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Improved DNA-versus-Protein Homology Search
for Protein Fossils

Yin Yao and Martin C. Frith

Abstract—Protein fossils, i.e. noncoding DNA descended from coding DNA, arise frequently from transposable elements (TEs), decayed
genes, and viral integrations. They can reveal, and mislead about, evolutionary history and relationships. They have been detected by
comparing DNA to protein sequences, but current methods are not optimized for this task. We describe a powerful DNA-protein homology
search method. We use a 64×21 substitution matrix, which is fitted to sequence data, automatically learning the genetic code. We detect
subtly homologous regions by considering alternative possible alignments between them, and calculate significance (probability of
occurring by chance between random sequences). Our method detects TE protein fossils much more sensitively than blastx, and
> 10× faster. Of the ∼7 major categories of eukaryotic TE, three were long thought absent in mammals: we find two of them in the
human genome, polinton and DIRS/Ngaro. This method increases our power to find ancient fossils, and perhaps to detect non-standard
genetic codes. The alternative-alignments and significance paradigm is not specific to DNA-protein comparison, and could benefit
homology search generally. This is an extended version of a conference paper [1].

Index Terms—Pseudogene, homology, alignment, probability, paleovirology
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1 INTRODUCTION

G ENOMES are littered with protein fossils, old and young.
They can be found by comparing DNA to known

proteins: new transposable element (TE) families have been
discovered in this way [2], [3]. An interesting class of protein
fossils comes from ancient integrations of viral DNA into
genomes, enabling the field of paleovirology [4]. The DNA
sequences of protein fossils often have similarity to distantly-
related genomes (e.g. mammal versus fish), simply because
the parent gene evolved slowly, so it is important to know
that the DNA is a protein fossil in order to understand this
similarity [5]. DNA-protein homology search is not only
used for fossils. It is also used to classify DNA reads from
unknown microbes, including nanopore and PacBio reads
with many sequencing errors [6]. DNA-protein comparison
can be used to find frameshifts during evolution of functional
proteins [7], and programmed ribosomal frameshifts [8].
A more specialized and complex kind of DNA-protein
comparison, outside this study’s scope, considers introns
and other gene features to identify genes.

DNA-protein homology search is a classical problem
with many old solutions [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]. A notable one is “three-frame
alignment” [13], which we believe is the simplest and fastest
reasonable way to do frameshifting DNA-protein alignment.
Nevertheless, we can significantly improve DNA-protein
homology search in these aspects:

• Better parameters for the (dis)favorability of substitutions,
deletions, insertions, and frameshifts. Most previous meth-
ods use standard parameters such as the BLOSUM62
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substitution matrix, which is designed for functional
proteins, and likely completely inappropriate for protein
fossils. We optimize these parameters by fitting them to
sequence data.

• Instead of a 20×20 substitution matrix, use a 64×21 matrix
(64 codons × 20 amino acids plus STOP). This allows e.g.
preferred alignment of asparagine (which is encoded by
aac and aat) to agc than to tca, which both encode
serine.

• Incorporate frameshifts into affine gaps. Because gaps are
somewhat rare but often long, it is standard to disfavor
opening a gap more than extending a gap. However,
most previous methods favor frameshifts equally whether
isolated or contiguous with a longer gap.

• Detect homologous regions based on not just one align-
ment between them, but on many possible alternative
alignments. This is expected to detect subtle homology
more powerfully [21], [22].

• Calculate significance, i.e. the probability of such a strong
similarity occurring by chance between random sequences.
To this day, for ordinary alignment, BLAST can only calcu-
late significance for a few hardcoded sets of substitution
and gap parameters. We can do it for any parameters, for
similarities based on many alternative alignments.

We also aimed for maximum simplicity and speed, inspired
by three-frame alignment.

2 METHODS

2.1 Alignment Elements
We define a DNA-protein alignment to consist of: matches
(3 bases aligned to 1 amino acid), base insertions, and base
deletions. To keep things simple, insertions are not allowed
between bases aligned to one amino acid: if such an insertion
really exists, we can approximate it with a nearby insertion.
A deletion of length not divisible by 3 leaves “dangling”
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Ser-TyrAlaThrMetLeuTrpAspGln--Leu***
tctCtat---acg--cctctga-atcagCAttctaa

Fig. 1. Example of a DNA-versus-protein alignment. *** indicates
a protein end from translation of a stop codon. Insertions are bold
uppercase. “Dangling” bases, left by deletions of length not divisible
by 3, are underlined gray.

bases (Fig. 1): for simplicity, we do not attempt to align these
(equivalently, align them to the amino acid with score 0).

2.2 Scoring Scheme
An alignment’s score is the sum of:
• Score for aligning amino acid u to base triplet V :

SuV

• Score for an insertion of k bases:

aI + bIk +


0 if k mod 3 = 0

fI if k mod 3 = 1

gI if k mod 3 = 2

• Score for a deletion of k bases:

aD + bDk +


0 if k mod 3 = 0

fD if k mod 3 = 1

gD if k mod 3 = 2

This scheme extravagantly uses 4 frameshift parameters (fI ,
gI , fD , gD), because it’s based on a probability model with 4
frameshift transitions (Fig. 2), and we can’t think of a good
way to simplify the model. Overall, our alignment scheme is
similar to FramePlus [15] and especially to aln [16].

2.3 Finding a Maximum-Score Local Alignment
A basic approach is to find an alignment with maximum
possible score, between any parts of a protein sequence
R1 . . . RM and a DNA sequence q1 . . . qN . Let Qj mean the
triplet qj−2, qj−1, qj . We can calculate the maximum possible
score Xij for any alignment ending just after Ri and qj , for
0 ≤ i ≤M and 0 ≤ j ≤ N (with notation y/Y for deletion
and z/Z for insertion):

y1 = Yi−1 j−2 + [bD + fD] z1 = Zi j−1 + [bI + fI ]

y2 = Yi−1 j−1 + [2bD + gD] z2 = Zi j−2 + [2bI + gI ]

y3 = Yi−1 j + [3bD] z3 = Zi j−3 + [3bI ]

Xij = max(Xi−1 j−3 + SRiQj , y1, y2, y3, z1, z2, z3, 0)

Yij = max(Xij + aD, y3) Zij = max(Xij + aI , z3)

The boundary condition is: if i < 0 or j < 0, Xij =
Yij = Zij = −∞ (which takes care of Ri<1 and Qj<3).
The maximum possible alignment score is max(Xij), and
an alignment with this score can be found by a standard
traceback [23].

For each (i, j) this algorithm retrieves 7 previous results,
and performs 9 pairwise maximizations and 9 additions
(which could be reduced to 6 additions if each insertion
cost equals its corresponding deletion cost). This is slightly
slower than three-frame alignment, which retrieves 5 previ-
ous results and performs 7 pairwise maximizations and 6
additions.

D

D Di iM

i i

i

αD

βI

βD

i

i
αI

δD εD
δI

εI

Begin End

ΓωD ωDωi ωi

Fig. 2. A probability model for related DNA and protein sequences. The
arrows are labeled with probabilities of traversing them. Each pass
through an i state generates (emits) one base v ∈ {a,c,g,t}, with
probabilities ψv . Each pass through a D state generates one amino acid
u, with probabilities φu. Each pass through the M state generates one
amino acid u aligned to three bases V = v1v2v3, with probabilities πuV .
The two bottom-left i states correspond to “dangling” bases.

2.4 Probability Model

The preceding algorithm is equivalent to finding a maximum-
probability path generating the sequences, through a prob-
ability model (Fig. 2). Such models are explained in [23],
[24]. Briefly, the model is a scheme for generating sequences:
starting at Begin, randomly traverse the arrows according to
their probabilities (e.g. ωD versus 1− ωD), generate letters
when passing through circles labeled D, i, and M (see the
figure legend), until hitting End.

The score and model parameters are related like this:

S′uV = exp
(SuV

t

)
=

Γ

ωDω3
i

· πuV
φuψV

(1)

a′I = exp
(aI
t

)
=
αI(1− βI)

βI
(2)

a′D = exp
(aD
t

)
=
αD(1− βD)

βD
(3)

b′I = exp
(bI
t

)
=

3
√
βIδIεI
ωi

(4)

b′D = exp
(bD
t

)
= 3

√
βDδDεD
ωD

(5)

f ′I = exp
(fI
t

)
=

1− δI
1− βI

3

√
β2
I

δIεI
(6)

f ′D = exp
(fD
t

)
=

1− δD
1− βD

3

√
β2
D

δDεDω2
D

/
ω2
i (7)

g′I = exp
(gI
t

)
=

1− εI
1− βI

3

√
βIδI
ε2I

(8)

g′D = exp
(gD
t

)
=

1− εD
1− βD

3

√
βDδD
ε2DωD

/
ωi (9)

Here ψV is defined to be ψv1ψv2ψv3 , and t is an arbitrary
positive constant (because multiplying all the score param-
eters by a constant makes no difference to alignment). An
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alignment score is then:

t ln

[
prob(path & sequences)

prob(null path & sequences)

]
, (10)

where a “null path” is a path that never traverses the Γ, αD ,
or αI arrows [24].

2.5 Balanced Length Probability
A fundamental property of local alignment models is
whether they are biased towards longer or shorter alignments
[24]. If ωD and ωi are large (close to 1) and Γ + αD + αI is
small, there is a bias in favor of shorter alignments. In the
converse situation, there is a bias towards longer alignments.

To assess this precisely, first note that we can vary ωD

and ωi with no effect on the left hand sides of Equations 1–9,
thus no effect on any of our homology search procedures, if
we co-vary the other arrow probabilities in a suitable way. If
we define

c′ = Γ/(ωDω
3
i ) , (11)

we can co-vary Γ so as to keep c′ fixed. We can also co-vary
βI , δI , and εI to keep b′I , f ′I , and g′I fixed: this requires that

βI =
b′Iωi(f

′
I + g′Ib

′
Iωi + (b′Iωi)

2)

1 + f ′Ib
′
Iωi + g′I(b′Iωi)2

. (12)

We can also co-vary αI to keep a′I fixed:

αI =
a′Ib
′
Iωi(f

′
I + g′Ib

′
Iωi + (b′Iωi)

2)

1− (b′Iωi)3
. (13)

Likewise, we can co-vary the four deletion probabilities to
keep a′D , b′D, f ′D and g′D fixed, which requires that

αD =
a′Db

′
DωD(f ′Dω

2
i + g′Db

′
Dωi + b′2D)

1− b′3DωD
. (14)

These equations imply that, if we increase ωD and ωi, then
Γ, αI , and αD increase. Now consider what happens if we
increase ωD and ωi as much as possible. It may happen that
we can increase ωD and ωi infinitessimally close to 1, at
which point Γ + αD + αI remains less than 1 by a finite
amount: then the model is biased to shorter alignments. We
may instead reach a point where Γ + αD + αI becomes
infinitessimally close to 1 but ωDωi does not: then the model
is biased to longer alignments. Thus, the model is unbiased
when they approach 1 together, which happens when

c′ +
a′Ib
′
I(f ′I + g′Ib

′
I + b′2I )

1− b′3I

+
a′Db

′
D(f ′D + g′Db

′
D + b′2D)

1− b′3D
= 1 . (15)

2.6 Sum over All Alignments Passing through (i, j)

To find subtly homologous regions, we should assess their
homology without fixing an alignment [21], [22]. In other
words, we should use a homology score like this:

t ln

[∑
paths prob(path & sequences)

prob(null path & sequences)

]
. (16)

However, if the sum is taken over all possible paths, we learn
nothing about location of the homologous regions, which is
important if e.g. the DNA sequence is a chromosome. There

is a kind of uncertainty principle here: the more we pin down
the alignment, the less power we have to detect homology.
As a compromise, we sum over all paths passing through one
(protein, DNA) coordinate pair (i, j). This has two further
benefits: it is approximated by the seed-and-extend search
used for big sequence data, and we can calculate significance.

To calculate this sum over paths, we first run a Forward
algorithm for 0 ≤ i ≤M and 0 ≤ j ≤ N :

y1 = [b′Df
′
D]Y F

i−1 j−2 z1 = [b′If
′
I ]ZF

i j−1

y2 = [b′2Dg
′
D]Y F

i−1 j−1 z2 = [b′2I g
′
I ]ZF

i j−2

y3 = [b′3D]Y F
i−1 j z3 = [b′3I ]ZF

i j−3

XF
ij = S′RiQj

XF
i−1 j−3 + y1 + y2 + y3 + z1 + z2 + z3 + 1

Y F
ij = a′DX

F
ij + y3 ZF

ij = a′IX
F
ij + z3

The boundary condition is: if i < 0 or j < 0, XF
ij =

Y F
ij = ZF

ij = 0. Note this is exactly the maximum-score
algorithm with score-maximization replaced by summing
exponentiated scores. We then run a Backward algorithm for
M ≥ i ≥ 0 and N ≥ j ≥ 0:

y1 = [b′Df
′
D]Y B

i+1 j+2 z1 = [b′If
′
I ]ZB

i j+1

y2 = [b′2Dg
′
D]Y B

i+1 j+1 z2 = [b′2I g
′
I ]ZB

i j+2

y3 = [b′3D]Y B
i+1 j z3 = [b′3I ]ZB

i j+3

XB
ij = S′Ri+1Qj+3

XB
i+1 j+3 + y1 + y2 + y3 + z1 + z2 + z3 + 1

Y B
ij = a′DX

B
ij + y3 ZB

ij = a′IX
B
ij + z3

The boundary condition is: if i > M or j > N , XB
ij = Y B

ij =
ZB
ij = 0. Finally, t ln[XF

ijX
B
ij ] is the desired homology score,

for all paths passing through (i, j).

2.7 Significance Calculation
The just-described homology score is similar to that of
“hybrid alignment”, which has a conjecture regarding signif-
icance [25]. (Hybrid alignment sums over paths ending at
(i, j), instead of passing through (i, j).) We make a similar
conjecture. Suppose we compare a random i.i.d. protein
sequence of length M and letter probabilities Φu to a random
i.i.d. DNA sequence of length N and triplet probabilities
ΨV . We conjecture that the score smax = t ln[maxij(X

F
ijX

B
ij )]

follows a Gumbel distribution:

prob(smax < s) = exp(−KMNe−s/t) , (17)

in the limit that M and N are large, provided that:(∑
u,V

ΦuΨV S
′
uV

)
+
a′Ib
′
I(f ′I + g′Ib

′
I + b′2I )

1− b′3I

+
a′Db

′
D(f ′D + g′Db

′
D + b′2D)

1− b′3D
= 1 . (18)

Equation 18 is analogous to Equation 27 or 28 in [25], see also
[24]. In practice, we assume that Φu = φu and ΨV = ψV ,
which makes Equation 18 equivalent to Equation 15.

This conjecture leaves one unknown Gumbel parameter
K. We estimate it by generating 50 pairs of pseudorandom
protein and codon sequences [26], with Φu = φu, ΨV = ψV ,
M = 200 and N = 602, and calculating

K = 1/(MN avg[exp(−smax/t)]) . (19)
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Fig. 3. Sketch of seed-and-extend heuristic for homology search.

This takes zero human-perceptible run time.

2.8 Seed-and-Extend Heuristic

To find homologous regions in big sequence data, we use a
BLAST-like seed-and-extend heuristic (Fig. 3) [27]. We first
find “seeds”: we currently use exact-matches (via the genetic
code), which can be sensitive if short, but we could likely get
better sensitivity per run time with inexact seeds [28], [29].
Our seeds have variable length: starting from each DNA base,
we get the shortest seed that occurs ≤ m times in the protein
data [30]. These seeds have no score threshold. We then try a
gapless X-drop extension in both directions, and if the score
achieves a threshold d, we try a “Forward” extension in both
directions.

We use our Forward algorithm, modified for semi-global
instead of local alignment. In each direction, we sum over
alignments starting at the seed and ending anywhere: thus
the algorithm’s +1 is done only at the first (i, j) next to
the seed, and we accumulate the sum W =

∑
ij X

F
ij . We

run this algorithm in increasing order of antidiagonal (3i+
j) on the seed’s right side (decreasing order on the left
side). If XF

ij is less than a fraction f of W accumulated over
previous antidiagonals, we stop extending, which defines the
boundary of the gray region in Fig. 3. The final homology
score is

t ln[Wleft] + seed score + t ln[Wright] . (20)

Sum-of-path algorithms are prone to numerical overflow
[23]. To prevent that: once per 32 antidiagonals, we multiply
all the XF , Y F , and ZF values in the last six antidiagonals
by a scaling factor of 1/W .

A score with no alignment is of limited use, so we
get a representative alignment by a similar semi-global
modification of our maximum-score alignment algorithm.
To avoid redundancy, we prioritize homology predictions by
score (breaking ties arbitrarily), and discard any prediction
whose representative alignment shares an (i, j) left or right
end with a higher-priority prediction.

There are two options for further redundancy removal.
The first (selected by lastal option -K1) omits a homology
prediction if the DNA range of its representative alignment
is contained in a higher-scoring prediction on the same DNA
strand. The second (lastal option -K0) omits a homology
prediction if the DNA range of its representative alignment
overlaps a higher-scoring prediction on the same DNA
strand. These aim to get the best homologs for each part
of the DNA.

2.9 Fitting Substitution & Gap Parameters to Data
We can seek substitution and gap parameters with maximum-
likelihood fit to some related (unaligned) DNA and proteins,
by expectation-maximization [23]. Starting from some ini-
tial parameters, we calculate the expected count of each
transition and emission (E step), then update the model prob-
abilities to maximize the probability of the expected counts
(M step), and repeat until convergence. We implemented two
versions of this: an exact O(MN) version, and a heuristic
seed-and-extend version.

The seed-and-extend version is given some proteins and
DNA (e.g. a genome): to save time, it just uses a sample
of the DNA, by cutting it into 2000-base segments and
pseudorandomly choosing 20 000 of them. In each E step, it
finds significantly homologous regions (with -K1 filtering)
and gets expected counts from the seeds and extend regions
(gray areas in Fig. 3). In the M step, it does not infer φu,
ψv , ωD, or ωi in the usual way: it sets φu =

∑
V πuV ,

ψv =
∑

uij(πu vij + πu ivj + πu ijv)/3, and ωD = ω3
i = the

value that satisfies Equation 15 (found by bisection with
bounds 1 > ω3

i > βIδIεI and 1 > ωD > βDδDεD). We set
t = 3/ ln[2] to get scores in third-bit units.

It is likely that some of the 64×21 pairings are absent
from the training data, so that naive fitting gives them
πuV = 0 and SuV = −∞. This can be avoided by adding
pseudocounts to the expected counts [23]. We first tried
constant pseudocounts, e.g. PuV ← PuV + 0.5, where PuV

is the expected count of u:V . However, we found it neces-
sary to weight the pseudocounts by the letter frequencies
P̂u = 1 +

∑
V PuV and P̌V = 1 +

∑
u PuV :

PuV ← PuV + 0.5(P̂u/ avg P̂ )(P̌V / avg P̌ ) . (21)

2.10 Fitting to Remote Homologs
Substitution and gap rates differ for old versus young fossils,
whereas the sequence data used for parameter fitting may
have a mixture of old and young fossils. Therefore, to focus
on old fossils, our seed-and-extend fitting ignores homol-
ogous regions whose expected counts PuV have percent
identity greater than “pid”, a BLOSUM-like threshold [31].
The percent identity of PuV depends on the genetic code,
which is inferred before each E step by argmaxu[πuV /φu].

3 RESULTS

3.1 Software
The O(MN) alignment and fitting code is available at https:
//github.com/Yao-Yin/protein-dna-align-EM. Seed-and-
extend fitting and homology search, and estimation of K
by full Forward-Backward algorithm, are available in LAST
(https://gitlab.com/mcfrith/last).

3.2 Parameter Fitting
We applied our O(MN) fitting to a set of human processed
pseudogenes and their parent proteins from Pseudofam [32].
To avoid bias, we used uniform initial parameters πuV =
1/(21 · 64). The fitting discovered the genetic code: for each
codon V , its encoded amino acid has maximum SuV .

Sometimes, our fitting had an undesirable feature: the
SuV values for some cg-containing codons were all negative.
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TABLE 1
Parameter fitting to the human genome and TE proteins, with different pid thresholds

pid alignments expected π counts Smatg Smatc aD aI bD bI fD gD fI gI ψa ψc ψg ψt

100 13445 2543821 14 −2 −23 −29 −1 −1 +3 0 +4 0 0.4 0.19 0.17 0.23
90 12799 2356744 13 −2 −23 −29 −1 −1 +3 0 +4 0 0.4 0.19 0.17 0.24
80 11585 2109071 13 −1 −22 −28 −1 −1 +3 0 +4 0 0.41 0.18 0.17 0.24
70 9293 1680244 12 0 −22 −28 −1 −1 +3 0 +3 0 0.41 0.18 0.17 0.24
60 6657 1213898 12 0 −21 −27 −1 −1 +2 0 +3 0 0.4 0.18 0.17 0.25
50 3360 607464 11 1 −21 −27 −1 −1 +2 0 +3 0 0.39 0.18 0.17 0.26
40 1287 251719 10 1 −21 −25 −1 −1 +2 0 +2 0 0.37 0.19 0.17 0.26

This is presumably due to the well-known depletion of cg
in human DNA, which can be captured in πuV but not ψv .
As an ad hoc fix, we set ψV =

∑
u πuV (after O(MN) fitting,

and at each iteration of seed-and-extend fitting).
Next, we applied our seed-and-extend fitting to the hu-

man genome (hg38) and transposable element (TE) proteins
from RepeatMasker 4.1.0 [33], with various pid thresholds,
using LAST v1250:
lastdb -q -c myDB RepeatPeps.lib
last-train --codon -X1 --pid=P myDB genome.fa > P.fit

Option -q appends * to each protein, -c requests simple-
sequence masking (see below), and -X1 sets substitution
scores for letter X (which is frequent in these proteins) by

S′XV =
∑

u∈ 20 aminos φuS
′
uV

/∑
u∈ 20 aminos φu . (22)

As pid decreases, fewer alignments and expected counts
are used for parameter fitting (Table 1, final E step), but the
results do not change drastically, suggesting the amount of
data remains adequate. As expected, when pid decreases,
the parameters favor matches and disfavor mismatches and
gaps less strongly (Table 1).

The fitted frameshift scores are surprising (Table 1).
Firstly, frameshifts are not disfavored, perhaps because
RepeatMasker’s proteins are close to the fossils’ most recent
active ancestors. Secondly, mod-1 frameshifts are favored: this
might be caused by the gap-length distribution not fitting the
simple affine model, with an excess of length-1 and length-4
gaps [34]. Another surprise is that the fitted parameters are
adenine-rich: ψa ≈ 0.4 (Table 1). This matches the a-richness
of L1 LINEs [35], the most abundant type of protein fossil.

The fitted substitution parameters include homology
probabilities that would be lost in a 20×20 matrix (Fig. 4).
For example, acc and acg both encode T, but acg is more
favored to align with M (which is encoded by atg). Similarly,
with pid=100, N (which is encoded by aac and aat) scores
+4 with agc and −16 with tca, which both encode S. In
general, single a↔g or c↔t mismatches tend to be favored.

3.3 Significance Calculation
To test the accuracy of our significance estimates, for the
fitted genome-TE parameters, we calculated smax by our full
Forward-Backward algorithm for 10 000 pairs of random i.i.d.
protein and codon sequences, with Φu = φu, ΨV = ψV ,
M = 1000, and N = 3002. After fitting K to these smax
values (Equation 19), the observed distribution of smax is
accurately predicted by Equation 17 (Fig. 5).

An interesting result is that K increases as pid decreases
(Fig. 5). This is opposite to the behavior of K for ordinary
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Fig. 4. Substitution matrices inferred from the human genome versus TE
proteins, with pid=100 (top) or pid=40 (bottom). Darker red means more
disfavored and paler yellow means more favored. Black dots indicate the
standard genetic code.

gapless alignment [36], but consistent with previous results
for hybrid alignment [25]. Perhaps insight into K could be
gained by considering gapless sum-of-paths alignment.

To test whether our significance estimates apply to our
seed-and-extend homology search, we compared one pair
of random i.i.d. protein and DNA sequences, with Φu = φu,
Ψv = ψv , and lengths equal to the number of unambiguous
letters in the TE proteins and human chromosome 21 (chr21).
Here, we used lastal with neither -K option. The search
sensitivity depends on the seed parameter m: as m increases,
sensitivity increases, and the distribution of homology scores
approaches the Gumbel prediction (Fig. 6 top row).

Thus, we can accurately calculate probabilities of homol-
ogy scores between random sequences with letter frequencies
equal to the fitted φ and ψ, but unfortunately the genome has
different base frequencies (a:c:g:t = 3:2:2:3). So we compared
another pair of random i.i.d. protein and DNA sequences,
with Φu and Ψv equal to the frequencies in the TE proteins
and chr21. The number of homology predictions, for any
score threshold, increased by a factor of about 3 (Fig. 6
top row, dashed versus solid blue lines), so the E-values
(expected counts) are about 3× too low.

3.4 Simple Sequences
Homology search is confounded by “simple sequences”,
e.g. ttttcttttttcctt, which evolve frequently and inde-
pendently. To assess this problem, we compared reversed
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Fig. 5. Distributions of maximum homology score smax, for 10 000 pairs of random protein and codon sequences, with Φu = φu and ΨV = ψV . Red:
observed, black: expected.
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Fig. 6. Distributions of homology scores. Red: found with seed count
limit m = 100. Blue: m = 1000. Black: expected number of homology
scores ≥ S between random sequences. Top row: homology scores
between a random DNA sequence with the same length as chromosome
21, and a random protein sequence with the same length as the TE
protein database. Solid lines: (Φ,Ψ) = (φ, ψ). Dashed lines: (Φ,Ψ) =
letter frequencies in the TE proteins and chr21. Middle row: homology
scores between TE proteins & reversed (but not complemented) chr21.
Bottom row: same as middle row, with masking of simple sequences
(dotted: r = 0.005, solid: r = 0.02).

(but not complemented) chr21 to the TE proteins: this
test has no true homologies, but we found many highly-
significant homology scores (Fig. 6 middle row), due to
simple sequences (Fig. 7).

There are various methods to suppress such false ho-
mologies, but most do not fully succeed [37], [38]. Our
solution is to identify simple sequences with tantan [37],
and “mask” them: i.e. set their substitution scores S ≤ 0 thus
S′ ≤ 1 [38]. We use masking for homology scores but not for
representative alignments.

tantan has a parameter r (simple-sequence probability):
higher values mask a larger fraction of the sequence, i.e.
they mask more-subtle simple sequences. Based on previous
results [37], we tried masking the DNA with r = 0.005 and
the proteins with r = either 0.005 (which masks 3.7% of the
TE proteins) or 0.02 (which masks 6.8%). The former retained

GlyGlyGlyGlyGlyGlySerGlyGlyGlyGlySerGlyGlyGlyGlyGlyGlyGlyGlyGlyGlyGlySerGlyGly

GGTGGTGGTGGTAGTGGTAGTGGTGGTAGTGGTAGTAGTAGTGGTGGTAGTAGTGGTGGTGGTGGTGGTAGTGGTGGT

GlyGlyPheGlyGlyGlyGlyProGlyGlyGlyAsnGlyGlyGlyMetGlyIlePheGlyThrAlaGlyAlaGlyGly

AGTGGTAGTAGTGGTGGTGGTAGTGGTGGTGGTAGTGGTGGTGGTAGTGGTGGT---GGTAGTGGTGGTAGTGGTGGT

GlyGlyTyrGlyGlyGlyProGlyAspGlyGlyGlyHisGlyGlyGlyGlyGlyAspGlyGlyAlaGlyGly

GGTAGTGGTGGTAGTGGTGGTGGTGGTGGTGGTGGTGTTGGTGGTGGTGGTAGTGGTGGTGGTAGTGGTGGT

Fig. 7. A similarity with E-value 3 × 10−38 between reversed (but not
complemented) human chromosome 21 and a TE protein (found with
pid=100).
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Fig. 8. Lengths of alignments between the human genome and TE
proteins. Black: alignments found with pid=100 but not pid=50. Red:
found with pid=50 but not pid=100.

false homologies with E-value < 10−5 (Fig. 6 bottom row),
so we use the latter.

3.5 Sensitivity of Different pid Thresholds

Next, we sought TE protein fossils in the human genome.
To avoid TE/gene homologies, we compared the genome to
TE proteins plus human proteins1 from SwissProt version
2021 02 [39], then discarded the SwissProt hits. We used
lastal parameters -K0, m = 500, and a significance level
of one expected false homology per 109 random bp. This
procedure found >500 000 hits (Table 2), but only 12–138 hits
to the reversed genome, implying a false positive rate of 2–25
per 100 000 predictions.

Different pid thresholds find slightly different homologies.
Some alignments found with one pid are completely missed
(no alignment with any overlap on the same DNA strand)
with another pid (Table 2). We expect high pid to be better at
finding high-similarity homologies that are so short that their
significance is borderline, and low pid to be better at low-
similarity (but longer) homologies. The alignment lengths
support this expectation (Fig. 8).

1. Non-LINE human proteins with PE (protein existence) level ≤ 3
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TABLE 2
Counts of alignments between the human genome and TE proteins

pid alignments (reversed of which not found (zero overlap) by
genome) pid=100 pid=90 pid=80 pid=70 pid=60 pid=50 pid=40

100 539769 12 0 4155 9048 12438 16882 25327 42444
90 544192 17 9003 0 6746 10307 14935 24074 42278
80 551880 18 23425 16212 0 6290 10832 21599 42608
70 553791 27 28875 21812 8308 0 7239 18610 40890
60 559627 138 39953 33064 19522 13849 0 16775 41415
50 547453 19 36934 30695 18726 13569 5081 0 28332
40 524215 90 32163 27002 17828 13973 7776 6225 0

3.6 Comparison to blastx
To test whether our homology search is more sensitive than
standard methods, we compared chr21 to the TE proteins
with NCBI BLAST 2.11.0:
makeblastdb -in RepeatPeps.lib -dbtype prot -out DB
blastx -query chr21.fa -db DB -evalue 0.1 -outfmt 7 > out

We repeated this comparison using our method with pid=70:
lastal -p 70.fit -D1e9 -m100 -K0 myDB chr21.fa > out

Option -D1e9 sets the significance threshold to 1 random
hit per 109 basepairs, and -m100 sets m = 100.

This test indicated that our method has much better
sensitivity and speed. The single-threaded runtimes were
193 min for blastx and 17 min for lastal. (We also tried
fasty from FASTA version 36.3.8h [14], but it didn’t finish
within 30 hours.) blastx found alignments at 5267 non-
overlapping sites on the two strands of chr21, of which all but
101 overlapped LAST alignments2. LAST found alignments
at 6761 non-overlapping sites, of which 2450 did not overlap
blastx alignments. All but 19 of LAST’s sites overlapped
same-strand annotations by RepeatMasker open-4.0.6 - Dfam
2.0 (excluding Simple repeat and Low complexity) [33], [40],
suggesting they are not spurious. Note that RepeatMasker
finds TEs by DNA models of tightly-defined TE families,
which is likely superior to DNA-protein comparison when
such models are available. Our approach cannot find the
many TEs, such as Alu elements, that have never encoded
proteins.

3.7 Polintons and YR Retrotransposons in Human
Eukaryotic TEs have immense diversity, but can be classified
into ∼7 major orders: LTR, LINE, and tyrosine-recombinase
(YR) retrotransposons, and DDE transposons, cryptons,
helitrons, and polintons [41]. Three of them (YR retrotrans-
posons, cryptons, polintons) were long thought absent in
mammals [42], [43]. Recently, relics of non-autonomous
cryptons were detected in human [44], and one polinton-
related element was found in chromosome 7 [45]. No YR
retrotransposon relics have been found in human [44], apart
from two genes encoding protein domains derived from YR
retrotransposons [46].

Among our DNA/protein homologies found with pid=50
are 37 of YR retrotransposon proteins and 30 of polinton
proteins. The polinton homologies have E-values as low as
2.2 × 10−67: these alignments covered 93–1339 bases, and

2. The previous version of this study erroneously omitted reverse-
strand blastx hits.
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Fig. 9. Two ancient Ngaro fragments in human chromosome 9, separated
by a recent L1 insertion. Each DNA-protein homology (black bars near the
top) is labeled with the protein’s name. Green: alignments of the human
genome to other genomes [47]. Screen shot from http://genome.ucsc.edu
[48].

seemingly-random parts of several polinton proteins (e.g.
POLB, ATPase, PY, integrase). These 30 polinton hits lie in
∼20 clusters in the genome, presumably corresponding to
20 ancestral polinton elements, one of which matches the
known element on chromosome 7 [1].

We found two superfamilies of YR retrotransposon: 30
DIRS alignments (covering 107–602 bases) with minimum
E-value 1.1× 10−44, and seven Ngaro alignments (120–443
bases) with minimum E-value 1.7 × 10−13. Two of these
Ngaro alignments are near each other in chromosome 9,
indicating that an ancient Ngaro was split by insertion of
a LINE (Fig. 9). Whole-genome alignments (Fig. 9, green)
indicate that the LINE inserted in an ancestor of African apes,
and the Ngaro in an ancestor of all amniotes (mammals and
reptiles).

4 DISCUSSION

Our DNA-protein homology search method seems to be
fast, specific, and highly sensitive for protein fossils. Speci-
ficity is achieved by (i) accurate calculation of significance
(probability of chance similarity between random sequences),
and (ii) suppressing non-homologous similarities of simple
sequences. The latter is an under-appreciated problem [37],
[38]: our solution could likely be improved, e.g. by tuning
tantan’s parameters. It seems hard to be certain that a
strong similarity is a true homology, but we can gain
confidence from evidence other than sequence similarity.
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For example, the two Ngaro fragments in Fig. 9 are near each
other, separated by a LINE, and lie in amniote-conserved
DNA: this would all be a strong coincidence if they were
spurious. Note that true homology may still lead to false-
positive inference, e.g. some TEs carry fragments of non-
related TEs [40]. With due care, our method enables discovery
of more ancient and subtle fossils [49], such as the human
polinton, DIRS and Ngaro elements found here.

Possible future improvements include better seeding,
and using position-specific information on variability of
a sequence family [23], [26]. Our significance calculation
becomes inaccurate for short sequences, so a finite size
correction would be useful [25]. Better parameter-fitting may
be important, e.g. our parameters are a-rich and biased by
many redundant L1 LINEs.

The sum-of-paths and significance paradigm is not spe-
cific to DNA-protein comparison, so could benefit homology
search generally. A previous study made similar conjectures
on significance of probabilistic homology scores [50]. That
study considered the maximum-probability path and the
sum over all paths; whereas we (following [25]) use a sum
over some paths (emanating from an (i, j) point), with a
balance condition (Equation 18). We suspect the conjectures
in [50] may be too broad: e.g. one set of substitution and
gap scores corresponds to a range of probability models with
different values of t [24], but only one t can appear in the
Gumbel formula (Equation 17).
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