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Abstract – An improved control strategy for grid-connected inverters within microgrids is presented in this paper. The strategy is 

based on the classical P-ω and Q-V droop method. The improvement in the proposed control strategy is twofold: Firstly, the 

transient response of the droop controller is improved by replacing the traditional method of measuring average power, which is 

based on using a first order low pass filter, by a real time integration filter. This is shown to reduce the imported transient energy 

when connecting to the grid. Secondly, the steady state output current quality is improved by utilising a virtual inductance, which is 

shown to reject grid voltage harmonics disturbance and thus improve the output current THD. A small signal model of the inverter 

based on the transfer function approach is developed to analyse is stability and determine droop gains. Simulation and experimental 

results are presented to validate the model and demonstrate the controller capabilities. 

 

Index Terms – Droop control, microgrid, grid-connected inverters. 

I. INTRODUCTION 

The use of frequency and voltage droop method to control power sharing of parallel and grid-connected PWM inverters is 

well established in the literature [1]-[16]. This method requires active and reactive power to be measured in order to droop the 

frequency and voltage accordingly such that the inverter mimics the behaviour of a synchronous generator. In reported systems 

[2]-[12], a low pass first order filter is used to obtain the average power from single phase instantaneous power measurement. 

In a balanced three phase system, the instantaneous power equals the average power and such a filter might not be necessary. 

However, in an unbalanced three-phase system, the instantaneous power has a ripple component and a filter becomes essential 

to prevent the ripple component from propagating to the frequency and amplitude through the droop control feedback. 

However, this filter has a significant effect on the dynamics of the droop controller due to associated phase lag [12]. In [13], 

[25] and [26] the average power was measured by integrating the instantaneous power. However, no discussion regarding the 

advantage of this method over the low pass filter was provided. In this paper it is shown that the real time integration method 

for calculating average power gives superior controller dynamic performance compared to the low pass filter method.  

http://www.microgrids.et.aau.dk/
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When droop control is used for grid-connected inverters, the current injected into the grid is basically controlled by adjusting 

the power angle, and hence, there is no direct control over the quality of the output current in contrast to traditional current 

mode grid-connected inverters [17]-[19] where the control is performed using a feedback signal of the output current. In the 

presence of grid voltage harmonics, harmonic currents will flow from/to the inverter due to its low output impedance of the 

inverter and its output filter. In grid-connected inverters, an LCL filter is normally used (rather than LC) as shown in Fig. 1. 

The grid side inductor L2 is used to block the high switching frequency component of the output current from being injected 

into the grid. The presence of L2 increases the output impedance of the inverter and to a certain extent it improves the output 

current Total Harmonic Distortion (THD). However, the design criterion for choosing the inductance of L2 is to block the high 

switching frequency current [18],[19] and hence L2 is normally chosen to be relatively small (increasing L2 will increase size 

and cost). The other disadvantage of increasing L2 is that it worsens the voltage THD when the inverter operates in island mode 

and supplies a non-linear load. In this paper, a virtual inductance is proposed to further increase the output impedance of the 

inverter but without compromising size and cost. This virtual inductance can be deactivated or reduced in standalone island 

mode so it does not affect the voltage THD when supplying a non-linear load. The use of virtual impedance has in fact been 

proposed in the literature [2],[3], [5]-[7] but it has been proposed  for inverters operating in standalone parallel mode to 

guarantee a predominant inductive output impedance of paralleled inverter so that the active power is predominantly 

determined by the power angle and the reactive power is predominantly determined by the voltage amplitude. The main 

motivation, however, for using the virtual inductance in this paper is to improve the quality of the output current in grid-

connected mode. Although some previous publications discussed the effect of grid side inductance on the controller stability of 

grid-connected inverters [19]-[21], they only considered the effect of physical inductance. Also, in such grid-connected 

systems, the inverter is typically controlled as a current source injecting certain amount of current into the grid. In this paper, 

however, the effect of a virtual inductance on the stability of grid connected inverters, based on droop-control, is discussed 

taking into account the effect of the low pass filter required for practical implementation. The model (current-voltage transfer 

function) of a virtual inductor is different from a physical inductor. 

Several publications have proposed small signal models for droop controlled inverters operating in grid-connected mode 

[22]-[24]. These models used state-space equations to describe the inverter dynamics. In this paper, an intuitive model based 

on the transfer function approach is presented. The model is used to analyse stability and choose the droop coefficients. 

Applications such as photovoltaic single-phase micro-inverters have used droop control in order to achieve a flexible 

operation of both grid-connected and island modes [13], [27]-[29]. Although small-signal analysis have been done for droop-
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controlled grid-connected inverters powered by ideal DC sources, to the best knowledge of the authors, still there are no 

studies on how the droop controller affects the DC-link voltage especially when the inverter first connects to the grid. 

The main novel contributions of the paper are: 1) A detailed investigation, not reported before in the literature, of the effect 

of average power measurement techniques (low pass filtering and integration of instantaneous power methods) on the 

performance of the power flow controller; the integration method is shown to be superior, 2) Using virtual inductance as an 

effective method to reduce current THD and investigate its practical realisation using a high-pass filter and its effect on 

stability and current THD; previous work in the literature, including our own, only considered the effect of physical inductance 

on stability and THD 3) A new  intuitive small signal model of a droop controlled grid connected inverter based on transfer 

function approach, 4) a study of the impact of the droop controller on  DC-link voltage, which has not been considered before 

in the literature. 

The paper is organized as follow. Section II gives an overview of the system. Section III discusses the inner loop controller 

of the inverter. In section IV, the development of a small signal model of the inverter and the design of the droop control are 

presented. Simulation and experimental results are presented in sections V and VI, respectively. 

II. SYSTEM OVERVIEW 

The grid-connected inverter considered in this paper is shown in Fig. 1. It consists of a three-phase half bridge inverter with 

LCL filter. The inverter parameters are given in Table I. The inverter controller is illustrated in Fig. 2. It consists of an outer 

power flow controller that sets the voltage amplitude and frequency demand for an inner voltage inner loop controller. The 

power flow controller regulates the amount of active and reactive power injected into the grid. The voltage inner loop 

controller regulates the capacitor voltage Vc by utilising two feedback loops of the capacitor voltage and current. The detailed 

design of the inner loop controller is discussed in section III and the design of the power flow controller is discussed in section 

IV. 
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
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Fig.  1. Circuit diagram of the grid-connected inverter 
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TABLE I 

INVERTER PARAMETER VALUES 

Symbol Value Description 𝐿1 350µH Inverter-side filter inductor 𝐶 160µF Filter capacitor 𝐿2 250µH Grid-side filter inductor 𝐶𝑑𝑐  2mF DC-link capacitor 𝑃𝑚𝑎𝑥 60kW Maximum active power rating 𝑄𝑚𝑎𝑥 
45kVAR Maximum reactive power rating 
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Fig.  2. Inverter controller 
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Fig.  3. Transfer function block diagram of one phase and its inner loop controller 
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III. INNER LOOP CONTROLLER 

 Fig. 3 shows the block diagram of one inverter phase and its inner loop controller. The controller is implemented in the abc 

frame.  The controller could also be implemented in the dq rotating frame where a Proportional-Integral (PI) controller is 

equivalent to a Proportional Resonant (PR) controller in the stationary frame. It has been reported that implementing a PI 

controller in the dq frame is better than a PR controller in the stationary frame as the latter can lead to analytical errors 

especially at the low frequencies [31]. In this design, only proportional term will be used in the inner voltage controller. 

Therefore, the abc stationary frame is used for its simplicity. The inner loop voltage controller consists of an outer feedback 

loop of the capacitor voltage and an inner feedback loop of the capacitor current; the latter provides damping of filter 

resonance. A feedforward loop of the reference voltage is also implemented to improve the speed of response and minimise the 

steady state error.  

Without the virtual inductance loop, the output voltage can be shown to be given by  

 
*( ) ( )

o c o
V G s V Z s I   (1) 

 

where 𝐺(𝑠) is the closed loop transfer function and 𝑍(𝑠) is the system output impedance, 
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The voltage and current proportional gains 𝑘𝑣 and 𝑘𝑐 were chosen to be 2.0 and 2.2, respectively to provide good transient and 

steady state response. In terms of transient response, the aforementioned gains give a damping ratio 𝜁 = 𝑘𝑐√𝐿1𝐶 (𝑘𝑣 + 1)⁄ 2𝐿1 = 0.43⁄  and a step response settling time of about 1 m sec. The steady state response can be 

analysed using the bode diagram of G(s) which is shown in Fig. 4. At the fundamental frequency f = 50Hz, the gain is 0.01dB 

and the phase lag is 2.12deg. This is a characteristic of the closed loop system, which also depends on system parameters 

uncertainty. The phase lag will cause the inverter to import some transient power when connecting to the grid as will be shown 

later.  



6 

 

Virtual Inductance and Grid harmonics Rejection  

The ideal transfer function of a virtual inductance 𝐿𝑣 is given by 

 

 ( )
vi v

Z s sL  (4) 

 

However, implementing the derivative as in (4) experimentally introduces the well-known problem of noise amplification. 

Therefore, the pure derivative is replaced by a high-pass filter which is, in fact, a pure derivative preceded by a low pass filter. 

The transfer function of the virtual inductance is therefore given by 

 

 ( ) c

v v

c

s
Z s L

s







 (5) 

 

where 𝜔𝑐 
is the cut-off frequency of the high pass filter. When the virtual inductance is implemented, the output voltage can be 

shown to be given by 

 

 
*( ) ( )

o c o o
V G s V Z s I   (6) 

 

where 𝑍𝑜(𝑠) is the inverter’s modified output impedance and is given by 

 

 ( ) ( ) ( ) ( )
o v

Z s Z s G s Z s   (7) 

 

Equation (6) can be represented by the block diagram shown in Fig. 5. When the system is connected to the grid, the output 

voltage 𝑉𝑜 is actually the grid voltage. To increase the system ability to reject grid voltage harmonics, it is desirable to 

maximise 𝑍𝑜(𝑠) at these harmonics. The Bode diagrams of both 𝑍(𝑠) and 𝑍𝑜(𝑠) for 𝐿𝑣 = 650μH and 3 different values of 𝜔𝑐 

are shown in Fig. 6. It can be noticed that 𝑍𝑜(𝑠) provides higher output impedance and hence better grid harmonics rejection 

for frequencies up to 900Hz (the 18
th

 harmonic). It can also be noticed that reducing 𝜔𝑐 will reduce impedance and hence 

provide lower grid harmonics rejection. For the frequency range from 1kHz to 3kHz, 𝑍𝑜(𝑠) provides lower impedance than 𝑍(𝑠). However, most of the dominant grid harmonics are in fact the lower ones (lower than 1kHz) where 𝑍𝑜(𝑠) provides 

higher impedance than 𝑍(𝑠). 
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From Fig. 5, the stability of the inner loop controller is guaranteed if both closed loop transfer functions 𝐺(𝑠) and 1 𝑍𝑜⁄ (𝑠) are 

stable. The stability of 𝐺(𝑠) has been guaranteed by proper selection of the proportional gains 𝑘𝑣 and 𝑘𝑐 as discussed above. 

The stability of 1 𝑍𝑜⁄ (𝑠) can be determined by examining the roots of the characteristic equation of  1 𝑍𝑜⁄ (𝑠) which is given 

by 

 

 ( ) 0
o

Z s   (8) 

 

To analyse the effect of the virtual inductance on the stability of 1 𝑍𝑜⁄ (𝑠), the root locus of (8) is plotted as shown in Fig. 7 

with 𝐿𝑣 varying from 0 to 2.5mH for 3 different cases of the cut-off frequency (𝜔𝑐 = 1000, 1500, and 2000 rad/s). As 𝐿𝑣 

increases, the dominant roots are pushed to the right and hence stability is reduced. In the magnified portion of the root locus 

diagram, it can be seen that increasing 𝜔𝑐 also decreases stability as the system becomes unstable for a smaller value of 𝐿𝑣. 

Therefore, increasing 𝐿𝑣 and 𝜔𝑐 reduces stability but at the same time increases harmonics rejection by increasing the 

impedance gain over a higher frequency range as was shown from the bode diagram of Fig. 6. Therefore, the determination of 𝐿𝑣 and 𝜔𝑐 is a compromise between stability and harmonics rejection. By choosing 𝐿𝑣 = 650μH and 𝜔𝑐 = 1500 rad/sec, the 

dominant close loop poles give an acceptable damping ratio of 0.2 and settling time of 1.8ms. This design provides high 

impedance at most significant grid harmonics (up to the 18
th

 harmonic). As a result the system’s ability to reject grid voltage 

harmonics increases. The system’s ability to reject grid voltage disturbance can be simply evaluated from (6) by calculating the 

transfer function 𝐼𝑜 𝑉𝑜⁄  when 𝑉𝑐∗ is set to zero. In this case, 𝐼𝑜 𝑉𝑜⁄ = −1 𝑍𝑜(𝑠)⁄ . At different grid harmonics h, the disturbance 

rejection is calculated as 1 |𝑍𝑜(𝑗2𝜋ℎ)|⁄ . Table II shows the disturbance rejection at the odd grid harmonics up to the 17
th

 

harmonic without virtual inductance (𝐿𝑣 = 0) and with virtual inductance (𝐿𝑣 = 650μH). It is quite clear that the virtual 

inductance greatly improves disturbance rejection. 

The Bode diagram in Fig. 6 shows predominant inductive impedance in the vicinity of the fundamental frequency. Thus, 

the output impedance (around the fundamental frequency) can be approximated as  

 

 ( )
o o

Z s L s  (9) 

 

where 𝐿𝑜 is the effective output inductance of the system that will be used in the following section. Its value from the Bode 

diagram of 𝑍𝑜(𝑠) is 𝐿𝑜 = 996μH.  
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Equation (6) can be represented by the Thévenin's equivalent circuit shown in Fig. 8(a). Because G(s) has a relatively fast 

response settling time (~1ms) with respect to that of the outer droop controller, it can be assumed to be an ideal voltage source 

with settable magnitude and frequency. Therefore, the grid-connected inverter can now be represented by an ideal voltage 

source in series with an inductor 𝐿𝑜 as shown in Fig. 8(b).  

 

 

Fig.  4. Bode diagram of G(s). 
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Fig.  5. Closed loop transfer functions relating Io to 𝑉𝑐∗ and Vo 
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Fig.  6. Bode diagram of output impedance. 
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Fig.  7. Root locus of the characteristic equation Zo(s) = 0 with Lv varying from 0 to 2.5mH for three different values of 𝜔𝑐: 1000, 1500, 2000 rad/s. 

 

TABLE II 

GRID DISTURBANCE REJECTION 

Harmonic (h) 1 |𝑍𝑜(𝑗2𝜋ℎ)|⁄  (dB) 𝐿𝑣 = 0𝜇𝐻 

1 |𝑍𝑜(𝑗2𝜋ℎ)|⁄  (dB) 𝐿𝑣 = 650𝜇𝐻 

3 9.22 1.63 

5 4.76 -1.33 

7 1.78 -2.88 

9 -0.43 -3.92 

11 -2.21 -4.69 

13 -3.64 -5.27 

15 -4.80 -5.61 

17 -5.64 -5.65 
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Fig.  8. Thévenin's equivalent circuit diagram of grid-connected inverter (a) single phase, (b) three-phase. 

 

IV. DESIGN OF POWER FLOW CONTROLLER  

A. Droop Control Equations 

The proposed droop control is given by 

 

  * *

_ ( )
o I

k k s P P       (10) 

  * *

_ ( )
o a a I

V V k k s Q Q     (11) 

 

where 𝜔𝑜∗, 𝑉𝑜∗ are the nominal frequency and voltage references, respectively. 𝑘𝜔, and 𝑘𝑎 are the proportional frequency and 

voltage droop coefficients, respectively. 𝑘𝜔_𝐼, and 𝑘𝑎_𝐼 are the integral frequency and voltage droop coefficients, respectively. 

During steady state, the inverter runs at the same frequency as that of the grid, 𝜔 = 𝜔𝑜 (transient frequencies might be 

different).  Similarly, the inverter voltage will nearly equal the grid voltage plus the small voltage drop across the inverter 

output impedance, i.e.,  𝑉 ≈ 𝑉𝑜. Assuming that the grid frequency and voltage equal their nominal values used by the controller 

such that 𝜔𝑜 = 𝜔𝑜∗ and 𝑉𝑜 = 𝑉𝑜∗, then according to (10) and (11), 𝑃 = 𝑃∗ and 𝑄 = 𝑄∗ even if the integral droop coefficients 𝑘𝜔_𝐼, 𝑘𝑎_𝐼 are set to zero. However, the grid frequency and voltage can vary with time due to variation of active and reactive 

loads, or the connection or disconnection of big generators. If the grid frequency and voltage  do not equal their nominal 

reference values used by the inverter controller such that 𝜔𝑜 ≠ 𝜔𝑜∗ and 𝑉𝑜 ≠ 𝑉𝑜∗ then the inverter will produce active and 

reactive power that are different from those of the set points.  Typically, the grid frequency can change by 2% and the grid 

voltage can change by 10%, which can result in significant deviations of the inverter’s output active and reactive power from 

the set points. To overcome this problem, the basic conventional proportional droop controller is modified to a PI controller to 
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eliminate these power steady state errors as was shown in (10) and (11). As this inverter will operate in grid-connected mode, 

there is no concern of frequency and voltage drifting as a result of using the integral term in the droop controller because the 

output frequency and voltage of the inverter will be fixed by the stiff grid. Usually the grid voltage and frequency do not vary 

very quickly and hence the response time of the integral parts of the PI controllers can be relatively slow, but it needs to be fast 

enough to track changes in grid frequency and voltage [26].  

B. Small Signal Model 

An equivalent circuit diagram of the grid-connected inverter was shown in Fig. 8(b). The grid impedance was neglected as 

the inverter output impedance is usually much higher than the grid impedance. The active and reactive power flow between the 

inverter and the grid can be shown to be given by 

 

 
3 sin

o

o o

VV
P

L




  (12) 

 

 
 23 cos

o o

o o

VV V
Q

L






  (13) 

 

A small change�̃�  and �̃�  in active and reactive power , respectively, are given by 

  .3 sin cos .o

eq eq eq

o o

V
P V V

L
  


   (14) 

 

  3 cos . sin .o

eq eq eq

o o

V
Q V V

L
  


   (15) 

 

where 𝛿𝑒𝑞 and 𝑉𝑒𝑞  are the equilibrium points around which the small signal analysis is performed.  By perturbing (10) and (11) 

we get 

   *

_ Io avg
k k s P P      (16) 

 

   *

_a a Io avg
V k k s QV Q    (17) 
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where �̃�𝑎𝑣𝑔 and �̃�𝑎𝑣𝑔 are small changes in the measured average active and reactive power, respectively. The grid frequency 

and voltage reference points 𝜔𝑜∗ and 𝑉𝑜∗ are fixed by the controller. However, the grid frequency 𝜔𝑜 and voltage Vo may change 

slightly and hence the notations �̃�𝑜 and  �̃�𝑜 in (16) and (17) represent the small deviations in the grid frequency and voltage 

from their nominal values, respectively. The small signal model described by (14)-(17) can be represented by a block diagram 

as shown in Fig. 9 where the angle 𝛿𝑜, represented as a disturbance, is the initial angle between the inverter voltage and the 

grid voltage before connection. It is mainly caused by the phase lag of the closed loop system as was shown in Fig. 4. The 

transfer function F(s) is the power measurement transfer function that relates the average power to the instantaneous power. In 

a balanced three-phase system, the instantaneous total power is free from ripple. However, if the system is unbalanced, 

undesired ripple will appear in the instantaneous total power signal and a filter F(s) has to be used.  F(s) can be a simple low 

pass filter, that is, 

 ( )
f

f

F s
s







 (18) 

The cutoff frequency of the low pass filter 𝜔𝑓 needs to be low enough to filter out the undesired terms but it needs to be high 

enough to give an adequately fast power measurement response time. It is common practice to select the cutoff frequency to be 

one decade below the fundamental frequency [3]. Alternatively, the average of the power can be calculated by integrating the 

instantaneous power over one fundamental cycle T using the following equations, 

 
1

( )

t

avg

t T

P p t dt
T 

   (19) 

 

 
1

( )

t
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t T

Q q t dt
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   (20) 

 

where p(t) and q(t) are the instantaneous active and reactive power, respectively. The integration is rolled over the last 

fundamental cycle and is updated every time new voltage and current samples are available. In this case, the power 

measurement transfer function of the integration filter, can be given as 

 

  1
( ) 1 Ts

F s e
Ts

   (21) 

 

Fig. 10 shows the response of the two power measurement filters of a three-phase unbalanced system where one of the load 
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phases is 50% of the two other phases. Without using any kind of filtration, i.e. 𝐹(𝑠) = 1, the instantaneous power has a large 

ripple component.  When a low pass filter with a cutoff frequency of 100 rad/sec is used, the time response is fast but the 

power measurement suffers from a steady state ripple. When the cutoff frequency is reduced to 10 rad/sec, the ripple is 

attenuated but the time response is quite sluggish. The advantage of using the integration filter over the low pass filter is clear; 

it gives a ripple free signal with faster response. In the experimental implementation, the active and reactive power are 

measured using (21). However, in the linear small signal model, the time delay in (21) is approximated by a rational function 

using the Padé approximation. If a second order Padé approximation is used, the time delay can be expressed as  

 

 
2 2

2 2

12 2 1

12 2 1

sT T s T s
e

T s T s
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

 
 (22) 

 

Substituting (22) in (21) gives 

 

 
2 2

1
( )

12 2 1
F s

T s T s
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 (23) 

 

It is worth noting that (23) represents a second order low pass filter with a cutoff frequency of 140 rad/sec. 
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Fig.  9. Small signal model 
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Fig.  10. Response of power calculation methods 

C. Stability Analysis and Droop Coefficients Selection 

The small signal model presented in Fig. 9 can be used to analyse system stability and determine the droop coefficients. 

During starting, which is the case that will be used to analyse stability, the angle equilibrium point is set to 𝛿𝑒𝑞 = 0, which is 

equivalent to starting the inverter with zero power demand 𝑃∗ = 0. In this case, the active and reactive power controllers 

become fully decoupled because sin (𝛿𝑒𝑞) equals zero in Fig. 9. The voltage equilibrium point is set to the nominal grid voltage 𝑉𝑒𝑞 =  𝑉𝑜. The locus of the closed loop poles of the active power small signal model when 𝑘𝜔 changes from 0 to 7 × 10−4   (𝑘𝜔_𝐼 = 0) is shown in Fig. 11. The poles 𝛾1,2 are the closed loop poles when F(s) is a low pass filter as given in (18) with 𝜔𝑓 = 10rad/sec. The poles λ1,2,3 are the closed loop poles when F(s) is the integration filter given in (23). When the low pass 

filter is used to measure the power, the system is always stable. However, the root locus has a fixed distance from the 

imaginary axis which means that the settling time of the system is fixed and it is not affected by 𝑘𝜔. On the other hand, when 

the integration filter is used to measure the power, the system can become unstable for large values of 𝑘𝜔 but there is more 

freedom in choosing the real value of the dominant poles to achieve the required speed of response. The locus of the closed 

loop poles with 𝑘𝜔_𝐼 changes from 0 to 2 × 10−4 (𝑘𝜔 = 1.5 × 10−4) is also shown in Fig. 11 (enclosed by circles). The integral 

coefficient 𝑘𝜔_𝐼 changes the locus of the poles very slightly and hence it has negligible effect on the dynamic response of the 

system. 

Fig. 12 shows the root locus of the reactive power small signal model with 𝑘𝑎 changing from 0 to 6 × 10−4 (𝑘𝑎_𝐼 = 0). For 

both power measurement filters, the system is always stable. However, when the integration filter is used, the system step 

response is under-damped compared to the exponential response obtained when the low pass filter is used. In addition, the 
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closed loop poles are located further to the left which results in a much faster response.  The locus of the poles for varying 𝑘𝑎_𝐼  
(enclosed by circles) shows that it has negligible effect on the dynamic response of the system. 
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Fig.  11. Root locus diagram of the active power model, 0 < 𝑘𝜔 < 7 × 10−4 𝑘𝜔_𝐼 = 0, 𝛾1,2 
are the poles when LPF (𝜔𝑓 = 10rad/sec ) is used, λ1,2,3 are poles when integration filter is used. The poles enclosed by the circles represent the 

root locus with varying integral coefficient 0 < 𝑘𝜔_𝐼 < 2 × 10−4, 𝑘𝜔 = 1.5 × 10−4
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Fig. 12. Root locus diagram of the reactive power model, 0 < 𝑘𝑎 < 6 × 10−4 , 𝑘𝑎_𝐼 = 0, γ
 
is the poles when LPF (𝜔𝑓 = 10rad/sec ) is used, λ1,2 are poles 

when integration filter is used. The poles enclosed by the circles represent the root locus with varying integral coefficient  0 < 𝑘𝑎_𝐼 < 2 × 10−4, 𝑘𝑎 = 3 ×10−4. 
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The frequency drooping coefficient kω needs to be carefully chosen to satisfy transient requirements. The system should have 

a good damping ratio, ideally between 0.3 and 0.7. A number of different variables can also be examined to analyze the 

transient response of the controller such as circulating current as in [3]. In this design, the amount of energy that can be 

transferred from the grid to the inverter during a grid connection transient is examined. If the angle of the inverter output 

voltage lags the grid voltage by 𝛿𝑜 when it first connects to the grid, active power will flow from the grid to the inverter and 

the energy transferred will cause the DC-link voltage to rise. If the DC-link voltage is higher than the maximum limit, the 

protection system will trip. The trip limit 𝑉𝑑𝑐_max is specified according to the voltage rating of the power switches of the 

inverter. The objective is to select the frequency droop gain  𝑘𝜔 so that the maximum transient energy absorbed by the inverter 

(caused by the presence of an initial power angle 𝛿𝑜) does not cause the DC-link voltage to rise above the trip limit. If the 

demand power �̃�∗ is set to zero in Fig. 9 and by ignoring the disturbance caused by the frequency deviation and assuming 𝛿𝑒𝑞 = 0 and 𝑉𝑒𝑞 = 𝑉𝑜, the block diagram that relates the output energy (integral of power) to the disturbance 𝛿𝑜 is shown in 

Fig. 13. The proportional coefficient 𝑘𝜔 needs to be chosen to limit the overshoot in the output energy but without 

compromising relative stability. The integral coefficient 𝑘𝜔_𝐼 does not affect the transient response as was shown earlier in the 

root locus diagram of Fig. 1.  Table III summarizes the results of the damping ratio and the overshoot in the output energy for 

different values of 𝑘𝜔. Increasing 𝑘𝜔 reduces the overshoot in the output energy but also reduces the damping ratio, which 

means that a compromise has to be made.  The superiority of the integration filter over the low pass filter can also be seen from 

the results in Table III. For example, for  𝑘𝜔 = 1.5 × 10−4, the damping ratio, when the integration filter is used, is 2.5 times 

more and the overshoot is 60% less than that when the low pass filter is used.  

The maximum transient energy that the inverter can absorb is given by 

 

  2 2

max _ max _

1

2
dc dclink dclink o

E C V V   (24) 

 

where 𝑉𝑑𝑐𝑙𝑖𝑛𝑘_𝑜 is the initial DC-link voltage before transient, 𝑉𝑑𝑐𝑙𝑖𝑛𝑘_𝑚𝑎𝑥 is the maximum allowed DC-link voltage, and 𝐶𝑑𝑐 is 

the DC-link capacitance. In this inverter the maximum allowed DC-link voltage, 𝑉𝑑𝑐𝑙𝑖𝑛𝑘_𝑚𝑎𝑥 = 1000V. When the inverter first 

connects to the AC bus, the initial DC-link voltage is 𝑉𝑑𝑐𝑙𝑖𝑛𝑘_𝑜 = 750V. According to (24), the maximum energy is therefore 𝐸max = 438 J. In order to prevent the DC-link voltage from rising to the maximum limit of 1000V, the overshoot transient 
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energy should be less than 𝐸max.  The initial angle 𝛿𝑜 depends mainly on the closed loop phase lag that was illustrated earlier 

in the bode diagram in Fig. 4. Even though a phase correction can be added, due to parameter uncertainly such a phase lag may 

still exist which could cause transient power to be imported. During starting and before the inverter closes its output contactor 

(Fig. 1), the demand voltage 𝑉𝑐∗ is synchronised with the grid voltage 𝑉𝑜 using phase locked loop or zero crossing detection. 

Due to the phase lag characteristic of the closed loop system, the capacitor voltage 𝑉𝑐  will lag the demand voltage 𝑉𝑐∗ (and the 

grid voltage) by 𝛿𝑜. According to Fig. 4, the phase lag at the fundamental frequency is 2.12 deg (0.037 rad). In addition, 𝛿𝑜 can 

also increase due to the measurement error in the synchronization method (phase locked loop or zero crossing detection). The 

drooping coefficient is set to 𝑘𝜔 = 1.5 × 10−4. Knowing that the maximum energy that can be absorbed by the inverter is 𝐸max = 438 J and according to Table III, the maximum acceptable initial phase lag angle is 𝛿𝑜 = 4388200 =  0.053rad. In case the 

synchronisation measurement causes 𝛿𝑜 to increase beyond this limit then a correction for the phase lag needs to be done 

during synchronisation.  

The voltage amplitude droop coefficients ka needs also to be chosen to satisfy transient requirements.  In this design, the 

droop gain is set to 𝑘𝑎 = 3 × 10−4 which gives a good system damping ratio of 0.6. 
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TABLE III 

TRANSIENT RESPONSE 𝑘𝜔 Low pass filter Integration filter 

ζ Energy overshoot (J) ζ Energy overshoot (J) 1.0 × 10−4 0.22 25,000 × 𝛿𝑜 0.64 11,000 × 𝛿𝑜 1.5 × 10−4 1.88 20,000 × 𝛿𝑜 0.44 8,200 × 𝛿𝑜 2.0 × 10−4 0.16 17,000 × 𝛿𝑜 0.32 7,000 × 𝛿𝑜 
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V. SIMULATION RESULTS 

 A detailed model of a three-phase half-bridge PWM inverter with LCL filter as per Fig.1 and Table I was built in 

Matlab/Simulink SimPowerSystems. The controller parameters are listed in Table IV. Before the inverter connects to the grid, 

the inverter capacitor voltage 𝑉𝑐 was found to lag the demand voltage 𝑉𝑐∗ and hence the grid voltage 𝑉𝑜 by 0.04 rad. The small 

signal model of Fig. 9 was also built in Simulink to compare its results with that of the detailed model. The disturbance angle 𝛿𝑜 is set to 0.04 rad. 

Fig. 14 shows the DC-link voltage when the inverter is connecting to the grid (the integration filter is used). The imported 

energy caused the voltage to rise from 750 V to 950 V.  

 Fig. 15 shows the inverter frequency, angle and absorbed energy obtained from both the detailed model and the small 

signal model. It is quite clear that there is good agreement between the two models, which justifies neglecting the inverter 

dynamics in the small signal analysis.  Fig. 15(a), (b), and (c) show the inverter frequency, angle and absorbed energy, 

respectively, when the power was measured using the low pass filter (LPF) method according to (18). The response is quite 

oscillatory and the absorbed energy is about 800 J which is much higher than the maximum allowed limit of 438J.  Fig. 15(d), 

(e), and (f) show the inverter frequency, angle and absorbed energy, respectively, when the power was measured using the 

integration filter method; (equation (21) is used in the detailed model and (23) in the small signal model). The response settled 

in about 0.1 second. The maximum absorbed energy is 350 J. The agreement between the detailed model and the small signal 

model is better when using the low pass filter than when using the integration filter. This is due to the Padé approximation used 

to approximate the time delay in the integration filter. It is also worth noting that when a first order Padé approximation was 

used to model the time delay, the small signal model failed to follow the dynamics of the detailed model. This justifies using 

the second order  Padé approximation in the small signal model. In the practical implementation of the virtual inductance, 

equation (21) is used. 

Fig. 16 shows the maximum output current (P=60kW, Q=45kVAR) when the grid voltage includes low harmonics similar 

to those measured in the laboratory. The grid voltage THD was measured to be 2.0%. Fig. 16(a) shows the output current when 

the virtual inductance is deactivated. The current THD is 4.8%. Fig. 16(b) shows the output current when the virtual 

inductance is activated, the THD is dropped to 2.2%. Fig. 17 shows the grid voltage harmonics used in the simulation model 

and Fig. 18 shows the output current harmonics with and without the virtual inductance. The virtual inductance has 

significantly reduced the output current harmonics caused by the presence of grid voltage harmonics.  
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VI. EXPERIMENTAL RESULTS 

 The proposed controller was implemented experimentally for the inverter described by Fig. 1 and Table I. The inverter is 

supplied by a 30Ah lithium-ion battery. The controller was implemented using the Texas Instrument TMS320F2812 Fixed 

point Digital Signal Processor (DSP). The controller parameters of the inverter are shown in Table IV.  A picture of the 

complete system is shown in Fig. 19. 

Fig. 20 shows the DC-link voltage when the inverter is connecting to the grid. The imported energy caused the voltage to 

rise from 750 V to about 940 V. The response of the DC-link voltage is similar to the simulated one shown in Fig. 14. 

Fig. 21 shows the grid voltage and output current. The inverter is supplying active power of 60kW and reactive power of 

45kVAR. The virtual inductance is deactivated and the current THD is measured to be 6.0%. When the virtual inductance is 

activated, the current THD is dropped to 2.4% as shown in Fig. 22.  

 

TABLE IV 

CONTROLLER PARAMETER VALUES 

Symbol Value Description 𝑓𝑠𝑤 8kHz Inverter switching frequency 𝑓𝑠 16kHz Voltage controller sampling frequency 𝑘𝑣 2.0 Capacitor voltage loop proportional gain 𝑘𝑐 2.2 Capacitor current loop proportional gain 𝑘𝜔 41.5 10  
Drooping frequency coefficient 𝑘𝑎 43.0 10  Drooping voltage coefficient 𝑘𝜔_𝐼 55.0 10  Integral Drooping frequency coefficient 𝑘𝑎_𝐼 41.0 10  Integral Drooping voltage coefficient 𝜔𝑜∗

 
314.16 

rad/sec 

Nominal frequency 𝑉𝑜∗
 

230 V 

(rms) 

Nominal grid voltage 𝐿𝑣 650µH Virtual sharing inductor 𝜔𝑐 1500 rad/s Cutoff frequency of the virtual inductance 

high pass filter 

  

 

Fig. 14. Simulated Dc-link voltage when connecting to the grid
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(a) 

 

(d) 

 
(b) 

 

(e) 
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(f) 

Fig.15. Transient response, 𝛿𝑜 = −0.04 rad,  (a) Frequency (LPF), (b) Angle (LPF), (c) Energy (LPF), (d) Frequency (SF), (e) Angle (SF), (f) Energy (SF), 

 

 

 
(a) 

 
(b) 

Fig. 16. Simulated output current in grid-connected mode, P = 60kW, Q = 45kVAR. (a) without virtual inductance (b) with virtual inductance 
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Fig. 17. Grid voltage harmonics 

 

 

Fig. 18. Output current harmonics 
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Fig. 19. Experimental setup 

 

 

Fig. 20. Dc-link voltage (Ac coupled) and grid voltage when connecting to the grid 
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Fig. 21. Inverter output current without virtual inductance, P = 60kW, Q = 45kVAR. (current scale: 1A/2mv) 

 

 

Fig. 22. Inverter output current with virtual inductance, P = 60kW, Q = 45kVAR. (current scale: 1A/2mv) 

 

CONCLUSIONS 

An improved control strategy for a droop controlled grid connected inverter has been presented. The transient response has 

been improved by measuring the average power using the integration method rather than using the traditional low pass filter. 

Virtual inductance has been found to improve the grid disturbance rejection and thus improve the output current THD. A small 

signal model based on transfer function approach has been developed to aid the controller design. The controller effectiveness 

has been validated by simulation and experiments. 
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