph G that

corresponds to edge (u, v) in H. Now, we orient the path P in a consistent way according

to the orientation of (u, v), i.e., edge {ui, ui+1} is directed from ui to ui+1 for all 1 ≤ i ≤ k.

Since every edge in G belongs to exactly one path in the decomposition, performing this

operation for every edge in H provides a unique orientation for every edge in G. Let us

denote the orientation obtained this way by πG.

Consider some node v and observe that orienting any path that contains v but where

v is not either the start or the endpoint adds exactly one incoming edge and one outgoing

edge for v. Therefore, the discrepancy of the indegrees and outdegrees of v in πG is bounded

from above by the discrepancy in πH , which is at most δ(v) by the definition of a (δ, λ)-path

decomposition. It follows that πG is a strong 1
2 (d(v) − δ(v))-orientation.

Finally, since the length of any path in P is bounded above by λ, consistently orienting

the paths takes λ communication rounds finishing the proof. ◭

In the following, we formally use weak orientations to compute a path decomposition.

This lemma will later be iterated in Corollary 13

◮ Lemma 12. Assume that there exists a deterministic distributed algorithm that finds a

weak
((

1
2 − ε

)

d(v) − 2
)

-orientation in time T (n, ∆).

Then, there is a deterministic distributed algorithm that finds a
((

1
2 + ε

)

d(v) + 4, 2
)

-path

decomposition in time O(T (n, ∆)).

Proof. Let G be a multigraph with a weak
((

1
2 − ε

)

d(v) − 2
)

-orientation given by the

algorithm promised in the lemma statement. Now every node v arbitrarily divides the

outgoing edges into pairs and contracts these pairs yielding a multigraph with degree at most

d(v) −
⌊(

1
2 − ε

)

d(v)
⌋

∗
+ 2 ≤

(

1
2 + ε

)

d(v) + 4.
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Observing that all of the chosen edge pairs are disjoint yields that the constructed multigraph

is a
((

1
2 + ε

)

d(v) + 4, 2
)

-path decomposition. The contraction operation requires one round

of communication. ◭

In the following corollary we iterate Lemma 12 to obtain an even better path decomposition.

Furthermore, more care is required in the details to avoid rounding errors and to obtain

the correct result when the degrees get small. Corollary 13 will be applied many times in

proceeding subsections.

◮ Corollary 13. Let 0 < ε ≤ 1/6. Assume that T (n, ∆) ≥ log n is the running time of an

algorithm A that finds a weak
(

(1/2 − ε)d(v) − 2
)

-orientation. Then for any positive integer i,

there is a deterministic distributed algorithm B that finds a
(

(1/2 + ε)id(v) + 4, 2i+5
)

-path

decomposition P in time O(2i · T (n, ∆)).

Proof. Let i be a positive integer. We define algorithm B such that it uses algorithm

A to recursively compute graphs H0, H1, . . . , Hi, Hi+1, . . . , Hi+5 and path decompositions

P1, P2, . . . , Pi, Pi+1, . . . , Pi+5. Let G = (V, E) be a multigraph. For j = 0, . . . , i − 1 we set

H0 = G and Hj+1 = Hj(Pj+1), where Pj+1 is the path decomposition which is returned

by applying Lemma 12 with algorithm A on Hj . This guarantees that path decomposition

Pi has maximum degree ( 1
2 + ε)id(v) + 12. The remaining five graph decompositions are

computed afterward (see the end of this proof) and reduce the additive 12 to an additive 4.

Properties of P1, . . . , Pi. We first show that for j = 1, . . . , i the path decomposition Pj

is a (zj(v), 2j)-path decomposition with

zj(v) =
(

1
2 + ε

)j
d(v) + 4

j−1
∑

k=0

(

1
2 + ε

)k
.

With every application of Lemma 12 the length of the paths at most double in length which

implies that the path length of Pj is upper bounded by 2j . We now prove by induction that

the variables zj(v), j = 1, . . . i behave as claimed:

Base case: z1(v) =
(

1
2 + ε

)

d(v) + 4 follows from the invocation of Lemma 12 with A on

H0 = G.

Inductive step: Using the properties of Lemma 12 we obtain

zj+1(v) =
(

1
2 + ε

)

zj(v) + 4 ≤
(

1
2 + ε

)

(

(

1
2 + ε

)j
d(v) + 4

j−1
∑

k=0

(

1
2 + ε

)k
)

+ 4

=
(

1
2 + ε

)j+1
d(v) + 4

j
∑

k=0

(

1
2 + ε

)k
.

Using the geometric series to bound the last sum and then ε ≤ 1/6 we obtain that

zi(v) ≤
(

1
2 + ε

)i
d(v) + 12.

Reducing the Additive Term. Now, we compute the five further path decompositions

Pi+1, . . . , Pi+5 to reduce the additive term in the degrees of the path decomposition from

12 to 4; in each path decomposition this additive term is reduced by two for certain nodes.

In each of the first four path decompositions nodes with degree at least six in the current

path decomposition reduce the additive term by at least two: we compute a weak ⌊d(v)/3⌋-

orientation (using Lemma 6) and then every node with degree at least six contracts two
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outgoing edges. In the last path decomposition we compute an orientation in which every

node with degree at least five in the current path decomposition has two outgoing edges

(using Lemma 7) and then each of them contracts two incident edges. Thus in the last path

decomposition the additive term of nodes with degree five is reduced by two.

To formally prove that we obtain the desired path decomposition let xi+j(v) be the actual

degree of node v in G(Pi+j) for j = 0, . . . , 5. First note that the degree of a node never

increases due to an edge contraction, not even due to an edge contraction which is performed

by another node.

Constructing Pi+1, . . . , Pi+4. To compute path decomposition Pi+j+1, j = 0, . . . , 3, we

compute an orientation of G(Pi+j) in which every node v with xi+j(v) ≥ 6 has outdegree

at least two (one can use the algorithm described in Lemma 6). Then Pi+j+1 is obtained

if every node with xi+j(v) ≥ 6 contracts two of its incident outgoing edges. So, whenever

xi+j(v) ≥ 6 we obtain that xi+j+1(v) = xi+j(v) − 2, that is xi+j+1 ≤ zi(v) − 2(j + 1). If

xi+j(v) ≥ 6 for all j = 0, . . . , 3 we have

xi+5(v) ≤ xi+4(v) ≤ (1/2 + ε)id(v) + 4.

Otherwise, for some j = 0, . . . , 3, we have xi+j(v) ≤ 5, that is, xi+4(v) ≤ 4 or xi+4(v) = 5.

If xi+4(v) ≤ 4 we have

xi+5(v) ≤ xi+4(v) ≤ 4 ≤ (1/2 + ε)id(v) + 4.

Constructing Pi+5. For nodes with xi+4(v) = 5 we compute one more path decomposition.

We use Lemma 7 to compute an orientation of G(P4) in which each node with degree at

least five has two outgoing edges; then each node with at least two outgoing edges contracts

one pair of its incident outgoing edges. Thus the degree of nodes with degree five reduces

by two and we obtain that the path decomposition Pi+5 is a
(

( 1
2 + ε)id(v) + 4, 2i+5

)

-path

decomposition.

Running Time. The time complexity to invoke algorithm A or the algorithms from Lemma

6 or Lemma 7 on graph Hj is O(2jT (n, ∆)) because the longest path in Hj has length 2j

and T (n, ∆) ≥ log n. Thus, the total runtime is

O

( i+5
∑

j=0

2jT (n, ∆)

)

= O
(

2iT (n, ∆)
)

. ◭

2.3 Amplifying Weak Orientation Algorithms

Now, we use Corollary 13 to iterate a given weak orientation algorithm A to obtain a new

weak orientation algorithm B. The goal is that B has an outdegree guarantee which is much

closer to (1/2)d(v) than the guarantee provided by algorithm A.

Let 0 < ε2 < ε1 ≤ 1
6 , α = 1

2 − ε1, and β = 1
2 + ε1. The roadmap for the proofs of this

section is as follows:

In the proof of Lemma 15:

1. Execute i iterations of a weak (αd(v) − 2)-orientation algorithm, for an i that will

be chosen later, and after each iteration, perform disjoint edge contractions. Thus,

obtain a
(

βid(v) + 4, 2i+5
)

-path decomposition using Corollary 13.

2. Apply Lemma 11 to obtain a weak
(

1
2 (1 − βi)d(v) − 2

)

-orientation.
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3. By setting i = log(ε2)/ log(β) we get that βi = ε2 and the running time of steps 1–2 is

O(2iT (n, ∆)) = O
(

ε
log−1

2
β

2 · T (n, ∆)
)

= O
(

ε
−(1+24ε1)
2 · T (n, ∆)

)

,

where T (n, ∆) is the runtime of the weak (αd(v) − 2)-orientation algorithm. The last

equality holds because with Lemma 14, we obtain that − log−1
2 β ≤ 1 + 24ε1 when

ε1 ≤ 1/6.

In the proof of Theorem 16:

4. Use Lemma 11 with ε1 = 1/6 and ε2 = 1/ log log ∆ to obtain an algorithm which com-

putes a weak
((

1
2 −1/ log log ∆

)

d(v)−2
)

-orientation and runs in time O((log log ∆)1.71 ·

log n). In this step, we plug in ε1 = 1/6 to obtain the exponent

− log−1
2 β = − log−1

2

(

1
2 + 1

6

)

< 1.71.

5. Using the construction twice more, once with ε1 = 1/ log log ∆ and ε2 = 1/ log ∆ and

once with ε1 = 1/ log ∆ and ε2 = 1/∆, yields a weak
((

1
2 − 1

∆

)

d(v) − 2
)

-orientation

algorithm that runs in time O(∆ · log ∆ · (log log ∆)1.71 · log n).

The following technical result is used to simplify running times; it is proved in the full version

of the paper with a Taylor expansion.

◮ Lemma 14. Let 0 < ε ≤ 1/6. Then, − log−1
2 ( 1

2 + ε) ≤ 1 + 24ε.

In the following lemma we perform steps 1–3 of the aforementioned agenda.

◮ Lemma 15. Let 0 < ε2 < ε1 ≤ 1
6 . Assume that there is a deterministic algorithm A which

computes a weak
((

1
2 − ε1

)

d(v) − 2
)

-orientation and runs in time T (n, ∆). Then there is a

deterministic weak
((

1
2 − ε2

)

d(v) − 2
)

-orientation algorithm B with running time

O
(

ε
log−1

2
( 1

2
+ε1)

2 · T (n, ∆)
)

= O
(

ε
−(1+24ε1)
2 · T (n, ∆)

)

. (1)

Proof. Let i = log2(ε2)/ log2 (1/2 + ε1). By Lemma 14, we get that i ≤ (1+24ε1) log2(1/ε2);

thus it is sufficient to show the left hand side of (1). By applying Corollary 13 with parameter i

and algorithm A, we get a distributed algorithm that finds a
(

(1/2 + ε1)
r

d(v) + 4, 2i+5
)

-path

decomposition in time

O
(

2i · T (n, ∆)
)

= O
(

ε
log−1

2
( 1

2
+ε1)

2 · T (n, ∆)
)

.

The degree of node v in the path decomposition is upper bounded by
(

1
2 + ε1

)i
d(v) + 4 =

ε2d(v) + 4. Now Lemma 11 yields a weak
(

1
2

(

1 − ε2

)

d(v) − 2
)

-orientation algorithm with the

same running time; in particular, this is a weak
((

1
2 − ε2

)

d(v) − 2
)

-orientation algorithm. ◭

We close the section by performing steps 4–5 of the agenda. Note that the theorem is

more general than the outlined agenda as it contains an additional parameter δ which can be

used to tune the running time at the cost of the quality of the weak orientation algorithm.

◮ Theorem 16. Let δ be a positive integer. There exist the following deterministic weak

orientation algorithms.

(a) A: weak
((

1
2 − 1/ log log ∆

δ

)

d(v) − 2
)

-orientation in time O
((

log log ∆
δ

)1.71
· log n

)

.

(b) B: weak
((

1
2 − 1/ log ∆

δ

)

d(v) − 2
)

-orientation in time O
(

log ∆
δ ·

(

log log ∆
δ

)1.71
· log n

)

.

(c) C: weak
((

1
2 − δ

∆

)

d(v) − 2
)

-orientation in time O
(

∆
δ · log ∆

δ ·
(

log log ∆
δ

)1.71
· log n

)

.
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Proof. Each statement is proven by applying Lemma 15 with different values for ε1 and ε2.

(a) We obtain the algorithm A by applying Lemma 15 with the weak ⌊∆/3⌋-orientation

algorithm from Lemma 6, that is with ε1 = 1/6, and with ε2 = 1/ log log(∆/δ).

(b) Algorithm B is obtained by applying Lemma 15 with A, that is ε1 = 1/ log log(∆/δ)

and ε2 = 1/ log(∆/δ).

(c) Algorithm C is obtained by applying Lemma 15 with B, that is ε1 = 1/ log(∆/δ) and

ε2 = 1/(∆/δ) = δ/∆. ◭

2.4 Short and Low Degree Path Compositions Fast

Our higher level goal is to compute a path decomposition where the degree is as small as

possible to obtain a directed split with the discrepancy as small as possible (with methods

similar to Lemma 11, also see the proof of Theorem 1). As we will show in the next theorem,

with the methods introduced in this section and the appropriate choice of parameters, we

can push the maximum degree of the path decomposition down to εd(v) + 4 for any ε > 0.

This is the true limit of this approach because we cannot compute weak 2-orientations of

4-regular graphs in sublinear time (see [10, Theorem 7.1]).

◮ Theorem 17. Let G = (V, E) be a multigraph with maximum degree ∆. For any ε > 0 there

is a deterministic distributed algorithm which computes a (δ(v), O(1/ε))-path decomposition

in time O
(

α · log α · (log log α)1.71 · log n
)

, where α = 2/ε and δ(v) = εd(v) + 3 if εd(v) ≥ 1

and δ(v) = 4 otherwise.

Proof. Apply Corollary 13 with algorithm B from Corollary 16, δ = ∆/α, and

i =
log α−1

log(1/2 + 1/ log(α))
.

This implies a path decomposition with degrees ⌊α−1d(v) + 4⌋ = ⌊εd(v)/2 + 4⌋. If εd(v) ≥ 1

this is smaller than εd(v) + 3. If εd(v) < 1 this is at most 4. The length of the longest path is

upper bounded by O(2i) = O
(

α1+24/ log α
)

= O(α) where we used Lemma 14. The runtime

is bounded by O
(

2i · TB(n, ∆)
)

= O
(

α · log α · (log log α)
1.71

· log n
)

, where TB(n, ∆) is the

running time of algorithm B. ◭

Choosing ε = 1/(2∆) in Lemma 17 yields the following corollary.

◮ Corollary 18 (constant degree path decomposition). There is a deterministic algorithm

which computes a (4, O(∆))-path decomposition in time O
(

∆ · log ∆ · (log log ∆)1.71 · log n
)

.

◮ Remark. For any positive integer k smaller than log∗(α)±O(1) one can improve the runtime

of Lemma 17 to O
(

α · (log(k) α)0.71 · log n · Πk
j=1 log(j) α

)

, where log(j)(·) denotes the j times

iterated logarithm, α = 2/ǫ and the constant in the O-notation grows exponentially in k. This

essentially follows from a version of Theorem 16 that turns a weak
(

(1/2−1/ log(k) α)d(v)−2
)

-

orientation algorithm into a weak
(

(1/2 − 1/ log α)d(v) − 2
)

-orientation algorithm in k − 1

iterations.

3 Directed and Undirected Splits

First note that an arbitrary consistent orientation of the paths in the best path decomposition

of Section 2 would result in a splitting in which each node v has discrepancy at most ε·d(v)+4.

In the case of directed splitting we slightly tune this by consistently orienting the paths in
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such a way that each node has at least one outgoing and one incoming path. As the graph

corresponding to the path decomposition is a low degree graph this is the same as finding

sinkless and sourceless orientations in low-degree graphs; the following corollary states that

these orientations can be computed efficiently. Its proof can be found in the full version of

the paper [10].

◮ Corollary 19 (sinkless and sourceless orientation). The following problem can be solved in

time O(log n) with deterministic algorithms and O(log log n) with randomised algorithms:

given any multigraph, find an orientation such that all nodes of degree at least 3 have outdegree

and indegree at least 1.

We are now ready to prove our main result:

◮ Theorem 1. For every ε > 0, there are deterministic O
(

ε−1·log ε−1·
(

log log ε−1
)1.71

·log n
)

-

round distributed algorithms for computing directed and undirected degree splittings with the

following properties:

(a) For directed degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 1 if d(v) is odd and at most ε · d(v) + 2 if d(v) is even.

(b) For undirected degree splitting, the discrepancy at each node v of degree d(v) is at most

ε · d(v) + 4.

Proof. For both parts apply Lemma 17, which provides a
(

δ(v), O(1/ε)
)

-path decomposition

P with δ(v) = εd(v) + 3 if εd(v) ≥ 1 and δ(v) = 4 otherwise.

Proof of (b) Nodes color each path of P alternating with red and blue. Because the length

of a path in P is bounded by O(1/ε) this can be done in O(1/ε) rounds.

Consider some node v and observe that v has one red and one blue edge for any path

where v is not a startpoint or endpoint. Thus the discrepancy of node v is bounded above by

δ(v) ≤ εd(v) + 4.

Proof of (a) Use Corollary 19 to compute an orientation πP of G(P) in which all nodes

which have degree at least three in G(P) have at least one incoming and one outgoing edge.

Then orient paths in the original graph according to πP as in the proof of Lemma 11 and

denote the resulting orientation of the edges of G with πG.

Consider some node v and observe that orienting any path that contains v but where

v is not a startpoint or endpoint adds exactly one incoming edge and one outgoing edge

for v. Therefore, the discrepancy of the indegrees and outdegrees of v in πP bounds from

above the discrepancy of the indegrees and outdegrees in πG. The goal is to upper bound

this discrepancy as desired.

Therefor let dP(v) denote the degree of v in G(P). If dP(v) is at least three then its

discrepancy in πP is bounded by dP(v) − 2 as the algorithm from Corollary 19 provided one

incoming and one outgoing edge for v in G(P). Furthermore we obtain that dP(v) and d(v)

have the same parity because d(v) = dP(v) + 2x holds where x is the number of paths that

contain v but where v is neither a startpoint nor an endpoint. We have the following cases.

dP(v) ≥ 3:

εd(v) ≥ 1: v’s discrepancy in πG is bounded by dP(v) − 2 ≤ εd(v) + 1.

εd(v) < 1, d(v) even: v’s discrepancy in πG is bounded by dP(v) − 2 ≤ 2.

εd(v) < 1, d(v) odd: As dP(v) has to be odd and 3 ≤ dP(v) ≤ δ(v) = 4 holds we have

dP(v) = 3. Thus v’s discrepancy in πG is bounded by dP(v) − 2 ≤ 1.
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dP(v) < 3:

d(v) even: We have dP ∈ {0, 2} and v’s discrepancy in πG is also 0 or 2.

d(v) odd: We have dP = 1 and v’s discrepancy in πG is also 1.

In all cases we have that the discrepancy of node v is upper bounded by εd(v) + 1 if d(v) is

even and by εd(v) + 2 if d(v) is even, which proves the result. ◭
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