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Abstract

Feature extraction for automatic classification of EEG signals typically relies on time frequency 

representations of the signal. Techniques such as cepstral-based filter banks or wavelets are 

popular analysis techniques in many signal processing applications including EEG classification. 

In this paper, we present a comparison of a variety of approaches to estimating and postprocessing 

features. To further aid in discrimination of periodic signals from aperiodic signals, we add a 

differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the 

largest publicly available EEG corpus and an exceedingly challenging task due to the clinical 

nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled 

with first and second derivatives, provides a substantial reduction in the overall error rate. The 

combination of differential energy and derivatives produces a 24% absolute reduction in the error 

rate and improves our ability to discriminate between signal events and background noise. This 

relatively simple approach proves to be comparable to other popular feature extraction approaches 

such as wavelets, but is much more computationally efficient.

I. Introduction

Electroencephalograms (EEGs) are used in a wide range of clinical settings to record 

electrical activity along the scalp. EEGs are the primary means by which neurologists 

diagnose brain-related illnesses such as epilepsy and seizures [1]. We have developed a 

system, known as AutoEEG™, that automatically interprets EEGs, and delivers high 

performance on clinical data [2]. An overview of the system is shown in Figure 1. It 

incorporates a traditional hidden Markov model (HMM) based system and uses two stages 

of postprocessing to produce epoch labels. An N-channel EEG is transformed into N 
independent feature streams using a standard sliding window based approach. These features 

are then transformed into EEG signal event hypotheses using a standard HMM recognition 

system [3]. These hypotheses are postprocessed by examining temporal and spatial context 

to produce epoch labels.

Epochs are typically 1 sec in duration, while features are computed every 0.1 secs using 0.2 
sec analysis windows. These parameters were optimized experimentally [2] in a previous 

study. Neurologists review EEGs in 10 sec windows, and it is common that pattern 

recognition systems classify 1 sec epochs. We further divide these 1 sec epochs into 10 
frames of 0.1 secs each so that we can model an epoch with an HMM.

amir.harati@temple.edu, meysam@temple.edu, silvia.lopez@temple.edu, obeid@temple.edu, picone@temple.edu

HHS Public Access
Author manuscript
IEEE Signal Process Med Biol Symp. Author manuscript; available in PMC 2016 May 20.

Published in final edited form as:
IEEE Signal Process Med Biol Symp. 2015 December ; 2015: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The system detects three events of clinical interest [4]: (1) spike and/or sharp waves 

(SPSW), (2) periodic lateralized epileptiform discharges (PLED), and (3) generalized 

periodic epileptiform discharges (GPED). SPSW events are epileptiform transients that are 

typically observed in patients with epilepsy. PLED events are indicative of EEG 

abnormalities and often manifest themselves with repetitive spike or sharp wave discharges 

that can be focal or lateralized over one hemisphere. These signals display quasi-periodic 

behavior. GPED events are similar to PLEDs, and manifest themselves as periodic short-

interval diffuse discharges, periodic long-interval diffuse discharges and suppression-burst 

patterns according to the interval between the discharges. Triphasic waves, which manifest 

themselves as diffuse and bilaterally synchronous spikes with bifrontal predominance, 

typically at a rate of 1-2 Hz, are also included in this class.

The system also detects three events used to model background noise: (1) artifacts (ARTF) 

are recorded electrical activity that is not of cerebral origin, such as those due to the 

equipment, patient behavior or the environment; (2) eye movement (EYEM) are common 

events that can often be confused with a spike; (3) background (BCKG) is used for all other 

signals.

These six classes were arrived at through several iterations of a study conducted with 

Temple University Hospital neurologists. Automatic labeling of these events allows a 

neurologist to rapidly search long-term EEG recordings for anomalous behavior. 

Performance requirements for this application are extremely aggressive. For the system to be 

clinically useful, detection rates for the three signal classes must be at least 95% with a false 

alarm rate below 5%. This is a challenge for clinical data because the recordings contain 

many artifacts that can easily be interpreted as spikes. Therefore, neurologists still rely on 

manual review of data in clinical applications.

Hence, a unique aspect of the work reported here is that we have used the TUH EEG Corpus 

[2] for evaluation. TUH EEG is the world's largest publicly available database of clinical 

EEG data, comprising more than 28,000 EEG records and over 15,000 patients. It represents 

the collective output from Temple University Hospital's Department of Neurology since 

2002 and is an ongoing data collection project. EEG signals were recorded using several 

generations of Natus Medical Incorporated's Nicolet™ EEG recording technology. The raw 

signals obtained from the studies consist of multichannel recordings that vary between 20 
and 128 channels sampled at a minimum of 250 Hz minimum using a 16-bit A/D converter. 

The data is stored in a proprietary format that has been exported to EDF with the use of 

NicVue v5.71.4.2530. In our study, we have resampled all the data to a common sample 

frequency of 250 Hz.

II. EEG Features

Our system uses a fairly standard cepstral coefficient-based feature extraction approach 

similar to the Mel Frequency Cepstral Coefficients (MFCCs) used in speech recognition [3],

[5],[6]. Though popular alternatives to MFCCs in EEG processing include wavelets, which 

are used by many commercial systems, our experiments with such features have shown very 

little advantage over MFCCs [7] on the TUH EEG Corpus. Therefore, in this study we have 
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focused on filter bank approaches. Further, unlike speech recognition which uses a mel scale 

for reasons related to speech perception, we use a linear frequency scale for EEGs, since 

there is no physiological evidence that a log scale is meaningful [4].

The focus of this paper is an exploration of some traditional tuning parameters associated 

with cepstral coefficient approaches. In this study, we limit our explorations to the tradeoffs 

in computing energy and differential features, since these have the greatest impact on 

performance.

It is common in the MFCC approach to compute cepstral coefficients by computing a high 

resolution fast Fourier Transform, downsampling this representation using an oversampling 

approach based on a set of overlapping bandpass filters, and transforming the output into the 

cepstral domain using a discrete cosine transform [8],[9]. The zeroth-order cepstral term is 

typically discarded and replaced with an energy term as described below.

There are two types of energy terms that are often used: time domain and frequency domain. 

Time domain energy is a straightforward computation using the log of the sum of the 

squares of the windowed signal:

We use an overlapping analysis window (a 50% overlap was used here) to ensure a smooth 

trajectory of this features.

The energy of the signal can also be computed in the frequency domain by computing the 

sum of squares of the oversampled filter bank outputs after they are downsampled:

(1)

This form of energy is commonly used in speech recognition systems because it provides a 

smoother, more stable estimate of the energy that leverages the cepstral representation of the 

signal. However, the virtue of this approach has not been extensively studied for EEG 

processing.

In order to improve differentiation between transient pulse-like events (e.g., SPSW events) 

and stationary background noise, we have introduced a differential energy term that attempts 

to model the long-term change in energy. This term examines energy over a range of M 
frames centered about the current frame, and computes the difference between the maximum 

and minimum over this interval:

(2)

We typically use a 0.9 sec window for this calculation. This simple feature has proven to be 

surprisingly effective.
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The final step to note in our feature extraction process is the familiar method for computing 

derivatives of features using a regression approach [5],[8],[9]:

(3)

where dt is a delta coefficient, from frame t computed in terms of the static coefficients ct+n 

to ct−n. A typical value for N is 9 (corresponding to 0.9 secs) for the first derivative in EEG 

processing, and 3 for the second derivative. These features, which are often called deltas 

because they measure the change in the features over times, are one of the most well-known 

features in speech recognition [8]. We typically use this approach to compute the derivatives 

of the features and then apply this approach again to those derivatives to obtain an estimate 

of the second derivatives of the features, generating what are often called delta-deltas. This 

triples the size of the feature vector (adding deltas and delta-deltas), but is well-known to 

deliver improved performance. This approach has not been extensively evaluated in EEG 

processing.

Dimensionality is something we must always pay attention to in classification systems since 

our ability to model features is directly related to the amount of training data available. The 

use of differential features raises the dimension of a typical feature vector from 9 (e.g., 7 
cepstral coefficients, frequency domain energy and differential energy) to 27. There must be 

sufficient training data to support this increase in dimensionality or any improvements in the 

feature extraction process will be masked by poor estimates of the model parameters (e.g., 

Gaussian means and covariances). As we will show in the next section, the TUH EEG 

Corpus is large enough to support such studies.

III. Experimentation

We have used a subset of TUH EEG that has been manually labeled for the six types of 

events described in Section I. The training set contains segments from 359 sessions while the 

evaluation set was drawn from 159 sessions. No patient appears more than once in the entire 

subset, which we refer to as the TUH EEG Short Set. A distribution of the frequency of 

occurrence of the 6 types of events in the training and evaluation set is shown in Table 1. 

The training set was designed to provide a sufficient number of examples to train statistical 

models such as HMMs. Note that some classes, such as SPSW, occur much less frequently 

in the actual corpus than common events such as BCKG. In fact, 99% of the data is assigned 

to the class BCKG, so special care must be taken to build robust classifiers for the non-

background classes. High performance detection of EEG events requires dealing with 

infrequently occurring events since the majority of the data is normal (uninformative). 

Hence, the evaluation set was designed to contain a reasonable representation of all classes.

We refer to the 6 classes shown in Table 1 as the 6-way classification problem. This is not 

necessarily the most informative performance metric. It makes more sense to collapse the 3 
background classes into one category. We refer to this second evaluation paradigm as a 4-

way classification task: SPSW, GPED, PLED and BACKG. The latter class contains an 

enumeration of the 3 background classes. Finally, in order that we can produce a DET curve 
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[10], we also report a 2-way classification task in which we collapse the data into a target 

class (TARG) and a background class (BCKG).

DET curves are generated by varying a threshold typically applied to likelihoods to evaluate 

the tradeoff between detection rates and false alarms. However, it is also instructive to look 

at specific numbers in table form. Therefore, all experiments reported in the tables use a 

scoring penalty of 0, which essentially means we are evaluating the raw likelihoods returned 

from the classification system. In virtually all cases, the trends shown in these tables hold up 

for the full range of the DET curve.

A. Absolute Features

The first series of experiments was run on a simple combination of features. A summary of 

these experiments is shown in Table 2. Cepstral-only features were compared with several 

energy estimation algorithms. It is clear that the combination of frequency domain energy 

and differential energy provides a substantial reduction in performance. However, note that 

differential energy by itself (system no. 4) produces a noticeable degradation in 

performance. Frequency domain energy clearly provides information that complements 

differential energy.

The improvements produced by system no. 5 hold for all three classification tasks. Though 

this approach increases the dimensionality of the feature vector by one element, the value of 

that additional element is significant and not replicated by simply adding other types of 

signal features [11].

B. Differential Features

A second set of experiments were run to evaluate the benefit of using differential features. 

These experiments are summarized in Table 3. The addition of the first derivative adds about 

70% absolute in performance (e.g., system no. 6 vs. system no. 1). However, when 

differential energy is introduced, the improvement in performance drops to only 4% 

absolute.

The story is somewhat mixed for the use of second derivatives. On the base cepstral feature 

vector, second derivatives reduce the error rate on the 6-way task by 4% absolute (systems 

no. 1, 6 and 11). However, the improvement for a system using differential energy is much 

less pronounced (systems no. 5, 10 and 15). In fact, it appears that differential energy and 

derivatives do something very similar. Therefore, we evaluated a system that eliminates the 

second derivative for differential energy. This system is labeled no. 16 in Table 3. We 

obtained a small but significant improvement in performance over system no. 10. The 

improvement on 4-way classification was larger, which indicates more of an impact on 

differentiating between PLEDs, GPEDs and SPSW vs. background. This is satisfying since 

this this feature was designed to address this problem.

The results shown in Tables 1-3 hold up under DET curve analysis as well. DET curves for 

systems nos. 1, 5, 10, and 15 are shown in Figure 3. We can see that the relative ranking of 

the systems is comparable over the range of the DET curves. First derivatives deliver a 

measurable improvement over absolute features (system no. 10 vs. no. 5). Second derivatives 
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do not provide as significant an improvement (system no. 15 vs. no. 10). Differential energy 

provides a substantial improvement over the base cepstral features.

It should be noted that user requirements for this type of technology includes an extremely 

low false alarm rate. Neurologists have expressed a need for a false alarm rate on the order 

of no more than one or two per day per bed while maintaining a detection rate of 95%. In 

related work we are able to approach these levels of performance using postprocessing steps 

alluded to in Figure 1. At these levels of performance, the differences between systems 

becomes more significant, and the use of second derivatives can potentially be more 

significant.

IV. Summary

In this paper, we have essentially calibrated some important algorithms used in feature 

extraction for EEG processing. We have shown that traditional feature extraction methods 

used in other fields such as speech recognition are relevant to EEGs. The use of a novel 

differential energy feature improved performance for absolute features (system nos. 1-5), but 

that benefit diminishes as first and second order derivatives are included. We have shown 

there is benefit to using derivatives and there is a small advantage to using frequency domain 

energy.

In related research [7],[11] we are evaluating approaches based on wavelets and other time-

frequency representations. Preliminary results seem to indicate there are no significant 

benefits to these representations. Hence, in this work we have focused on optimization of 

our standard approach. Future work will focus on new feature extraction methods based on 

principles of deep learning [12], discriminative training [13] and nonparametric Bayesian 

models [14].
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Figure 1. 
A two-level architecture for automatic interpretation of EEGs that integrates hidden Markov 

models for sequential decoding of EEG events with deep learning for decision-making based 

on temporal and spatial context.
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Figure 2. 
An illustration of how the differential energy term accentuates the differences between 

spike-like behavior and noiselike behavior. Detection of SPSW events is critical to the 

success of the overall system.
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Figure 3. 
A DET curve analysis of feature extraction systems that compares absolute and differential 

features. The addition of first derivatives provides a measurable improvment in performance 

while second derivatives are less beneficial.
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Table 1

An overview of the distribution of events in the subset of the TUH EEG Corpus used in our experiments.

Event

Train Eval

No. % (CDF) No. % (CDF)

SPSW 645 0.8% ( 1%) 567 1.9% ( 2%)

GPED 6184 7.4% ( 8%) 1,998 6.8% ( 9%)

PLED 11,254 13.4% ( 22%) 4,677 15.9% ( 25%)

EYEM 1,170 1.4% ( 23%) 329 1.1% ( 26%)

ARTF 11,053 13.2% ( 36%) 2,204 7.5% ( 33%)

BCKG 53,726 63.9% (100%) 19,646 66.8% (100%)

Total: 84,032 100.0% (100%) 29,421 100.0% (100%)

IEEE Signal Process Med Biol Symp. Author manuscript; available in PMC 2016 May 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harati et al. Page 12

Table 2

Performance on the TUH EEG Short Set of the base cepstral features augmented with an energy feature. 

System no. 5 uses both frequency domain and differential energy features. Note that the results are consistent 

across all classification schemes.

No. System Description Dims. 6-Way 4-Way 2-Way

1 Cepstral 7 59.3% 33.6% 24.6%

2 Cepstral + Ef 8 45.9% 33.0% 24.0%

3 Cepstral + Et 8 44.9% 33.7% 24.8%

4 Cepstral + Ed 8 55.2% 32.8% 24.3%

5 Cepstral + Ef +Ed 9 39.2% 30.0% 20.4%
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Table 3

The impact of differential features on performance is shown. For the overall best systems (nos. 10 and 15), 

second derivatives do not help significantly. Differential energy and derivatives appear to capture similar 

information.

No. System Description Dims. 6-Way 4-Way 2-Way

6 Cepstral + Δ 14 56.6% 32.6% 23.8%

7 Cepstral + Ef + Δ 16 43.7% 30.1% 21.2%

8 Cepstral + Et + Δ 16 42.8% 31.6% 22.4%

9 Cepstral + Ed + Δ 16 51.6% 30.4% 22.0%

10 Cepstral + Ef +Ed + Δ 18 35.4% 25.8% 16.8%

11 Cepstral + Δ + ΔΔ 21 53.1% 30.4% 21.8%

12 Cepstral + Ef + Δ + ΔΔ 24 39.6% 27.4% 19.2%

13 Cepstral + Et + Δ + ΔΔ 24 39.8% 29.6% 21.1%

14 Cepstral + Ed + Δ + ΔΔ 24 52.5% 30.1% 22.6%

15 Cepstral + Ef +Ed + Δ + ΔΔ 27 35.5% 25.9% 17.2%

16 (15) but no ΔΔ for Ed 26 35.0% 25.0% 16.6%
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