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ABSTRACT
The pre-merger (early-warning) gravitational-wave (GW) detection and localization of a compact binary merger would enable
astronomers to capture potential electromagnetic (EM) emissions around the time of the merger, thus shedding light on the
complex physics of the merger. While early detection and sky localization are of primary importance to the multimessenger
follow-up of the event, improved estimates of luminosity distance and orbital inclination could also provide insights on the
observability of the EM emission. In this work, we demonstrate that the inclusion of higher modes of gravitational radiation,
which vibrate at higher multiples of the orbital frequency than the dominant mode, would significantly improve the early-
warning estimates of the luminosity distance and orbital inclination of the binary. This will help astronomers to better determine
their follow-up strategy. Focusing on future observing runs of the ground-based GW detector network [O5 run of LIGO-
Virgo-KAGRA, Voyager, and third-generation (3G) detectors], we show that for a range of masses spanning the neutron-star
black-hole binaries that are potentially EM-bright, the inclusion of higher modes improve the luminosity distance estimates
by a factor of ∼ 1 − 1.5 (1.1 − 2) [1.1 − 5] for the O5 (Voyager) [3G] observing scenario, 45 (45) [300] seconds before
the merger for the sources located at 100 Mpc. There are significant improvements in orbital inclination estimates as well.
We also investigate these improvements with varying sky-location and polarization angle. Combining the luminosity distance
uncertainties with localization skyarea estimates, we find that the number of galaxies within localization volume is reduced by a
factor of ∼ 1− 2.5 (1.2− 4) [1.2− 10] with the inclusion of higher modes at early-warning time of 45 (45) [300] seconds in O5
(Voyager) [3G].

1 INTRODUCTION

The LIGO-Virgo (Aasi et al. 2015; Acernese et al. 2015) network of
ground-based interferometric detectors has completed three observ-
ing runs so far. These have provided over ∼ 90 gravitational-wave
(GW) detections (Abbott et al. 2019a, 2020, 2021; Zackay et al.
2019b; Nitz et al. 2021a). Most of the GWs are found to be consistent
with binary black hole (BBH) coalescences, although neutron-star
black-hole (NSBH) and binary neutron star (BNS) mergers have also
been observed (Abbott et al. 2019a, 2020, 2021; Zackay et al. 2019a;
Venumadhav et al. 2020, 2019; Zackay et al. 2019b; Nitz et al. 2019,
2020a, 2021b; Nitz et al. 2021a).

The very first BNS merger detected by LIGO-Virgo — GW170817
(Abbott et al. 2017a) — was accompanied by an electromagnetic
(EM) counterpart that was followed up by numerous telescopes
worldwide (Abbott et al. 2017c). The resulting scientific gain was
spectacular: it enabled an unprecedented probe of the neutron star
equation of state (EOS) (Abbott et al. 2018b), a stringent constraint
on the deviation of the speed of GWs with respect to the speed of
light (Liu et al. 2020) and alternative theories of gravity (Abbott et al.
2019b), a distance ladder independent measurement of the Hubble
constant (Abbott et al. 2017b), and ascertained BNS mergers to be

sites where heavy elements of the periodic table get synthesized
(Kasen et al. 2017).

Future observing runs could potentially detect compact binary
coalescences (CBCs) with EM-counterparts, although the relative
rarity of such events motivates the need to maximize the science gains
afforded by them. In particular, a pre-merger/early-warning (EW)
detection and localization of these events could allow telescopes to
capture potential precursors (e.g. Tsang et al. 2012) and signatures of
intermediate products such as hypermassive or supramassive neutron
stars (e.g. Hotokezaka et al. 2013).

Current EW efforts are targeted towards BNSs (Sachdev et al.
2020; Magee et al. 2021), exploiting the relatively longer duration
of their GWs in the band of ground-based detectors as compared
to BBH mergers. This allows templated matched-filter searches to
accummulate sufficient signal-to-noise ratio (SNR) several seconds
to a minute before merger (Cannon et al. 2012), thus enabling a
pre-merger detection and localization.

Certain NSBH mergers are also expected to produce EM-
counterparts 1, depending on the mass ratio of the binary, the spin of
the BH, and the EOS of the NS (Foucart 2012; Foucart et al. 2018).

1 We refer to mergers with EM counterparts as “EM-bright”
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However, their heavier total mass compared to BNSs reduce their in-
band duration (Sathyaprakash 1994), thus making an EW detection
and localization more challenging.

Current real-time (low-latency) CBC searches (Messick et al.
2017; Adams et al. 2016; Nitz et al. 2018; Chu 2017) use GW
templates that consist of only the dominant harmonic. On the other-
hand, for asymmetric mass systems such as NSBHs with moderate to
high orbital inclination, the subdominant harmonics can contribute
a significant fraction of the SNR (e.g., Varma et al. 2014). Recent
work showed that the inclusion of subdominant modes in low-latency
searches would improve EW detection and sky-localisation, by virtue
of the fact that these modes enter the frequency band of the detectors
well before the dominant mode2 (Kapadia et al. 2020; Singh et al.
2021).

Not only the sky-localization but also the measurement of lumi-
nosity distance and orbital inclination, in the early-warning time, can
be improved significantly with the inclusion of higher modes in on-
line GW searches. The increased information content in the higher
modes can also help in breaking degeneracies between the luminosity
distance and orbital inclination. The improved measurements of lu-
minosity distance will help in better understanding if an EM emission
from the source can be observed by the existing ground/space based
telescopes. Similarly, the better estimates of inclination angle will
help in informing about the observability of any beamed EM emis-
sion, for example, short off-axis gamma ray bursts (GRBs) from the
source (Arun et al. 2014). Thus, the improved measurements of both
of these quantities will help astronomers to decide their follow-up
strategies accordingly.

In this work, we demonstrate the benefits of including subdmoniant
modes in real-time searches, in the context of EW. Specifically, using
a Fisher Matrix based analysis, we show that estimates of luminosity
distance and orbital inclination, improve considerably in EW time,
with the inclusion of higher modes. We consider three observing
scenarios: O5, Voyager, and 3G. “O5” consists of the LIGO-Virgo-
Kagra network, including LIGO-India (Unnikrishnan 2013; Saleem
et al. 2021), operating at their A+ (Abbott et al. 2018a) sensitivities.
In the Voyager (LIGO Scientific Collaboration 2015; Adhikari et al.
2019) scenario, the three LIGO detectors have their sensitivities
upgraded. The 3G network has two Cosmic Explorers, (Reitze et al.
2019) and one Einstein Telescope (Punturo et al. 2010). We find that
the inclusion of higher modes reduces the error uncertainties on the
luminosity distance estimates of potentially EM-Bright (Chatterjee
et al. 2020) NSBH binaries located at 100 Mpc by a factor of ∼ 1 −
1.5(1.1−2) [1.1−5] in the O5 (Voyager) [3G] scenario, 45(45) [300]
seconds before merger. Combining these uncertainties with sky area
estimates, and assuming a galaxy number density of 0.01Mpc−3

(Gehrels et al. 2016), we find that the number of galaxies within the
uncertainty volume is reduced by a factor of ∼ 1−2.5(1.2−4) [1.2−
10] 3.

The rest of the paper is organized as follows. Section 2 explains
how the inclusion of higher modes improves EW estimates of extrin-
sic parameters. It further summarizes the Fisher Matrix/quadratic
approximation to the GW parameter estimation likelihood. It also
describes the key error-uncertainty formulae as well as the multipole

2 In Tsutsui et al. (2021a,b), the effect of precession has also been explored as
a potential way to improve the early warning efforts of NSBH binary mergers.
3 The factors of improvements in the measurement of various parameters
with the inclusion of higher modes quoted in this work are more realistic
in comparison to the factors of improvements in skyarea-localization in Ka-
padia et al. (2020) and Singh et al. (2021). These works overestimate the
improvement-factors since they do not account for the effect of priors.

expansion of the GW strain. Section 3 outlines the results which
demonstrate the benefits of the inclusion of higher modes in early-
warning efforts targeted at NSBH systems. The paper concludes with
Section 4 where the EW gains afforded by higher modes are dis-
cussed in the context of EM follow-up.

2 MOTIVATION AND METHOD

2.1 Higher order modes and early warning

The GW strain can be expressed as a complex combination of its
two polarizations, ‘+" and “×", as ℎ(𝑡) := ℎ+ (𝑡) − 𝑖ℎ× (𝑡). This
combination can further be expanded in basis of spin−2 weighted
spherical harmonics (Newman & Penrose 1966):

ℎ(𝑡; \) = 1
𝑑𝐿

∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

ℎℓ𝑚 (𝑡; ®_)𝑌ℓ𝑚
−2 (], 𝜑0) (1)

where ℎℓ𝑚 (𝑡; ®_) are called the multipoles of the radiation which
depend on time 𝑡 as well as the intrinsic parameters of the source (such
as component masses and spins in the case of a binary system). The
spin weighted spherical harmonics 𝑌ℓ𝑚

−2 (], 𝜑0) capture the angular
dependence of the source’s orientation (]) in the sky with respect to
the line of sight of the observer and reference phase (𝜑0) defined in
terms of the rotation of the source frame with respect to the detector
frame. Here, 𝑑𝐿 is the luminosity distance of the source.

Since the monopole (ℓ = 0) and the dipole (ℓ = 1) terms of the
above multipolar expansion vanish due to the conservation of mass
(or energy) and linear momentum of the source respectively, the dom-
inant contribution to the GW signal comes from the quadrupole mode
(ℓ = 2, 𝑚 = ±2). Several studies (see, e.g. Varma & Ajith 2017) have
shown that CBC templates modelled with only the dominant mode
are sufficient to analyse the data containing the signal produced by
compact binaries with near-symmetric masses. But the contribution
of “higher order” (or “subdominant” or “non-quadrupole”) modes
becomes important for GW signals emitted by highly asymmetric
sources. Also, the relative contribution of higher order modes in-
creases with increasing asymmetry in the system, contributed by
high mass ratio, spin precession, etc. The relative contribution of
higher modes in the observed signal will be significant for binaries
with high inclination angles. Neglecting higher modes for such sys-
tems can bias the inference of the astrophysical properties of the
sources (Varma et al. 2014; Varma & Ajith 2017). Higher modes
will also improve the detectability of binaries as well as the precision
with which the source parameters can be estimated (Van Den Broeck
& Sengupta 2007; Divyajyoti et al. 2021; Harry et al. 2018; Capano
et al. 2014; Graff et al. 2015; Arun et al. 2007).

Higher order modes are not only necessary for unbiased and pre-
cise astrophysical inference of the source properties but can also
improve the early-warning capabilities (localizing a source in the
sky prior to the merger) of the compact binary mergers as shown in
recent works (Kapadia et al. 2020; Singh et al. 2021). Recent studies
have shown that including higher order modes in the online searches
can improve the search sensitivity of the detectors for asymmetric
compact binary mergers (Capano et al. 2014; Harry et al. 2018).

Assuming a non-precessing binary, the instantaneous frequency
𝑓ℓ𝑚 (𝑡) at which the higher modes vibrate is an integer multiple of
the orbital frequency 𝑓orb (𝑡) of the compact binary:

𝑓ℓ𝑚 (𝑡) ≈ 𝑚 𝑓orb (𝑡) (2)

As a result, higher modes (𝑚 > 2) enter the sensitivity band of the
detector well before the dominant mode (ℓ = 2, 𝑚 = ±2). Thus, the
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in-band duration of a GW signal is effectively increased with the
inclusion of subdominant modes (Sathyaprakash 1994):

𝜏𝑐 ≈ 5
256

M−5/3 (2𝜋 𝑓orb)−8/3 ∝ ( 𝑓ℓ𝑚/𝑚)−8/3 (3)

where M := (𝑚1𝑚2)3/5/(𝑚1 + 𝑚2)1/5 is the chirp mass of the
binary. The in-band duration of (ℓ, 𝑚) mode is larger by a factor
of (𝑚/2)8/3 as compared to the dominant mode. For example, the
ℓ = 3, 𝑚 = 3 and ℓ = 4, 𝑚 = 4 modes will spend ∼ 3 and ∼ 6 times
as long in-band as compared to the quadrupole mode.

2.2 Parameter estimation

A fully Bayesian GW parameter estimation (PE) exercise to infer the
parameters ®\ of the binary that produced a CBC signal in the data 𝑠

requires the sampling of the likelihood 𝑝(𝑠 | ®\) in a large-dimensional
parameter space. However, this turns out to be computationally ex-
pensive and time consuming in general. A common workaround, is
to expand the log-likelihood in source parameters and truncate at
quadratic order. The covariance of the resulting multidimensional
Gaussian is given by inverse of the Fisher information matrix (Cut-
ler & Flanagan 1994). This approximation works well for high-SNR
signals and breaks down at very low SNRs (Vallisneri 2008).

We denote by 𝑠(𝑡) the detector strain time series, which consists
of noise 𝑛(𝑡), and a GW CBC signal ℎ(𝑡) as well:

𝑠(𝑡) = 𝑛(𝑡) + ℎ(𝑡). (4)

Assuming that the noise is stationary and Gaussian, the likelihood
on the binary’s parameters ®\ is given by:

𝑝(𝑠 | ®\) ∝ 𝑒−(𝑠−ℎ (
®\) |𝑠−ℎ ( ®\))/2, (5)

where (·|·) denotes the noise-weighted inner product given by:

(𝑎 |𝑏) = 2
∫ ∞

0

�̃�( 𝑓 )�̃�∗ ( 𝑓 ) + �̃�∗ ( 𝑓 )�̃�( 𝑓 )
𝑆( 𝑓 ) 𝑑𝑓 . (6)

Here �̃�( 𝑓 ) and �̃�( 𝑓 ) are the Fourier transforms of 𝑎 and 𝑏 respec-
tively, ∗ denotes the complex conjugate, and 𝑆( 𝑓 ) denotes the noise
power spectral density (PSD).

Expanding the log-likelihood to quadratic order about the peak of
the distribution yields:

𝑝(𝑠 | ®\) ∝ 𝑒−
1
2Γ𝑖 𝑗Δ\𝑖Δ\ 𝑗 , (7)

whereΔ\𝑖 ≡ \𝑖− \̄𝑖 , and \̄𝑖 corresponds to the peak of the likelihood.
The quantity Γ is the so-called Fisher information matrix and is
defined for the 𝑘 th detector as,

Γ𝑘𝑖 𝑗 =

(
𝜕ℎ𝑘

𝜕\𝑖

��� 𝜕ℎ𝑘
𝜕\ 𝑗

)
, (8)

The net Fisher matrix in case of a network of detectors is

Γ =
∑︁
𝑘

Γ𝑘 . (9)

The size of the approximate likelihood function [as well as the pos-
terior distribution 𝑝(\ |𝑠) assuming flat priors] is given by the co-
variance matrix (Σ), which is related to Fisher information matrix as
follows,

Σ𝑖 𝑗 = 〈Δ\𝑖Δ\ 𝑗 〉 = (Γ𝑖 𝑗 )−1 (10)

We can relate the width of the 1-sigma confidence region of the
posterior of parameter \𝑖 (marginalized over all other parameters) to
the diagonal elements of the covariance matrix as,

𝜎𝑖 =
√︁
Σ𝑖𝑖 (11)

Table 1. The priors on parameters for which the Fisher matrix is computed.
Here U(a, b) denotes the uniform probability between 𝑎 and 𝑏. The lumi-
nosity distance, mass, time, and all the angles are measured in Mpc, 𝑀� ,
seconds, and radians respectively.

Parameter (\) Prior
ln(𝑑𝐿/Mpc) U(0, 11.5)

cos ] U(−1, 1)
𝑡c (sec) U(−1, 1)
𝜙c U(0, 2𝜋)

ln(M/𝑀�) U(0, 4.6)
[ U(0, 0.25)

sin 𝛿 U(−1, 1)
𝛼 U(0, 2𝜋)
𝜓 U(0, 2𝜋)

The off-diagonal elements of the covariance matrix contain informa-
tion about the correlation between different parameters. We compute
the Fisher matrix in the following 9-dimensional parameter space

𝜽 ≡ {lnM, [, ln 𝑑𝐿 , cos ], 𝑡𝑐 , 𝜙𝑐 , 𝛼, sin 𝛿, 𝜓} (12)

Equation (11) assumes that the likelihood is not cut by the prior
boundaries, which can happen in real situations. In order to mimic
this, we draw a large number of random samples from the 9-
dimensional Gaussian likelihood (computed using the the Fisher ma-
trix; see Eq. (7)), and discard those samples that lie outside the prior
boundaries. From the remaining samples, we compute the marginal-
ized 1-dimensional posteriors in 𝑑𝐿 as well as ], and estimate the
width of the 90% confidence regions centered around their median
values. These are considered as our error estimates in 𝑑𝐿 and ]. We
use the priors for the parameters as shown in Table 1.

Computing the 90% confidence regions in multi-dimensional pa-
rameter space (e.g., the three dimensional volume in sky) is a bit more
computationally complex. Hence we resort to the following approxi-
mation: From the posterior samples that generate as described above,
we compute the covariance matrix Σ̄3D in three dimensions (𝛼, sin 𝛿,
and 𝑑𝐿) numerically 4. Then, the errors in the 3-dimensional sky-
volume Δ𝑉 are given in terms of this marginalized covariance matrix
Σ̄3D as

Δ𝑉 =
4
3
𝜋

√√√√√√√√√√√√√√√√√
������������

Σ̄3D
𝑑𝐿𝑑𝐿

𝑑𝐿Σ̄
3D
𝑑𝐿𝛼

𝑑𝐿Σ̄
3D
𝑑𝐿 sin 𝛿

𝑑𝐿Σ̄
3D
𝑑𝐿𝛼

𝑑2
𝐿
Σ̄3D
𝛼𝛼 𝑑2

𝐿
Σ̄3D
𝛼 sin 𝛿

𝑑𝐿Σ̄
3D
𝑑𝐿 sin 𝛿

𝑑2
𝐿
Σ̄3D
𝛼 sin 𝛿

𝑑2
𝐿
Σ̄3D

sin 𝛿 sin 𝛿

������������
(13)

Note that equation (13) provides the uncertainties in the localization
volume at 68% confidence. To convert these 1-𝜎 errors into errors at
confidence level 𝐶, we will have to multiply them by a scaling factor
(𝛽) (Lampton et al. 1976). We have estimated this scaling factor
in different dimensions in appendix B. All the error estimates in
this paper correspond to the 90% credible interval unless otherwise
stated. The above errors at 90% confidence level will be,

Δ𝑉90% = (𝛽3)3Δ𝑉 (14)

4 If the original 9-dimensional likelihood is not cut by the prior boundaries,
the marginalized posterior in 2 dimensions will also be a Gaussian, which is
fully described by this covariance matrix. However, the prior boundaries can
cut the 9-dimensional Gaussian. We, still approximate the 3D distributions to
be Gaussians, described by the covariance matrix Σ̄3D.
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Figure 1. Sensitivities of the detectors in various observing scenarios. We
have assumed that KAGRA detector will be operating at the same sensitivity
as Virgo detector in the O5.

where 𝛽𝑛 corresponds to the scaling factor at 90% confidence level
in 𝑛-dimensions. We are more interested in finding the number of
galaxies localized (Δ𝑁) that can be the potential host of the merger.
Therefore

Δ𝑁90% = 𝑛galaxy Δ𝑉90% (15)

where 𝑛galaxy is the number density of the galaxies in the universe.
The inversion of the Fisher matrix (for computing the covari-

ance matrix) is performed numerically using the LU decomposition
method in mpmath library with arbitrary precision (Johansson et al.
2013) in Python. Since the numerical techniques used in inverting Γ

may affect the inversion accuracy, we have to define a fiducial thresh-
old of inaccuracies above which the results can not be trusted. This
can be checked by inferring the deviation of the identity matrix from
the multiplication of the inversion of the covariance matrix to the
original Fisher matrix. The measure of accuracy can be defined as
𝜖inv = max𝑖, 𝑗 |Γ𝑖𝑘Σ𝑘 𝑗 − 𝛿𝑖 𝑗 | (Berti et al. 2005). We find the values of
𝜖inv . 10−8 in our calculations which is well within the acceptable
limits (see Berti et al. (2005)).

2.3 Detector networks

In this work, we mainly focus on three observing scenarios: (i) O5: 5
detector network consisting of three LIGO detectors (LIGO-Hanford,
LIGO-Livingston, and LIGO-India), one Virgo detector, and one
KAGRA detector with sensitivities projected to the fifth observing
run (KAGRA et al. 2019; Unnikrishnan 2013; Saleem et al. 2021).
(ii) Voyager: network of the same five detectors as in O5 but all
three LIGO detectors upgraded to Voyager sensitivities (Adhikari
et al. 2019; LIGO Scientific Collaboration 2015) while Virgo and
KAGRA working at their O5 sensitivities. (iii) 3G: network of three
detectors, one Einstein telescope (Punturo et al. 2010) and two Cos-
mic Explorers (Reitze et al. 2019), with sensitivities projected for the
third-generation detectors. In O5 and Voyager scenario, the detectors
are sensitive above a low-frequency cutoff of 10Hz below which, the
sensitivity degrades rapidly due to seismic noise. This low frequency
wall is pushed down to 5Hz in the case of 3G detectors. Fig. 1 shows

the amplitude spectral densities of the detectors in various observing
scenarios. Note that the Einstein telescope has been assumed to be
of L-shape in our analysis.

3 RESULTS

We have used a non-spinning multipolar waveform model by Mehta
et al. (2017) which is calibrated against the numerical relativity sim-
ulations. We use two subdominant multipoles ℓ = 3, 𝑚 = ±3 and
ℓ = 4, 𝑚 = ±4 in addition to the dominant mode ℓ = 2, 𝑚 = ±2
throughout the analysis. The derivatives of the waveform with respect
to the binary source parameters ®\, which are being used to com-
pute Fisher information matrix, have been calculated in Mathematica
(Wolfram Research 2021) analytically to avoid any numerical errors
due to finite differencing. We compute the expected uncertainties in
the luminosity distance and orbital inclination as a function of the
component masses (after fixing the sky location and polarization an-
gle). We also simulate a population of binaries (with fixed masses,
but different sky location and polarization angles) and compute the
distribution of expected uncertainties.

3.1 Expected uncertainties as a function of component masses

The first set of results are generated by simulating signals in a grid of
masses spanning 𝑚1 = 4−30𝑀� , 𝑚2 = 1−3𝑀� which corresponds
to the mass range of NSBH binaries. We have chosen other extrinsic
parameters as follows: inclination angle ] = 60 deg., luminosity
distance 𝑑𝐿 = 100Mpc, and sky-location (𝛼, 𝛿) and polarization
angle (𝜓) corresponding to the values which provide most precise
estimates of localization skyarea of the source.

In Figure 2, we show the improvements in the measurement of
luminosity distance (𝑑𝐿) with the inclusion of higher modes at dif-
ferent fiducial early warning times in various observing scenarios.
We quantify the improvement in terms of the ratio of the width of
the 90% credible interval in the marginalized posteriors of 𝑑𝐿 . We
find that in O5(Voyager), the measurement of luminosity distance is
improved by a factor as large as ∼ 1 − 1.5(1 − 2) with the inclusion
of higher order modes, 45 seconds before the merger. A significant
number of these mergers are also expected to produce an EM coun-
terpart 5. The possibility of an EM emission in a merger increases
with the spin of the primary component (black hole in case of a
NSBH) in a binary. This is a consequence of decreasing ISCO radius
with increasing spins, and hence leading to higher chances of tidal
disruption of matter happening outside the ISCO. The EM bright
nature of the compact binary merger also depends on the EoS of the
neutron star component. The stiffer the EoS of a neutron star, the
greater are the chances of the binary being EM-bright.

In 3G, the luminosity distance measurements can improve by a
factor up to∼ 1.1−5 at 300 seconds before the merger for a significant
number of binaries. The early warning time for 3G observing scenario
has been chosen as 300 seconds to keep in mind the fact that 3G
detectors will be sensitive to frequencies as low as 5Hz (see Figure
1). This will give us a longer early-warning time. Figure 3 shows the
orbital inclination angle (]) measurements at the same early warning
times for all three observing scenarios. The improvement factors in
the measurement of ] are ∼ 1−1.5(1−2) [1−3] in O5(Voyager)[3G]
for many compact binary mergers with significant fraction of them

5 Throughout this paper, we have assumed that a merger producing a non-
zero remnant mass outside the innermost stable circular orbit (ISCO) of the
final black hole will be EM bright (Foucart 2012)
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Figure 2. Top panel: Expected uncertainties in estimating the luminosity distance 𝑑𝐿 (at 90% confidence) with the inclusion of higher modes for non-spinning
compact binary mergers, located at 100Mpc, in three observing scenarios. We consider the component masses: 𝑚1 = 4 − 30𝑀� , 𝑚2 = 1 − 2.5𝑀� . Other
parameters of the binary systems are assumed to be fixed at their “optimal” values (values producing the best estimates of the distance) including ] = 60deg.
The black contours demarcate the regions of binaries, that will have potential EM emission i.e. non-zero ejecta mass in the merger, for various values of the
spin (𝜒1) of the primary (Foucart 2012). The black solid and dotted line contours correspond to the equations of state, 2H and SLy for the neutron star. Bottom
panel: fractional improvements in the luminosity distance measurements with the inclusion of higher modes, relative to the measurements carried out using only
dominant mode. In O5 (voyager)[3G] scenario, the luminosity distance measurements improve by a factor of ∼ 1− 1.5(1.1− 2) [1.1− 5], 45(45) [300] seconds
prior to the merger.
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Figure 4. Top panel: the total number of galaxies localized (at 90% confidence) that can be potential hosts of the compact binary merger with the inclusion
of higher modes. This number can be as small as ∼ 1000(200) [0.2] at 45(45) [300] seconds before the merger for binary systems that will have potential
EM counterpart in O5 (Voyager) [3G]. Bottom panel: the reduction in the number of potential host galaxies with the inclusion of higher modes relative to
only dominant mode. This reduction factor can be as ∼ 1 − 2.5(1.2 − 4) [1.2 − 10] for an early warning time of 45(45) [300] seconds before the merger in
O5(Voyager)[3G].

being EM bright similar to that of luminosity distance measurements.
Although the improvements in orbital inclination measurements are
not that significant, it can help in better constraining the orientation of
a beamed EM emission, if there exists any, from the NSBH mergers
more accurately than what could have been done using only the
dominant mode.

Given the measurements of luminosity distance and localization
skyarea, we can also estimate the error volume in which a source
can be localized. This error volume further can be translated into
the number of galaxies given the number density of galaxies in the
universe. An estimate of the number of galaxies in this error volume
is one of the most important parameters in which the astronomers
will be interested while searching for EM counterparts of a binary
merger.

In Figure 4, we show the expected number of galaxies (Δ𝑁) local-
ized, at 90% confidence, with the inclusion of higher modes and also
the improvements relative to only dominant mode estimates, at differ-
ent EW times in various observing scenarios. We have assumed the
number density of galaxies in the universe as 𝑛galaxy = 0.01Mpc−3

(Gehrels et al. 2016). In the best case scenario, the number of galaxies
localized (Δ𝑁), with the inclusion of higher modes, can be as small
as ∼ 1000(200) [0.2] at 45(45) [300] seconds before the merger in
O5(Voyager)[3G]. Including higher modes apart from the dominant
mode can help in reducing the number of galaxies localized by a
factor as large as ∼ 1 − 2.5(1.2 − 4) [1.2 − 10] for an early warning
time of 45(45) [300] seconds before the merger in O5(Voyager)[3G].
3G detectors will almost always be able to pin point the source to
a single galaxy for a significant number of binary mergers that will
also potentially be EM bright.

3.2 Variation of sky location and polarization angle

In the final set of results, we look at the variation of the sky-location
and polarization on the error measurements of luminosity distance
and orbital inclination while keeping the rest of the parameters fixed.
The fixed parameters are again 𝑚1 = 15𝑀� , 𝑚2 = 1.5𝑀� , ] = 60
deg., and 𝑑𝐿 = 100Mpc. We simulate 1000 uniformly distributed
sky-locations and polarizations of compact binary mergers. The left
column in the Figure 5(a) shows the cumulative histograms of lumi-
nosity distance measurement errors with and without the inclusion of
higher modes at three different early-warning times: 45, 30, and 20
seconds in both O5 and Voyager observing scenarios. The right col-
umn corresponds to the fractional improvements in the measurement
errors of luminosity distance with the inclusion of higher modes.
Median values of these distributions are tabulated in Table 2. The
improvements are better at early times than near the merger since the
relative contribution of higher modes is larger at earlier times6. Sim-
ilarly, Figure 5(b) shows the improvements in the measurement of
inclination angle while varying the sky-locations and polarizations.

4 SUMMARY AND OUTLOOK

Joint GW-EM observations of EM-bright CBCs promise to shed light
on the complex physics of the merger and associated phenomena.
Among them, BNS mergers within O(100) Mpc are the most likely
to produce observable EM counterparts. It is not surprising that a

6 This is because the higher modes oscillate in the most sensitive frequency
band of the detector, while the dominant mode is largely buried in the low-
frequency noise.
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Table 2. Median values of the distribution of uncertainties in the estimation of
the luminosity distance 𝑑𝐿 and inclination angle ] using templates including
the contribution of higher modes. These correspond to two observing sce-
narios (O5 and Voyager) and three different early warning times (20, 30, and
45 seconds). The median improvement factors (as compared to the estimates
using only 22 mode) are shown in parentheses.

O5 Voyager
𝜏𝑐[seconds] 20 30 45 20 30 45

Δ𝑑HM+22
𝐿

in Mpc
(Reduction factor)

44
(1.2)

58
(1.3)

81
(1.2)

25
(1.4)

35
(1.5)

51
(1.5)

Δ ]HM+22 in radians
(Reduction factor)

0.41
(1.3)

0.55
(1.3)

0.77
(1.3)

0.23
(1.4)

0.31
(1.4)

0.46
(1.5)

number of GW early-warning efforts targeted at BNS mergers are
currently under way (Sachdev et al. 2020; Magee et al. 2021; Magee
& Borhanian 2022; Nitz et al. 2020b).

On the other hand, EW studies focussed on potentially EM-Bright
NSBH binaries have only recently gained attention (Tsutsui et al.
2021a,b), due primarily to the fact that their inspiral duration within
the frequency band of ground-based detectors is significantly shorter
than BNSs. Nevertheless, our previous work (Kapadia et al. 2020;
Singh et al. 2021) demonstrated that including higher harmonics of
GW radiation in templated low-latency searches could considerably
increase the duration of the signal in-band. As a result, we showed that
EW detection and sky-localisation could be improved considerably
in future observing runs (O5, Voyager, 3G).

We follow-up our previous work by demonstrating the EW benefits
of including higher modes in reducing the localisation sky-volume,
while also improving estimates of orbital inclination. Adopting the
Fisher Matrix analysis, we find that for a range of potentially EM-
Bright NSBH systems located at 100 Mpc, the error-bars on the
distance reduce by a factor of ∼ 1 − 1.5(1.1 − 2) [1.1 − 5] at early
warning times of 45 (45) [300] seconds, pertaining to observing runs
O5 (Voyager) [3G]. We then pick a fiducial NSBH binary with masses
15 − 1.5𝑀� which could potentially be EM-Bright for a moderately
spinning BH, and vary its sky-location and polarization angle. Of
the 1000 randomly selected locations and polarizations, we find that
the median 𝑑𝐿−errors range from 44 − 81(25 − 51) Mpc at 20 − 45
seconds before the merger. These correspond to 𝑑𝐿−error reduction
factors of ∼ 1.2(1.5) upon the inclusion of higher modes, in O5
(Voyager) scenario.

Improved early-warning estimates of the luminosity distance and
sky-volume could aid astronomers in determining their follow-up
strategy. Different EM telescopes have limiting distances to which
they can probe. Of course, increasing the exposure time would enable
them to probe larger distances. However, for transient GW events that
are to be followed up in early-warning time, large exposure times are
not feasible.

Furthermore, even if a telescope had a sufficient depth of view, it
would need to slew to the appropriate sky-location, scan the local-
ization volume, and point at the NSBH before it merges. Assisted
by a galaxy catalog, as well as a coordinated search involving mul-
tiple telescopes, capturing the EM-counterpart at its onset could in
principle be achieved (Coughlin et al. 2018; Antier et al. 2020).
With this in mind, we also highlight that using higher modes, the
number of galaxies to be searched over can be reduced by as much
∼ 1 − 2.5(1.2 − 4), 45 seconds before merger for NSBH systems
located at 100 Mpc in the O5(Voyager) scenario.

It would be worth mentioning here that the Fisher Matrix likeli-
hood, being an expansion truncated at quadratic order of the full GW
parameter estimation likelihood, can deviate from the full likelihood
non-trivially. While this is true in general for lower SNR events, we

also show in Appendix A, that this could occur at small inclinations
as well. For the fiducial inclination angle of 60 degrees chosen in
this work (see Figures A1), we find that the full and Fisher Matrix
likelihoods agree well.
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APPENDIX A: ANALYTICAL FISHER MATRIX ERRORS ESTIMATION

As discused in section 2, the Fisher matrix provides a quadratic (Gaussian) approximation of the true Bayesian likelihood. While this might
work for most cases, this might not provide a good approximation when the posteriors ore multimodal, or when they have non-trivial shapes.
We found that the Gaussian likelihood in cos ] − 𝑑𝐿 provided by the Fisher matrix is not a good approximation of the true Bayesian likelihood
for certain choices for ] (Fig A1). This is especially the case for the analysis using only dominant mode when the true likelihood is significantly
wide, due to correlations between parameters. When the higher modes are included, this reduces the correlation between ]− 𝑑𝐿 and reduces the
size of the likeliliood, rendering the Gaussian approximation more accurate. We restrict our study to the values of ] where the approximation
is a reasonable one (] = 60). To get an understanding of the deviation of Fisher matrix likelihood from the true likelihood at low inclination
angles, we perform some analytical calculations for the Fisher matrix analysis with dominant mode.

For the dominant mode of GW radiation, the + and × polarizations of a GW signal in frequency domain (Mehta et al. 2017) can be written
as

ℎ̃+ ( 𝑓 ) =
1 + cos2 ]

2𝑑𝐿
ℎ̃22 ( 𝑓 ; ®_), (A1)

ℎ̃× ( 𝑓 ) =
−𝑖
𝑑𝐿

(cos ]) ℎ̃22 ( 𝑓 ; ®_) (A2)

where ℎ̃22 ( 𝑓 ; ®_) depends only on the intrinsic parameters of the source. The total signal is

ℎ̃( 𝑓 ) = 𝐹+ ℎ̃+ ( 𝑓 ) + 𝐹× ℎ̃× ( 𝑓 ), (A3)

where 𝐹+ (𝛼, 𝛿, 𝜓) and 𝐹× (𝛼, 𝛿, 𝜓) are antenna pattern functions of the detector. Considering only a single detector and substituting Eqs. (A1)
and (A2) into Eq. (A3), we get

ℎ̃( 𝑓 ) = 𝑒− ln 𝑑𝐿

2

[
(1 + cos2 ])𝐹+ − 𝑖(2 cos ])𝐹×

]
ℎ̃22 ( 𝑓 ; ®_). (A4)

Evaluating Fisher matrix (FM) requires the computation of derivatives of the waveform with respect to the parameters. Assuming the
parameterization (ln 𝑑𝐿 , cos ]), we calculate the derivatives of ℎ̃( 𝑓 ) as

ℎ̃ (ln 𝑑𝐿 ) ( 𝑓 ) = 𝜕(ln 𝑑𝐿 ) ℎ̃( 𝑓 ) = − 𝑒− ln 𝑑𝐿

2

[
(1 + cos2 ])𝐹+ − 𝑖(2 cos ])𝐹×

]
ℎ̃22 ( 𝑓 ; ®_) (A5)

ℎ̃ (cos ]) ( 𝑓 ) = 𝜕(cos ]) ℎ̃( 𝑓 ) =
𝑒− ln 𝑑𝐿

2
[(2 cos ])𝐹+ − 2𝑖𝐹×] ℎ̃22 ( 𝑓 ; ®_) (A6)

The FM elements for ln 𝑑𝐿 and cos ] are

𝐹(ln 𝑑𝐿 ) (ln 𝑑𝐿 ) =
(
ℎ (ln 𝑑𝐿 ) ( 𝑓 )

���ℎ (ln 𝑑𝐿 ) ( 𝑓 )
)
= 𝐴

𝑒−2 ln 𝑑𝐿

4

[
(1 + cos2 ])2𝐹2

+ + (2 cos ])2𝐹2
×
]

(A7)

where 𝐴 =

(
ℎ̃22 ( 𝑓 ; ®_)

���ℎ̃22 ( 𝑓 ; ®_)
)

is constant throughout our estimates of FM elements since it depends only on intrinsic parameters which are
fixed. Similarly,

𝐹(ln 𝑑𝐿 ) (cos ]) =
(
ℎ (ln 𝑑𝐿 ) ( 𝑓 )

���ℎ (cos ]) ( 𝑓 )
)
= −𝐴 𝑒−2 ln 𝑑𝐿

4
(2 cos ])

[
(1 + cos2 ])𝐹2

+ + 2𝐹2
×
]
= 𝐹(cos ]) (ln 𝑑𝐿 ) , (A8)

and

𝐹(cos ]) (cos ]) = 𝐴
𝑒−2 ln 𝑑𝐿

4

[
(2 cos ])2𝐹2

+ + (2𝐹×)2
]

(A9)

The FM is given as

𝐹 =
©«
𝐹(ln 𝑑𝐿 ) (ln 𝑑𝐿 ) 𝐹(ln 𝑑𝐿 ) (cos ])

𝐹(ln 𝑑𝐿 ) (cos ]) 𝐹(cos ]) (cos ])

ª®¬ . (A10)

We have to invert the above matrix to get the covariance matrix (Σ) which will render the errors and correlations between different parameters.
Let us calculate the determinant of 𝐹, i.e. |𝐹 | or det(𝐹), to find out if 𝐹 is invertible.

|𝐹 | = det(𝐹) = 4𝐹2
+𝐹

2
× (1 − cos2 ])2 (A11)

Therefore, it is clear that |𝐹 | ≠ 0 in general (except for ] = 0). The covariance matrix (Σ) is given as

Σ =
𝐴𝑑2

𝐿

𝐹2
+𝐹

2
× (1 − cos2 ])2

× ©«
𝐹2
× + (cos2 ])𝐹2

+ 2𝐹2
× + (1 + cos2 ])𝐹2

+

2𝐹2
× + (1 + cos2 ])𝐹2

+ 4(cos2 ])𝐹2
× + (1 + cos2 ])2𝐹2

+

ª®¬ (A12)

The term in the denominator (1 − cos2 ])2 is a increasing function of ] ∈ [0, 𝜋/2]. This is the dominating term which governs the overall
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Figure A1. Fisher and Bayesian likelihood comparison in distance and inclination angle plane while varying inclination angle with only dominant mode (left)
and multipolar (right) waveform.

increasing behaviour of all the covariance matrix elements (the errors and correlations) at low inclinations ] . 50 deg. (see left plot in Fig.
A1). Focusing on errors in ln 𝑑𝐿 and cos ] the expressions are given by

𝜎ln 𝑑𝐿
=

√
𝐴𝑑𝐿

𝐹+𝐹× (1 − cos2 ])

√︃
𝐹2
× + (cos2 ])𝐹2

+ (A13)

and

𝜎cos ] =

√
𝐴𝑑𝐿

𝐹+𝐹× (1 − cos2 ])

√︃
4(cos2 ])𝐹2

× + (1 + cos2 ])2𝐹2
+ (A14)

which diverge at ] ∼ 0. Inclusion of higher modes will not lead to divergence factor (1 − cos2 ]) in the denominator of errors and correlations
hence the Fisher matrix is a good approximation to the true likelihood even at low values of inclination angle (see right plot in Fig. A1).

APPENDIX B: CONFIDENCE INTERVAL CALCULATION

A multivariate Gaussian distribution in N dimensions is given by

𝑝(®𝑥) = N exp
[
−1

2
(®𝑥 − ®̀)𝑇 Σ−1 (®𝑥 − ®̀)

]
(B1)

when positions ®𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } and mean ®̀ = {`1, `2, ..., `𝑁 } are given. When the covariance matrix Σ is non-singular, it can be
diagonalized to render the distribution as

𝑝(®𝑥) = N exp

[
−

𝑁∑︁
𝑖=1

(𝑥𝑖 − `𝑖)2

2𝜎2
𝑖

]
(B2)

where 𝜎2
𝑖
’s are the eigenvalues of the covariance matrix Σ. The aim is to find the 𝐶% confidence region of this multivariate distribution. Let

us look at this problem in 3-dimensions. The probability density is

𝑝(𝑥, 𝑦, 𝑧) = 1
(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧

exp

[
− (𝑥 − `𝑥)2

2𝜎2
𝑥

−
(𝑦 − `𝑦)2

2𝜎2
𝑦

− (𝑧 − `𝑧)2

2𝜎2
𝑧

]
. (B3)

To estimate the volume of the ellipsoid at a particular confidence interval, we have to perform the integration on ellipsoidal symmetry. Just to
estimate the scaling factor 𝛽3 of different principle axes, let us choose the parametrization as follows:

𝑥 = `𝑥 + 𝜎𝑥𝑟 sin \ cos 𝜙 (B4)
𝑦 = `𝑦 + 𝜎𝑦𝑟 sin \ sin 𝜙 (B5)
𝑧 = `𝑧 + 𝜎𝑧𝑟 cos \ (B6)

MNRAS 000, 1–?? (0000)
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Table B1. Ellipsoid/ellipse axes scaling factor (𝛽𝑞) values at various credible intervals in 𝑞−dimensions

Confidence (𝐶) 𝜎-values 𝛽1 (1-D) 𝛽2(2-D) 𝛽3 (3-D)
0.20 0.25𝜎 0.25 0.668 1.005
0.683 1.0𝜎 1.0 1.516 1.879
0.90 1.6𝜎 1.6 2.146 2.500
0.99 2.6𝜎 2.6 3.035 3.368

where 𝑟 > 0 parametrizes the concentric ellipsoids, \ and 𝜙 are spherical polar angles. The volume element in these coordinates can be written
as 𝑑𝑉 = 𝜎𝑥𝜎𝑦𝜎𝑧𝑟

2 sin \𝑑𝑟𝑑\𝑑𝜙. In these coordinates, Eq. (B3) reduces to

𝑝(𝑟, \, 𝜙) = 1
(2𝜋)3/2

𝑒−𝑟
2/2 (B7)

Let us assume that sphere of radius 𝛽3 encloses a probability 𝐶, then

𝐶 =
1

(2𝜋)3/2

∫ 𝛽3

0
𝑟2𝑑𝑟

∫ 𝜋

0
sin \ 𝑑\

∫ 2𝜋

0
𝑑𝜙 𝑒−𝑟

2/2 (B8)

Or

𝐶 =

√︂
2
𝜋

∫ 𝛽3

0
𝑟2𝑑𝑟 𝑒−𝑟

2/2 (B9)

Or

𝐶 =

√︂
2
𝜋

[∫ 𝛽3

0
𝑑𝑟 𝑒−𝑟

2/2 −
∫ 𝛽3

0
𝑑 (𝑟𝑒−𝑟

2/2)
]

(B10)

Or

𝐶 = erf
(
𝛽3√

2

)
−
√︂

2
𝜋

(
𝛽3 𝑒−𝛽

2
3/2

)
(B11)

This transcendental equation can be solved for 𝛽3 numerically, given the probability value 𝐶. Table (B1) shows the values of 𝛽3 at various
credible intervals 𝐶. Thus, the volume of the ellipsoid at confidence 𝐶 will be

Δ𝑉𝐶% =
4
3
𝜋𝛽3

3 (𝜎𝑥𝜎𝑦𝜎𝑧) =
4
3
𝜋𝛽3

3
√︁

det(Σ) (B12)

where det(Σ) is the determinant of the covariance matrix Σ.
In 2-dimensions, the problem is even simpler. We can start from the probability distribution in polar coordinates

𝑝(𝑟, \) = 1
2𝜋

𝑒−𝑟
2/2. (B13)

Again let us assume that the circle of radius 𝛽2 centered on the origin contain the probability 𝐶, then

𝐶 =
1

2𝜋

∫ 𝛽2

0
𝑟 𝑑𝑟

∫ 2𝜋

0
𝑑\ 𝑒−𝑟

2/2 = 1 − 𝑒𝛽
2
2/2 (B14)

Or

𝛽2 =
√︁
−2 ln(1 − 𝐶). (B15)

The area of the ellipse at confidence 𝐶 is

Δ𝐴𝐶% = 𝜋𝛽2
2 (𝜎𝑥𝜎𝑦) = 𝜋𝛽2

2
√︁

det(Σ) = −2𝜋 ln(1 − 𝐶)
√︁

det(Σ). (B16)

The values of 𝛽2 are shown in the table (B1) at various confidence intervals along with 𝛽1 for 1−dimensional probability density which is
trivial to estimate.
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