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Abstract

A photoplethysmography (PPG) signal provides very useful information about

a subject’s hemodynamic status in a hospital or ubiquitous environment.

However, PPG is very vulnerable to motion artifacts, which can significantly

distort the information belonging to the PPG signal itself. Thus, the reduction

of the effects of motion artifacts is an important issue when monitoring the

cardiovascular system by PPG. There have been many adaptive techniques

to reduce motion artifacts from PPG signals. In the present study, we

compared a method based on the fixed-interval Kalman smoother with the

usual adaptive filtering algorithms, e.g. the normalized least mean squares,

recursive least squares and the conventional Kalman filter. We found that the

fixed-interval Kalman smoother reduced motion artifacts from the PPG signal

most effectively. Therefore, the use of the fixed-interval Kalman smoother can

reduce motion artifacts in PPG, thus providing the most reliable information

that can be deduced from the reconstructed PPG signals.

Keywords: photoplethysmography, motion artifact, fixed-interval Kalman

smoother, Kalman filter, NLMS, RLS
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1. Introduction

A photoplethysmography (PPG) signal provides useful cardiovascular and respiratory

information, like arterial oxygen saturation, heart rate and respiratory rate (Shelley 2007).

Recently, the PPG signal was used instead of electrocardiography (ECG) to estimate heart

rate variability (HRV) (Lu et al 2008). In addition, the PPG signal can be used to measure

pulse arrival time (PAT), combined with ECG, to estimate blood pressure (Baek et al 2010).

PPG recording is a very convenient tool for continuous and ubiquitous monitoring of the

hemodynamic status of healthy individuals or patients. It can measure pulse signals non-

invasively and can also be developed as a portable device in order to monitor physiologic

condition during daily activities (Asada et al 2003).

However, the PPG signal is easily corrupted by motion artifact both in bed-side patient-

monitoring and in continuous mobile monitoring using portable devices (Hayes and Smith

1998). Motion artifacts distort the information contained in the PPG signals, such that the

removal of motion artifact is important for the exact estimation of physiological variables and

assessment of cardiovascular status, including heart rate, HRV and oxygen saturation.

To date, a number of methods have been suggested for the removal of a motion artifact

from PPG signals. Kim et al proposed independent component analysis exploiting the quasi-

periodicity of PPG signals (Kim and Yoo 2006). In addition, wavelet-based methods (Foo

2006) or non-linear methods (Hayes and Smith 1998) have also been suggested. There have

also been many attempts to utilize adaptive filtering techniques for the on-line reduction of

motion artifacts. Foo (2006) used the least mean squares (LMS) iterative algorithm and Gibbs

et al (2005) used the recursive least-squares (RLS) adaptive noise cancellation technique to

obtain clean filtered PPG signals from those corrupted by motion artifacts. In addition, it

was reported that the normalized least mean squares (NLMS) algorithm (Han et al 2007)

and the adaptive formula based on the Kalman filter (Seyedtabaii and Seyedtabaii 2008)

successfully reduced the motion artifacts from the corrupted PPG signals. Similarly, adaptive

filtering based on the Kalman formulation was used in ballistocardiogram artifact removal from

electroencephalographies (EEGs) acquired during magnetic resonance image (MRI) scanning

(In et al 2006, Bonmassar et al 2002).

In this study, we propose a fixed-interval Kalman smoother technique for the purpose of

improving the elimination of motion artifact from PPG signals. We compare our proposed

method with other adaptive filtering techniques, such as the NLMS filter, RLS filter and

conventional Kalman filter, by applying the algorithms to simulations and to real experimental

data. The organization of this paper is as follows. In section 2, the algorithms to be compared

are formulated to be suitable for the adaptive reduction scheme of motion artifacts. Next,

section 3 shows the results from simulation and actual experiments processed by the algorithms

presented in section 2. In the last section, we consider and discuss some points on the results

for each of the presented methods as they were applied to simulation and experimental data.

2. Algorithms

In this section, the following algorithms were formulated according to the adaptive noise

cancellation scheme: NLMS, RLS, conventional Kalman filter and fixed-lag Kalman smoother.

Detailed comparisons of their performances in the elimination of motion artifacts from the

PPG signal are described in later sections.



Improved motion artifact elimination from PPG using a Kalman smoother 1587

Figure 1. Dynamic structure of the adaptive FIR filter to eliminate motion artifacts from PPG

signals, which can be represented by a multiple regression model (see (1), acc means accelerometer

signal).

2.1. Adaptive filters

Adaptive recursive filters have been widely used for real-time removal of motion artifacts in

many biomedical applications, including ECG and PPG signals, because the transfer function

from motion to artifacts in a physiological system cannot be easily described by a definite

physical model. In this study, we constructed several algorithms of adaptive noise cancellation

having finite impulse response (FIR) structures. The structure of the system can be described

by the multiple regression model, as in (1), and the basic idea is represented schematically in

figure 1:

d(k) = wT u(k) + e(k) (1)

where w is an unknown parameter vector corresponding to filter tap coefficients with order M,

and d(k), e(k) and u(k) are the desired response, measurement error and filter tap input vector

at time k, respectively (Haykin 2002). The superscript T stands for the transpose of the matrix

or vector. In the present study, d(k) represents the measured PPG signals that are distorted by

motion artifacts.

According to the specific procedures for the adaptation of filter tap weights, there are

several algorithms, such as the LMS and RLS methods. For example, in the LMS algorithm,

the filter weights are adapted according to the Widrow–Hoff learning rule, as follows:

ŵ(k + 1) = ŵ(k) + µu(k)e(k) (2)

where ŵ(k) is the estimate of filter weights and u(k) is an input vector provided by an

accelerometer signal at time k and e(k) is the estimation error at time k obtained by

e(k) = d(k) − ŵT (k)u(k) (3)

from which the PPG signal with reduced motion artifacts can be estimated, such as ŝ(k) = e(k)

(In et al 2006, Hayes 1996).
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The adjustment proportional to the tap-input vector u(k) causes a gradient noise

amplification problem in the LMS method when u(k) is large. Therefore, by using

normalization during the processes of tap-weight adaptation with the squared Euclidean norm

of the tap-input vector u(k), the above-mentioned problem can be avoided. Thus, the algorithm

is named as normalized LMS (NLMS) and the filter tap-weights can be adjusted according to

ŵ(k + 1) = ŵ(k) +
µ

‖u(k)‖2 + δ
u(k)e(k) = ŵ(k) +

µ

uT (k)u(k) + δ
u(k)e(k) (4)

where 0 < µ < 2 and a small positive number (δ) is added in the denominator for

normalization, to cope with the case of a ‖u(k)‖ that is too small (Hayes 1996). In this study,

the NLMS algorithm was compared with other algorithms, such as the RLS and Kalman

recursion-based methods in the later sections.

2.2. Conventional Kalman filter

The aforementioned multiple regression model can be described as the state-space formulation

from which Kalman recursion algorithms can be derived. In addition, LMS and RLS adaptive

filters can be generalized to the Kalman filter representations (Tarvainen et al 2004). State-

space representation can be expressed by the following equations (Simon 2006):

xk = Ak−1xk−1 + nk−1 (5)

yk = Ckxk + ek, (6)

in which (5) is a state equation and (6) is an observation equation. xk is the state vector of the

system, Ak is the transition matrix, Ck is the observation matrix and yk is the observation data.

nk is the system noise vector and ek is the observation noise, which are both assumed to be zero-

mean white Gaussian noise processes, respectively, e.g. nk ∼ N(0, Qk) and ek ∼ N
(

0, σ 2
k

)

,

and to be independent of each other. Qk is the state noise covariance matrix and σ 2
k is the

measurement noise variance. In this study, the state vector can be expressed as the random

walk model, which makes the state transition matrix Ak the identity matrix:

xk = xk−1 + nk−1. (5′)

From (5′) and (6), the following Kalman recursion equations can be obtained as (Simon 2006)

x̂−
k = x̂+

k−1 (7)

P−
k = P+

k−1 + Qk (8)

Kk = P−
k CT

k

(

CkP−
k CT

k + Rk

)−1
(9)

x̂+
k = x̂−

k + Kk(yk − Ck x̂−
k ) (10)

P+
k = (I − KkCk)P

−
k (11)

where Kk is called the Kalman filter gain, which updates the state estimate when a new

observation is detected, x̂−
k and P−

k are the state vector estimate and its covariance matrix

before yk is observed, and x̂+
k and P+

k are the state vector estimate and its covariance matrix

after yk is observed.

If considering the previous scheme of the adaptive filter, x̂+
k and x̂−

k correspond to the

tap-weight estimates, ŵ(k) and ŵ(k − 1) respectively, yk becomes the desired response d(k),

and tap-input uT (k) can replace Ck. With additional replacement of P−
k by Pk−1, the recursive

update equations can be expressed as
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Table 1. The relationship between the recursive algorithms (KF, RLS and NLMS) with respect to

state–space perspective. Kk is the Kalman gain vector and Pk is the conditional covariance matrices

of the parameter estimation error.

Kk Pk

KF Pk−1CT
k (CkPk−1CT

k + Rk)
−1 (I − KkCk)Pk−1 + Qk

RLS Pk−1CT
k (CkPk−1CT

k + λ)−1 λ−1(I − KkCk)Pk−1

NLMSa µ1µ2CT
k (µ2CkCT

k + 1)−1 µ2I

KF = Kalman filter; RLS = recursive least-squares method; NLMS = normalized
least mean squares method.
a Considering (4), µ1 corresponds to µ and µ2 corresponds to 1/δ.

Kk = Pk−1u(k)
/(

uT (k)Pk−1u(k) + σ 2
k

)

(9′)

ŵ(k) = ŵ(k − 1) + Kk(d(k) − uT (k)ŵ(k − 1)) (10′)

Pk = (I − KkuT (k))Pk−1 + Qk, (11′)

which can also represent the state-space formulation of the RLS adaptive filter if σ 2
k is replaced

by λ(0.9 � λ � 1) in (9′), along with Pk = λ−1(I − KkCk)Pk−1 (Qk = 0) replaced in (11′)

(Tarvainen et al 2004, Haykin 2002). The formulations of the algorithms (NLMS, RLS and

Kalman filter) can be compared with respect to state-space perspective, and the relationships

between them are summarized in table 1 (Georgiadis et al 2005).

Usually, the state noise covariance matrix (Qk) can be simplified as Qk = σ 2
kfI and the

measurement noise variance
(

σ 2
k

)

can be set to 1
(

σ 2
k = σ 2 = 1

)

since it is known that

only the ratio σ 2
/

σ 2
kf influences the estimates (Tarvainen et al 2006, Georgiadis et al 2005).

Additionally, the optimal parameters of algorithms were selected specific to each data to obtain

the best estimates (µmax for NLMS, λmax for RLS and σ 2
kf, max for the Kalman filter) (Tarvainen

et al 2004).

2.3. Fixed-interval Kalman smoother

If an immediate update of the state estimate is not necessary and we can have a little time lag

from the time points of observations, the future observations can be used for the estimation

of the state. Such estimators are called smoothers. If we have observations for a fixed

time interval (after getting all the data points), the state estimate at the interior time point

k(k = 1, . . . , T ) of the time interval can be obtained given the observations y1, . . . , yT and

the estimator is called the fixed-interval smoother (Tarvainen et al 2004). In this study, we

implemented the RTS (Rauch–Tung–Striebel) smoother, which is more difficult to understand

but is computationally more efficient than the forward–backward approach (Simon 2006).

In the implementation of the fixed-interval Kalman smoother, the standard forward

Kalman filter must be executed initially and, thereafter, the backward RTS smoothing can

be processed from k = T to k = 1 iteratively. The additional procedures are as follows:

K′
k = P+

k (P
−
k+1)

−1 (12)

x̂′
k = x̂+

k + K′
k(x̂

′
k+1 − x̂−

k+1) (13)

where the smoother gain matrix K′
k of the RTS method includes the error covariances obtained

during the forward processes, and the RTS estimate x̂′
k also requires the state estimates resulting

from the forward Kalman filtering, including the initial condition of x̂′
T = x̂+

T . Like other
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algorithms, the optimal parameters were selected for each data to obtain the best estimates

(σ 2
ks, max for the Kalman smoother) (Tarvainen et al 2004). To follow the above dynamic

scheme of adaptive filtering, (12) and (13) can be reformulated as follows:

K′
k = P+

k (Pk)
−1 (12′)

ŵ′(k) = ŵ(k) + K′
k(ŵ

′(k + 1) − ŵ(k + 1)) (13′)

where Pk corresponds to P−
k+1, ŵ(k + 1) corresponds to x̂−

k+1 and P+
k must be stored in advance

during the forward Kalman process as well as Pk and ŵ(k).

2.4. Relationship between algorithms

The Kalman filter provides an optimal estimate in the mean-square sense and can be formulated

as a state-space model. RLS can also be described by a state-space model (Chun et al 1998) and

can be recognized as a special case of the Kalman filter (Sayed 2008, Sayed and Kailath 1994).

The RLS method and Kalman filter showed comparable performances in several applications

(Barnawi et al 2007, Chun et al 1998, Lanzi et al 2006). In addition, RLS is known to be

more robust and to converge faster than NLMS (Haykin 2002). On the other hand, optimal

smoothers estimate the state of a system at a given time point using more measurements made

before and after that time point and therefore the accuracy of a smoother is generally superior to

that of a filter. Optimal smoothers can be derived from the Kalman filter formulation (Grewal

and Andrews 2008). In addition, using the Kalman smoother can avoid the lag error present in

adaptive filters such as the Kalman filter, RLS or NLMS (Tarvainen et al 2006). From the point

of computation and memory demand, NLMS has an order of complexity O(M) per iteration

while RLS and Kalman filter have an order of O(M2) per iteration (Lanzi et al 2006, Sayed

and Kailath 1994). A fixed-interval Kalman smoother is computationally heaviest among the

algorithms, needs a large memory capacity and can only be used in off-line processing unlike

others (Grewal and Andrews 2008).

3. Simulations and real experiments

In this section, the algorithms will be applied to the simulation data and then the real

experimental data. The performance results for the algorithms were compared with each

other. Tests for the algorithms were performed in the MATLAB (MathWorks Inc., USA)

environment.

3.1. Simulations

3.1.1. Preparation of simulated PPG signals. To construct the simulation dataset, the

motion artifacts were modeled by sine functions with 1, 2 or 3 Hz because the finger and hand

motions in daily activity are low-frequency movements (Kunesch et al 1989, Xiong and Quek

2006). These artificial signals of motion artifact and white Gaussian noise were merged with

the real PPG signals, which were obtained at resting state using a commercial PPG sensor

and customized acquisition device. We prepared two simulation datasets using 1 Hz and

2 Hz resting PPG signals together with different SNRs (signal-to-noise ratios) and tested

each algorithm using these same datasets with six different filter tap orders. The first dataset

(simulation 1) was constructed by merging a resting PPG having about 2 Hz (about 120 bpm)

cycle and 45 s duration (see figure 2(a)) with artificial motion artifacts made from 1 Hz, 2 Hz,

3 Hz sinusoids, as well as mixed sinusoids with 1 and 2 Hz, with 1 and 3 Hz, and with 2 and

3 Hz components. The second dataset (simulation 2) was constructed by merging a resting

PPG having about 1 Hz (about 60 bpm) cycle and 66 s duration (see figure 2(b)) with artificial
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motion artifacts made from 1 Hz, 2 Hz, 3 Hz sinusoids, as well as mixed sinusoids with 1 and

2 Hz, with 1 and 3 Hz, and with 2 and 3 Hz components. In addition, the artificial motion

artifacts were mingled to the real PPG signal with different SNRs of −12.5, −10, −7.5, −5

and −2.5 dB. One example of an artificial PPG signal mixed with a 2 Hz motion artifact (MA)

having a SNR of −7.5 dB of simulation dataset 1 is displayed in figure 2(a). In figure 2(a),

the uppermost plot of the left column overlays the original real PPG signal (dotted line) and

artificially motion artifact-corrupted PPG signal (thin solid line), and the lower plots of the left

column represent the signals reconstructed by each algorithm (thick solid lines), i.e. NLMS,

RLS, Kalman filter and fixed-interval Kalman smoother, which are overlaid over the original

and simulated PPG signals. In the right column of figure 2(a), the selection procedures for the

optimal parameters of each method are displayed, such that the reconstructed signals represent

the maximal cross correlation with the original PPG signal. Another example of the artificial

PPG signal mixed with 1 Hz MA having a SNR of −5 dB of simulation dataset 2 is displayed

in figure 2(b) in a similar way to figure 1(a).

3.1.2. Results of simulation data. Four algorithms were applied to the two simulation

datasets, which respectively comprise six artificial motion artifacts (1 Hz, 2 Hz, 3 Hz, 1 and

2 Hz, 1 and 3 Hz, and 2 and 3 Hz MA) with five different SNR levels (−12.5 ∼−2.5 dB). All

results are summarized in figures 3 (simulation dataset 1) and 4 (simulation dataset 2) for all

of the combinations of datasets with six different FIR filter tap orders (8, 16, 24, 32, 40 and

48), and, for each situation, the optimal parameters of each algorithm (µmax for NLMS, λmax

for RLS, σ 2
kf, max for the Kalman filter, and σ 2

ks, max for the Kalman smoother) were searched

to represent the results showing the maximal values of cross correlations between the original

PPG signal and the artifact-rejected PPG signals. Four representative examples of simulation

dataset 1 and four of simulation dataset 2 are arranged in table 2, which gives the specific

numerical values for the cross correlations between the original PPG signal and the simulated

signals of PPG with motion artifacts, and between the original signal and reconstructed

PPG signals acquired after processing by four algorithms, respectively. In addition, table 2

shows the optimal values of parameters for each method in order to obtain the maximal cross

correlation between the reconstructed PPG signals and the original PPG signal.

For all the combinations of the two datasets with different SNR levels and different filter

tap orders, the results of the fixed-interval Kalman smoother represented PPG signals which

were most correlated with the original PPG signal. The results of a conventional Kalman filter

and RLS generally showed similar results, but the Kalman filter represented a more stable and

accurate reconstruction than RLS because the results of the RLS filter showed much lower

values than those for the Kalman filter in several cases of simulation data (the cases of 1 and

2 Hz MA with −12.5, −10 and −7.5 dBs in simulation 1 and all cases of 1 and 2 Hz MA

in simulation 2 above the tap order of 24, see figures 3 and 4). According to our simulation

results, the NLMS method showed the lowest levels of cross correlation between the filtered

PPG signals and the original PPG signal among the algorithms in most cases (but not in all

the cases). As SNR increases, the results of the Kalman filter, RLS and NLMS tended to

converge each other. However, the fixed-interval Kalman smoother showed the best results

out of the four algorithms in all the simulated PPG signals and filter tap orders to the limit of

our simulation tests.

3.2. Experiments

3.2.1. Acquisition of real PPG signals. The PPG and accelerometer signals, which were

measured in a real situation, were processed by NLMS, RLS, Kalman filter and fixed-interval
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(a)

(b)

Figure 2. (a) One example of simulation dataset 1 is displayed. The original PPG (nearly 2 Hz

cycle) measured at rest was mixed with artificial motion artifact having 2 Hz fluctuation, which

represents an SNR of −7.5 dB. The adaptive FIR filter tap order is 16 in this sample analysis and

results are displayed from 1 to 6 s. The uppermost plot of the left column overlays the original

real PPG signal (dotted line) and artificially motion artifact-corrupted PPG signal (thin solid line)

and the lower plots represent the signals reconstructed by each algorithms (thick solid lines), i.e.

NLMS, RLS, Kalman filter, and fixed-interval Kalman smoother, which are overlaid over the

original and simulated PPG signals. The cross correlation was 0.2567 between the original PPG

and the PPG with artificial motion artifact before filtering. As in plots of the right column, optimal

parameters for each method are selected, such that the reconstructed signals represent the maximal

cross correlation with the original PPG signal respectively (x-axis: parameter for each algorithm,

y-axis: cross correlation). (b) Another example of simulation dataset 2 is displayed. The original

PPG (nearly 1 Hz cycle) measured at rest was mixed with artificial motion artifact having 1 Hz

fluctuation, which represents an SNR of −5 dB. The FIR filter tap order is 40 in this sample. The

cross correlation was 0.4855 between the original PPG and the PPG with artificial motion artifact

before filtering. Other explanations are the same as (a) SNR = signal-to-noise ratio.
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Figure 3. Four algorithms were applied to the simulation dataset 1 which comprise six different

MAs with five different SNR levels (−12.5 to −2.5 dB). The maximal cross correlations were

acquired for all the combinations of datasets with six different FIR filter tap orders (8, 16, 24, 32,

40 and 48). For all the situations, the maximal cross correlations as well as the corresponding

optimal parameters were searched with regard to each algorithm and the values are displayed with

the y-axis in each plot. Y-axes represent the values of cross correlation between the filtered PPG

signal and the original PPG signal. KS = fixed-interval Kalman smoother, KF = conventional

Kalman filter, RLS = recursive least-squares method, NLMS = normalized least mean squares

method, SNR = signal-to-noise ratio, MA = motion artifact.
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Figure 4. Four algorithms were applied to the simulation dataset 2 which comprise six different

MAs with five different SNR levels (−12.5 to −2.5 dB). The maximal cross correlations were

acquired for all the combinations of datasets with six different FIR filter tap orders (8, 16, 24, 32,

40 and 48). For all the situations, the maximal cross correlations as well as the corresponding

optimal parameters were searched with regard to each algorithm and the values are displayed with

the y-axis in each plot. Y-axes represent the values of cross correlation between the filtered PPG

signal and the original PPG signal. KS = fixed-interval Kalman smoother, KF = conventional

Kalman filter, RLS = recursive least-squares method, NLMS = normalized least mean squares

method, SNR = signal-to-noise ratio, MA = motion artifact.
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Table 2. Cross correlations between the original PPG signal and the reconstructed PPG signals by four algorithms with regard to eight representative simulation data. CCMA is the cross

correction between the original PPG signal and the simulated PPG distorted by artificial motion artifacts, CCKS is the cross correlation between the original PPG signal and the PPG

reconstructed by fixed-interval Kalman smoother, CCKF is the cross correlation between the original PPG signal and the PPG reconstructed by the conventional Kalman filter, CCRLS is

the cross correlation between the original PPG signal and the PPG reconstructed by the RLS filter, and CCNLMS is the cross correlation between the original PPG signal and the PPG

reconstructed by the NLMS filter. Values of optimal parameters for each algorithm are listed in the parentheses next to the values of cross correlation. MA = motion artifact, SNR =

signal-to-noise ratio.

Filter tap order

Dataset Cross correlations 8 16 24 32 40 48

Simulation 1 CCKS (σ 2
ks, max) 0.9693 (≈0) 0.9679 (≈0) 0.9594 (≈0) 0.9513 (≈0) 0.9503 (≈0) 0.9502 (≈0)

(2 Hz MA, CCKF (σ 2
kf, max, ×10−11) 0.8818 (3.2551) 0.8673 (1.4150) 0.8643 (1.2316) 0.8692 (1.0719) 0.8697 (0.9329) 0.8612 (0.7067)

SNR = −7.5 dB, CCRLS (λmax) 0.8740 (0.9997) 0.8643 (0.9996) 0.8644 (0.9994) 0.8678 (0.9993) 0.8670 (0.9993) 0.8597 (0.9993)

CCMA = 0.2567) CCNLMS (µmax) 0.8184 (0.0080) 0.7974 (0.0102) 0.7977 (0.0105) 0.8034 (0.0095) 0.8048 (0.0089) 0.8016 (0.0094)

Simulation 1 CCKS (σ 2
ks, max) 0.9593 (≈0) 0.9579 (≈0) 0.9578 (≈0) 0.9562 (≈0) 0.9546 (≈0) 0.9545 (≈0)

(1 and 2 Hz MA, CCKF (σ 2
kf, max, ×10−12) 0.8831 (≈0) 0.8818 (24.658) 0.8844 (10.719) 0.8694 (4.0555) 0.8482 (1.3355) 0.8379 (0.3331)

SNR = −10 dB, CCRLS (λmax) 0.8824 (1) 0.8822 (1) 0.8931 (1) 0.8479 (1) 0.7708 (1) 0.7521 (1)

CCMA = 0.1901) CCNLMS (µmax) 0.8650 (0.0116) 0.8526 (0.0165) 0.8268 (0.0192) 0.8019 (0.0243) 0.7872 (0.0277) 0.7749 (0.0269)

Simulation 1 CCKS (σ 2
ks, max, ×10−13) 0.9787 (1.9116) 0.9773 (≈0) 0.9772 (≈0) 0.9755 (≈0) 0.9740 (≈0) 0.9738 (≈0)

(1 and 2 Hz MA, CCKF (σ 2
kf, max, ×10−11) 0.9010 (≈0) 0.9009 (11.357) 0.9026 (4.2970) 0.8871 (1.6258) 0.8658 (0.7067) 0.8553 (0.9329)

SNR = −5 dB, CCRLS (λmax) 0.9007 (1) 0.9010 (1) 0.9106 (1) 0.8802 (1) 0.8468 (1) 0.8356 (1)

CCMA = 0.4042) CCNLMS (µmax) 0.9161 (0.0053) 0.9055 (0.0098) 0.8884 (0.0111) 0.8681 (0.0128) 0.8529 (0.0149) 0.8410 (0.0150)

Simulation 1 CCKS (σ 2
ks, max) 0.9705 (≈0) 0.9702 (≈0) 0.9681 (≈0) 0.9660 (≈0) 0.9637 (≈0) 0.9600 (≈0)

(2 and 3 Hz MA, CCKF (σ 2
kf, max, ×10−12) 0.9061 (24.658) 0.8819 (8.1198) 0.8537 (4.6595) 0.8441 (7.0672) 0.8449 (9.3293) 0.8438 (8.1198)

SNR = −7.5 dB, CCRLS (λmax) 0.9020 (1) 0.8802 (1) 0.8560 (0.9996) 0.8471 (0.9993) 0.8461 (0.9993) 0.8450 (0.9994)

CCMA = 0.2704) CCNLMS (µmax) 0.8373 (0.0081) 0.8159 (0.0096) 0.7740 (0.0102) 0.7428 (0.0104) 0.7553 (0.0115) 0.7621 (0.0116)

Simulation 2 CCKS (σ 2
ks, max) 0.9197 (≈0) 0.9197 (≈0) 0.9197 (≈0) 0.9193(≈0) 0.9187 (≈0) 0.9180 (≈0)

(1 Hz MA, CCKF (σ 2
kf, max, ×10−13) 0.8913 (13.355) 0.8922 (15.344) 0.8921 (11.623) 0.8920 (7.6634) 0.8919 (4.3976) 0.8925 (2.1964)

SNR = −7.5 dB, CCRLS (λmax) 0.8917 (0.9997) 0.8919 (0.9997) 0.8850 (0.9997) 0.8778 (0.9997) 0.8764 (0.9998) 0.8770 (0.9998)

CCMA = 0.3809) CCNLMS (µmax) 0.8363 (0.0040) 0.8259 (0.0044) 0.8180 (0.0048) 0.8138 (0.0050) 0.8128 (0.0051) 0.8138 (0.0051)

Simulation 2 CCKS (σ 2
ks, max) 0.8445 (≈0) 0.8440 (≈0) 0.8435 (≈0) 0.8434 (≈0) 0.8434 (≈0) 0.8435 (≈0)

(1 and 2 Hz MA, CCKF (σ 2
kf, max, ×10−14) 0.8320 (≈0) 0.8299 (9.5477) 0.8246 (25.235) 0.8208 (28.994) 0.8197 (25.235) 0.8197 (19.116)

SNR = −10 dB, CCRLS (λmax) 0.8316 (0.9999) 0.8293 (0.9999) 0.8226 (0.9998) 0.8078 (0.9997) 0.7734 (0.9998) 0.7568 (0.9998)

CCMA = 0.2997) CCNLMS (µmax) 0.7448 (0.0044) 0.7358 (0.0059) 0.7275 (0.0079) 0.7216 (0.0092) 0.7130 (0.0102) 0.7090 (0.0109)

Simulation 2 CCKS (σ 2
ks, max) 0.9779 (≈0) 0.9772 (≈0) 0.9766 (≈0) 0.9765 (≈0) 0.9765 (≈0) 0.9765 (≈0)

(1 and 2 Hz MA, CCKF (σ 2
kf, max, ×10−13) 0.9644 (5.0526) 0.9611 (20.255) 0.9560 (26.738) 0.9523 (26.738) 0.9508 (23.272) 0.9505 (20.255)

SNR = −5 dB, CCRLS (λmax) 0.9646 (0.9998) 0.9611 (0.9998) 0.9538 (0.9997) 0.9328 (0.9996) 0.9066 (0.9996) 0.8998 (0.9996)

CCMA = 0.4906) CCNLMS (µmax) 0.9003 (0.0030) 0.8954 (0.0040) 0.8902 (0.0054) 0.8869 (0.0067) 0.8826 (0.0075) 0.8805 (0.0083)

Simulation 2 CCKS (σ 2
ks, max) 0.9215 (≈0) 0.9216 (≈0) 0.9217 (≈0) 0.9217 (≈0) 0.9216 (≈0) 0.9209 (≈0)

(2 and 3 Hz MA, CCKF (σ 2
kf, max) 0.9198 (≈0) 0.9193 (≈0) 0.9188 (≈0) 0.9173 (≈0) 0.9145 (≈0) 0.9126 (≈0)

SNR = −7.5 dB, CCRLS (λmax) 0.9181 (1) 0.9129 (1) 0.9122 (1) 0.9106 (1) 0.9077 (1) 0.9056 (0.9999)

CCMA = 0.3823) CCNLMS (µmax) 0.8625 (0.0049) 0.8442 (0.0065) 0.8379 (0.0086) 0.8437 (0.0105) 0.8564 (0.0118) 0.8658 (0.0127)
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(a) (b)

Figure 5. Reflected-type ring-shaped finger sensor used for the acquisition of the PPG signals.

(a) Attached accelerometer to detect the motion artifacts and (b) LED and photo-detector of PPG

sensing part.

Kalman smoother. PPG signals were measured with a commercial transmitted-type finger

sensor (NONIN R© finger clip 8000R) or a reflected-type ring-shaped finger sensor (LAXTHA R©

RP320), and the three-axis accelerometer (MMA7260Q) was attached to the finger sensor

module to detect the movement of fingers (see figure 5). The data were acquired with

a sampling rate of 128 Hz using our in-house potable device composed of a 12-bit AD

converter, 32 MB flash memory and USB connection with a computer. For the analog part of

the developed device, the detected signal is processed by a high-pass filter with a 0.5 Hz cutoff

at first, then amplified with a 25-time gain, and lastly processed using a low-pass filter with

10 Hz cutoff. Out of the three-dimensional data of the accelerometer, only the one-dimensional

signal which was maximally correlated with the PPG signal was used for the adaptive removal

of motion artifact. The PPG signals affected by motion artifacts were collected on the right

index finger during finger or arm movement and the reference PPG signals were also measured

on the left index finger which was in a fixed position.

Data were collected in motions, such as finger bending and arm swing, which are expected

to take place during hospital monitoring or daily-life monitoring. To compare the performances

of the algorithms, we collected PPG data during two well-defined motions to induce motion

artifacts as in a real situation from four volunteers: finger bending and arm swing. We

instructed each subject to bend their index fingers continuously with a frequency between

1 and 2 Hz along one direction and then swing their arms continuously with a frequency

between 1 and 2 Hz along one direction, with their fingers inserted in the ring of PPG sensors.

20 trials of about 24 s durations were collected to obtain the measures such as mean and standard

deviation for the purpose of the statistically meaningful comparison of the algorithms. All the

PPG signals were acquired using a reflected-type ring-shaped sensor. Two examples of real

PPG signals acquired during finger bending and arm swing for one subject are displayed in

figure 6 in a similar manner to those of the simulation examples in figure 2.

3.2.2. Results of real experiments. Four algorithms were applied to the each experimental

data. All results are summarized in figure 7 and table 4 with eight different FIR filter tap orders

(8, 16, 24, 32, 40, 48, 56 and 64). Eight examples of analysis on the representative trials

for finger bending and arm swing belonging to each subject are arranged in table 3, which

gives the specific numerical values for the cross correlations between the reference signal and

the signals of PPG with motion artifacts, and between the reference signal and reconstructed
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(a)

(b)

Figure 6. (a) One example of real experimental data (finger bending) of one subject is displayed.

The adaptive FIR filter tap order is 16 in this sample analysis, and the results are displayed for 5 s.

The uppermost plot of the left column overlays the reference PPG signal (dotted line) and motion

artifact-corrupted PPG signal (thin solid line) and the remaining lower plots represent the signals

reconstructed by each algorithm (thick solid lines), i.e. NLMS, RLS, Kalman filter and fixed-

interval Kalman smoother, which are overlaid over the reference and motion artifact-corrupted

PPG signals. The cross correlation was 0.6458 between the reference PPG signal and the PPG

with motion artifact before filtering. As in the plots of the right column, optimal parameters for

each method are selected such that the reconstructed signals represent the maximal cross correlation

with the reference PPG signal, respectively (x-axis: parameter for each algorithm, y-axis: cross

correlation). (b) Another example of arm swing of the same subject as (a) is displayed. The FIR

filter tap order is 48 in this sample. The cross correlation was 0.6097 between the reference PPG

signal and the PPG corrupted with motion artifact before filtering. Other explanations are the same

as (a).
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Figure 7. Mean values of cross correlations between the reference PPG signal and the filtered

PPG signal for 20 trials of finger bending and arm swing obtained from four subjects. Mean

cross correlations were plotted for all the combinations of datasets with eight different FIR filter

tap orders (8, 16, 24, 32, 40, 48, 56 and 64). KS = fixed-interval Kalman smoother, KF =

conventional Kalman filter, RLS = recursive least-squares method, NLMS = normalized least

mean squares method. Y-axes represent the values of cross correlation between the filtered PPG

signal and the reference PPG signal.

PPG signals acquired after processing using the four algorithms, respectively. In addition,

table 3 shows the optimal values of parameters for the maximal cross correlation between

the reconstructed PPG signals and the reference PPG signal (µmax for NLMS, λmax for RLS,

σ 2
kf, max for the Kalman filter and σ 2

ks, max for the Kalman smoother). Unlike the analyses of the

simulation data, the cross correlations were calculated between the signals with the first and

last 2 s data omitted, to reduce the distorted portions. Figure 7 plots the mean values of the

cross correlation between the reference PPG signal and the filtered PPG signal for 20 trials of

finger bending and arm swing obtained from four subjects and table 4 shows the numerical

values of the mean and standard deviation of cross correlations obtained using 20 trials of two

motions for each subject.

For the analyses of all the experimental dataset with different filter tap orders, the fixed-

interval Kalman smoother reconstructed PPG signals that were most correlated with the

reference PPG signal on average in most situations. The results of the conventional Kalman

filter and RLS were generally comparable to each other although in some cases there were slight

differences between the results of the Kalman filter and those of the RLS filter. According to our

experimental data, the NLMS method showed lower cross correlations than other algorithms

generally. As the filter tap order increases, the cross correlations for each algorithm usually

tended to increase and saturate above a certain limit of tap order which is 24 in most our

data. In conclusion, the fixed-interval Kalman smoother produced the best outcomes out of

the four algorithms in most combinations of the experimental PPG signals and filter tap orders

especially after reaching the saturated values along the increasing tap order.
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4. Discussion

In this study, we implemented algorithms to eliminate the motion artifacts from the acquired

PPG signals because motion artifacts distort PPG signals, making it impossible to extract

accurate information of cardiovascular parameters, such as heart rate, HRV and oxygen

saturation (Hayes and Smith 1998). Until now, many adaptive algorithms were used

to remove motion artifacts from PPG signals. We propose an algorithm based on the

fixed-interval Kalman smoother and we found that our proposed method generally showed

superior performance to that of other adaptive filtering algorithms, like NLMS, RLS and the

conventional Kalman filter, as evidenced by our analyses of simulation (figures 3 and 4, and

table 2) and real experimental (figure 7 and tables 3 and 4) data. When considering the

results on simulation data, we observed that the conventional Kalman filter and RLS algorithm

usually show similar performances that were superior to that of the NLMS filter in most cases.

However, the Kalman filter algorithm represents more stable estimates than RLS, since in

some combination of simulation data with several filter tap orders, RLS reconstructed signals

had much lower cross correlations with the original PPG signal than Kalman filtering (see

figures 3 and 4). The real experimental data showed a similar trend to simulation data, despite

showing more complexity than the simulation cases (figure 7). In the analyses of experimental

data, the proposed method usually represents the superior results in comparison to the other

algorithms by statistical sense. In addition, the Kalman filter and RLS filter generally show

similar performances, which were superior to those of NLMS, although in some cases there

were slight differences between the results of the Kalman filter and those of the RLS filter. In

a few simulation and experimental cases, NLMS showed slight better performances than the

Kalman and RLS algorithms (see figures 3 and 7). Interestingly, correlations of simulation

results tended to decrease as the filter tap order increased. On the other hand, correlations of

experimental data usually tended to increase as the filter tap order increased. This result may

be because the simulation data are so simple that, if processed with many tap orders, they can

be distorted more severely than when filtered with less order. However, since real data may

represent a more complex situation than simulation data, more filter tap orders produce better

results in most cases, which are saturated above a limit of order (roughly 24 in this study).

According to the previous studies, the RLS method and the Kalman filter showed

comparable performances in other applications (Barnawi et al 2007, Chun et al 1998, Lanzi

et al 2006). In addition, RLS can be described by a state-space model (Chun et al 1998) and

it can be also recognized as a special case of Kalman filter (Sayed 2008). Lanzi et al (2006)

reported that RLS represented better performances than NLMS from their results, which reflect

the fact that RLS is usually more robust and converge faster than NLMS. Our study led to

similar outcomes to previous reports. However, we found in some simulation cases that the

Kalman filter produced better performances that the RLS method (the cases of 1 and 2 Hz MA

with −12.5, −10 and −7.5 dBs in simulation 1 and all cases of 1 and 2 Hz MA in simulation

2 above the tap order of 24, see figures 3 and 4), and such situations are mainly the cases

in which the frequencies (1 Hz or 2 Hz) of the original PPG were overlapped with those

of motion artifact signals as well as added by another frequency component different from

those of the original PPG. That is, the Kalman filter seems to produce more reliable results

in complex and intractable situations. In this context, a study reported that the Kalman filter

responded more quickly to the model changes in a simulation test than the RLS algorithm

(Arnold et al 1998). However, this phenomenon did not appear prominently in the results of

real experiment. Taken together, more tests and theoretical assessments will be necessary to

identify definite evidences about the characteristics of these methods.

Traditional adaptive filtering methods, like NLMS, RLS and conventional Kalman filter,

can be used for the real-time elimination of motion artifacts from PPG signals (on-line
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Table 3. Cross correlations between the reference PPG signal and the reconstructed PPG signals by four algorithms with regard to eight representative experimental data. CCMA is the

cross correction between the reference PPG signal and the measured PPG distorted with real motion artifacts, CCKS is the cross correlation between the reference PPG signal and the

PPG reconstructed by the fixed-interval Kalman smoother, CCKF is the cross correlation between the reference PPG signal and the PPG reconstructed by the conventional Kalman filter,

CCRLS is the cross correlation between the reference PPG signal and the PPG reconstructed by the RLS filter, and CCNLMS is the cross correlation between the reference PPG signal and

the PPG reconstructed by the NLMS filter. Values of optimal parameters for each algorithm are listed in the parentheses next to the values of cross correlation. MA = motion artifact.

Filter tap order

Dataset Cross correlations 8 16 24 32 40 48 56 64

Subj 1 (Bending, CCMA = 0.7196) CCKS (σ 2
ks, max, ×10−13) 0.9350 (5.8052) 0.9609 (3.3313) 0.9638 (3.8275) 0.9636 (3.3313) 0.9624 (2.8994) 0.9621 (2.5235) 0.9615 (2.1964) 0.9610 (2.1964)

CCKF (σ 2
kf, max, ×10−14) 0.9299 (88.049) 0.9575 (25.235) 0.9591 (28.994) 0.9561 (8.3099) 0.9524 (7.2326) 0.9481 (4.7686) 0.9470 (1.1895) 0.9430 (2.3817)

CCRLS (λmax) 0.9402 (0.9947) 0.9579 (0.9984) 0.9586 (0.9992) 0.9559 (0.9994) 0.9513 (0.9999) 0.9465 (1) 0.9452 (1) 0.9411 (1)

CCNLMS (µmax) 0.8488 (0.0287) 0.8447 (0.0012) 0.9242 (0.0021) 0.9255 (0.0028) 0.9237 (0.0027) 0.9206 (0.0027) 0.9176 (0.0027) 0.9138 (0.0027)

Subj 1 (Swing, CCMA = 0.7789) CCKS (σ 2
ks, max, ×10−12) 0.8800 (21.461) 0.8929 (14.150) 0.9185 (16.258) 0.9214 (14.150) 0.9212 (9.3293) 0.9221 (9.3293) 0.9217 (10.719) 0.9192 (16.258)

CCKF (σ 2
kf, max, ×10−12) 0.8715 (42.970) 0.8816 (28.331) 0.9035 (21.461) 0.9031 (16.258) 0.9033 (14.150) 0.9059 (14.150) 0.9020 (10.719) 0.8883 (9.3293)

CCRLS (λmax) 0.8740 (0.9950) 0.8817 (0.9952) 0.8982 (0.9962) 0.8949 (0.9967) 0.8917 (0.9969) 0.8918 (0.9970) 0.8921 (0.9973) 0.8860 (0.9974)

CCNLMS (µmax) 0.8710 (0.0005) 0.8751 (0.0007) 0.8728 (0.0007) 0.8715 (0.0007) 0.8761 (0.0008) 0.8784 (0.0009) 0.8780 (0.0009) 0.8770 (0.0009)

Subj 2 (Bending, CCMA = 0.5523) CCKS (σ 2
ks, max, ×10−13) 0.8728 (46.595) 0.8804 (30.721) 0.9001 (30.721) 0.9009 (35.297) 0.9002 (20.255) 0.8986 (13.355) 0.8976 (11.623) 0.8985 (7.6634)

CCKF (σ 2
kf, max, ×10−13) 0.8657 (20.255) 0.8705 (8.8049) 0.8876 (7.6634) 0.8889 (10.116) 0.8887 (5.8052) 0.8865 (3.8275) 0.8806 (4.3976) 0.8818 (4.3976)

CCRLS (λmax) 0.8692 (0.9960) 0.8746 (0.9963) 0.8908 (0.9969) 0.8904 (0.9979) 0.8905 (0.9982) 0.8904 (0.9980) 0.8834 (0.9983) 0.8854 (0.9985)

CCNLMS (µmax) 0.8452 (0.0094) 0.8525 (0.0131) 0.8702 (0.0158) 0.8822 (0.0178) 0.8765 (0.0196) 0.8764 (0.0181) 0.8734 (0.0183) 0.8699 (0.0191)

Subj 2 (Swing, CCMA = 0.7254) CCKS (σ 2
ks, max, ×10−13) 0.8015 (15.344) 0.8246 (11.623) 0.8486 (13.355) 0.8547 (10.116) 0.8548 (8.8094) 0.8652 (7.6634) 0.8737 (7.6634) 0.8741 (7.6634)

CCKF (σ 2
kf, max, ×10−13) 0.7954 (17.629) 0.8169 (11.623) 0.8358 (10.116) 0.8389 (7.6634) 0.8383 (5.8052) 0.8482 (5.0526) 0.8525 (4.3976) 0.8514 (3.8275)

CCRLS (λmax) 0.7952 (0.9973) 0.8191 (0.9971) 0.8375 (0.9972) 0.8392 (0.9974) 0.8364 (0.9976) 0.8417 (0.9979) 0.8390 (0.9983) 0.8370 (0.9985)

CCNLMS (µmax) 0.7906 (0.0029) 0.8107 (0.0045) 0.8223 (0.0054) 0.8250 (0.0058) 0.8235 (0.0062) 0.8309 (0.0067) 0.8443 (0.0074) 0.8458 (0.0075)

Subj 3 (Bending, CCMA = 0.7378) CCKS (σ 2
ks, max, ×10−13) 0.8939 (13.355) 0.9196 (6.6699) 0.9229 (4.3976) 0.9236 (3.8275) 0.9260 (2.5235) 0.9259 (2.8994) 0.9251 (2.1964) 0.9253 (1.9116)

CCKF (σ 2
kf, max, ×10−14) 0.8824 (76.634) 0.9109 (9.5477) 0.9151 (≈0) 0.9142 (0.450) 0.9139 (1.8042) 0.9127 (2.0729) 0.9130 (≈0) 0.9111 (≈0)

CCRLS (λmax) 0.8835 (0.9978) 0.9106 (0.9994) 0.9150 (1) 0.9141 (1) 0.9137 (1) 0.9125 (1) 0.9129 (1) 0.9109 (1)

CCNLMS (µmax) 0.8489 (0.0046) 0.9018 (0.0056) 0.9066 (0.0055) 0.9054 (0.0064) 0.9043 (0.0064) 0.9066 (0.0066) 0.9059 (0.0071) 0.9047 (0.0075)

Subj 3 (Swing, CCMA = 0.6648) CCKS (σ 2
ks, max, ×10−13) 0.8895 (26.738) 0.8975 (17.629) 0.8994 (15.344) 0.8994 (10.116) 0.9008 (6.6699) 0.9000 (5.8052) 0.8991 (5.0526) 0.9009 (4.3976)

CCKF (σ 2
kf, max, ×10−14) 0.8783 (76.634) 0.8845 (33.313) 0.8847 (25.235) 0.8857 (19.116) 0.8886 (14.481) 0.8879 (10.970) 0.8867 (8.3099) 0.8850 (8.3099)

CCRLS (λmax) 0.8784 (0.9988) 0.8822 (0.9989) 0.8806 (0.9989) 0.8809 (0.9992) 0.8839 (0.9996) 0.8828 (0.9997) 0.8821 (0.9997) 0.8804 (0.9997)

CCNLMS (µmax) 0.8739 (0.0037) 0.8805 (0.0046) 0.8782 (0.0054) 0.8762 (0.0055) 0.8801 (0.0054) 0.8838 (0.0054) 0.8833 (0.0057) 0.8816 (0.0058)

Subj 4 (Bending, CCMA = 0.7227) CCKS (σ 2
ks, max, ×10−12) 0.9079 (6.1510) 0.9178 (4.0555) 0.9236 (4.0555) 0.9231 (2.3272) 0.9229 (1.7629) 0.9230 (1.3355) 0.9232 (1.1623) 0.9236 (1.0116)

CCKF (σ 2
kf, max, ×10−13) 0.9034 (26.738) 0.9132 (13.355) 0.9163 (15.344) 0.9163 (8.8049) 0.9159 (5.8052) 0.9163 (5.0526) 0.9151 (5.0526) 0.9142 (5.0526)

CCRLS (λmax) 0.9120 (0.9933) 0.9177 (0.9952) 0.9156 (0.9968) 0.9140 (0.9993) 0.9136 (0.9996) 0.9136 (0.9994) 0.9120 (0.9994) 0.9105 (0.9994)

CCNLMS (µmax) 0.8822 (0.0083) 0.8983 (0.0121) 0.9164 (0.0136) 0.9146 (0.0161) 0.9135 (0.0166) 0.9113 (0.0175) 0.9105 (0.0198) 0.9101 (0.0208)

Subj 4 (Swing, CCMA = 0.5220) CCKS (σ 2
ks, max, ×10−13) 0.9148 (81.198) 0.9318 (30.721) 0.9327 (23.272) 0.9351 (17.629) 0.9352 (13.355) 0.9355 (10.116) 0.9353 (8.8049) 0.9349 (7.6634)

CCKF (σ 2
kf, max, ×10−13) 0.9070 (26.738) 0.9272 (11.623) 0.9268 (6.6699) 0.9283 (5.0526) 0.9274 (5.0526) 0.9259 (4.3976) 0.9253 (3.8275) 0.9251 (2.8994)

CCRLS (λmax) 0.9104 (0.9969) 0.9264 (0.9984) 0.9261 (0.9989) 0.9277 (0.9991) 0.9259 (0.9991) 0.9250 (0.9991) 0.9235 (0.9992) 0.9229 (0.9994)

CCNLMS (µmax) 0.8708 (0.0108) 0.9164 (0.0087) 0.9154 (0.0095) 0.9182 (0.0096) 0.9205 (0.0096) 0.9191 (0.0103) 0.9162 (0.0106) 0.9151 (0.0110)
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Table 4. Numerical values of mean and standard deviation for 20 trials of finger bending and arm swing motions measured from four subjects. Original values of mean and standard

deviation for the cross correlations between the reference PPG signal and the raw PPG signals are also listed in the second column expressing motion types. Values of standard deviation

are in the parentheses. KS = fixed-interval Kalman smoother, KF = conventional Kalman filter, RLS = recursive least-squares method, NLMS = normalized least mean squares method.

Motion Filter FIR filter tap order

Subject type type 8 16 24 32 40 48 56 64

1 Finger bending KS 0.9374 (0.0137) 0.9595 (0.0089) 0.9596 (0.0080) 0.9583 (0.0083) 0.9572 (0.0088) 0.9565 (0.0093) 0.9556 (0.0097) 0.9548 (0.0098)

0.7287 (0.0409) KF 0.9359 (0.0145) 0.9572 (0.0098) 0.9553 (0.0090) 0.9516 (0.0103) 0.9482 (0.0110) 0.9447 (0.0112) 0.9405 (0.0131) 0.9362 (0.0157)

RLS 0.9444 (0.0138) 0.9567 (0.0090) 0.9532 (0.0088) 0.9493 (0.0103) 0.9457 (0.0112) 0.9419 (0.0112) 0.9374 (0.0126) 0.9330 (0.0148)

NLMS 0.8593 (0.0362) 0.8856 (0.0613) 0.9093 (0.0679) 0.9021 (0.0713) 0.8969 (0.0724) 0.8933 (0.0724) 0.8897 (0.0739) 0.8861 (0.0740)

Arm swing KS 0.8637 (0.0285) 0.8745 (0.0227) 0.9002 (0.0147) 0.9036 (0.0152) 0.9042 (0.0149) 0.9054 (0.0156) 0. 9054 (0.0160) 0.9051 (0.0158)

0.7567 (0.0603) KF 0.8544 (0.0302) 0.8634 (0.0254) 0.8859 (0.0166) 0.8879 (0.0168) 0.8877 (0.0170) 0.8862 (0.0182) 0.8847 (0.0180) 0.8826 (0.0183)

RLS 0.8559 (0.0291) 0.8643 (0.0231) 0.8835 (0.0166) 0.8828 (0.0169) 0.8808 (0.0177) 0.8788 (0.0194) 0.8764 (0.0195) 0.8735 (0.0203)

NLMS 0.8243 (0.0412) 0.8310 (0.0462) 0.8513 (0.0371) 0.8524 (0.0399) 0.8502 (0.0418) 0.8492 (0.0444) 0.8471 (0.0465) 0.8445 (0.0476)

2 Finger bending KS 0.7825 (0.0914) 0.8114 (0.0825) 0.8336 (0.0718) 0.8370 (0.0709) 0.8372 (0.0711) 0.8368 (0.0709) 0.8375 (0.0704) 0.8378 (0.0704)

0.5871 (0.1317) KF 0.7752 (0.0905) 0.7990 (0.0819) 0.8190 (0.0714) 0.8215 (0.0717) 0.8209 (0.0713) 0.8194 (0.0707) 0.8183 (0.0704) 0.8179 (0.0708)

RLS 0.7861 (0.0843) 0.8110 (0.0743) 0.8230 (0.0711) 0.8232 (0.0729) 0.8211 (0.0740) 0.8188 (0.0741) 0.8174 (0.0738) 0.8164 (0.0749)

NLMS 0.7350 (0.0930) 0.7735 (0.0929) 0.8041 (0.0726) 0.8126 (0.0706) 0.8117 (0.0703) 0.8110 (0.0693) 0.8088 (0.0701) 0.8075 (0.0700)

Arm swing KS 0.8231 (0.0585) 0.8471 (0.0527) 0.8563 (0.0530) 0.8606 (0.0515) 0.8764 (0.0480) 0.8859 (0.0377) 0.8895 (0.0367) 0.8875 (0.0419)

0.6212 (0.1087) KF 0.8202 (0.0599) 0.8411 (0.0573) 0.8481 (0.0593) 0.8503 (0.0592) 0.8643 (0.0569) 0.8715 (0.0493) 0.8719 (0.0516) 0.8675 (0.0584)

RLS 0.8241 (0.0577) 0.8455 (0.0544) 0.8524 (0.0563) 0.8546 (0.0572) 0.8658 (0.0560) 0.8705 (0.0490) 0.8697 (0.0515) 0.8658 (0.0582)

NLMS 0.7951 (0.0810) 0.8066 (0.0787) 0.8103 (0.0806) 0.8088 (0.0835) 0.8273 (0.0769) 0.8496 (0.0615) 0.8592 (0.0458) 0.8644 (0.0453)

3 Finger bending KS 0.7307 (0.1768) 0.7779 (0.1550) 0.7887 (0.1472) 0.7913 (0.1444) 0.7912 (0.1442) 0.7939 (0.1430) 0.7952 (0.1409) 0.7953 (0.1403)

0.5885 (0.1885) KF 0.7149 (0.1773) 0.7619 (0.1546) 0.7714 (0.1473) 0.7717 (0.1455) 0.7694 (0.1446) 0.7698 (0.1428) 0.7699 (0.1410) 0.7689 (0.1404)

RLS 0.7395 (0.1610) 0.7720 (0.1486) 0.7750 (0.1453) 0.7727 (0.1449) 0.7694 (0.1444) 0.7684 (0.1436) 0.7671 (0.1424) 0.7661 (0.1414)

NLMS 0.6650 (0.1966) 0.7274 (0.1716) 0.7660 (0.1486) 0.7676 (0.1454) 0.7634 (0.1463) 0.7658 (0.1445) 0.7676 (0.1419) 0.7660 (0.1417)

Arm swing KS 0.7908 (0.1355) 0.7962 (0.1362) 0.7971 (0.1375) 0.7966 (0.1384) 0.7965 (0.1378) 0.7959 (0.1369) 0.7945 (0.1373) 0.7933 (0.1383)

0.7016 (0.1234) KF 0.7847 (0.1400) 0.7876 (0.1421) 0.7875 (0.1432) 0.7867 (0.1435) 0.7859 (0.1429) 0.7839 (0.1428) 0.7814 (0.1433) 0.7789 (0.1433)

RLS 0.7858 (0.1405) 0.7856 (0.1423) 0.7833 (0.1423) 0.7819 (0.1419) 0.7809 (0.1412) 0.7787 (0.1413) 0.7759 (0.1417) 0.7731 (0.1417)

NLMS 0.7824 (0.1366) 0.7883 (0.1399) 0.7884 (0.1412) 0.7870 (0.1412) 0.7871 (0.1409) 0.7871 (0.1406) 0.7868 (0.1407) 0.7863 (0.1409)

4 Finger bending KS 0.9034 (0.0487) 0.9130 (0.0437) 0.9153 (0.0427) 0.9152 (0.0428) 0.9154 (0.0426) 0.9155 (0.0424) 0.9156 (0.0421) 0.9155 (0.0422)

0.7539 (0.0906) KF 0.8978 (0.0490) 0.9070 (0.0446) 0.9083 (0.0434) 0.9072 (0.0442) 0.9064 (0.0436) 0.9056 (0.0427) 0.9047 (0.0424) 0.9034 (0.0432)

RLS 0.9021 (0.0470) 0.9079 (0.0443) 0.9066 (0.0452) 0.9058 (0.0454) 0.9048 (0.0447) 0.9034 (0.0439) 0.9020 (0.0435) 0.9007 (0.0439)

NLMS 0.8748 (0.0601) 0.8913 (0.0543) 0.9080 (0.0462) 0.9071 (0.0458) 0.9057 (0.0458) 0.9048 (0.0461) 0.9036 (0.0463) 0.9030 (0.0464)

Arm swing KS 0.8734 (0.0302) 0.8970 (0.0227) 0.9050 (0.0208) 0.9092 (0.0177) 0.9136 (0.0160) 0.9143 (0.0159) 0.9143 (0.0164) 0.9145 (0.0163)

0.5125 (0.0725) KF 0.8590 (0.0332) 0.8814 (0.0280) 0.8881 (0.0247) 0.8930 (0.0232) 0.8963 (0.0217) 0.8960 (0.0232) 0.8943 (0.0244) 0.8931 (0.0246)

RLS 0.8684 (0.0297) 0.8849 (0.0260) 0.8921 (0.0222) 0.8964 (0.0212) 0.8977 (0.0207) 0.8970 (0.0215) 0.8950 (0.0226) 0.8930 (0.0235)

NLMS 0.8032 (0.0346) 0.8738 (0.0258) 0.8760 (0.0252) 0.8719 (0.0256) 0.8800 (0.0261) 0.8816 (0.0267) 0.8804 (0.0271) 0.8790 (0.0276)
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processing). Out of these methods, the method based on the Kalman formula usually gave

more stable and accurate results from the present study. The fixed-interval Kalman smoother

mostly showed the best performances among the algorithms analyzed, but this method can

be used only after data acquisition is complete (off-line processing). If the fixed-lag Kalman

smoother is used in motion artifact elimination, the real-time processing will be possible in

spite of the considerable computational cost (Simon 2006, Vauhkonen et al 2001). Therefore,

our proposed method and other real-time algorithms can be used in a complementary way.

To the limit of the present study, our proposed method based on the fixed-interval Kalman

smoother generally showed superior performance to other algorithms, but additional studies

will be necessary to guarantee its proper evaluation. In future work, we will investigate using

two or more directional information of an accelerometer and more effective algorithms with

less computational burden.
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